塔里木盆地深层海相原油中硫代金刚烷系列化合物的鉴定
朱光有 , 王瑞林 , 王霆 , 文志刚 , 张志遥
地球科学 ›› 2023, Vol. 48 ›› Issue (02) : 398 -412.
塔里木盆地深层海相原油中硫代金刚烷系列化合物的鉴定
Identification of Thiadiamondoids in Oil Samples from Tazhong Uplift, Tarim Basin
,
硫代金刚烷被认为是硫酸盐热化学还原反应(TSR)的标志物,在塔里木盆地原油中检出了大量硫代金刚烷.使用银离子柱层析法分离塔里木盆地海相原油中有机含硫化合物(organic sulfur compound, OSC),进一步采用气相色谱质谱联用(GC-MS)技术,在OSC组分中检测出了完整的低聚硫代金刚烷和部分高聚硫代金刚烷及金刚烷硫醇系列共76个化合物.其中,大部分油样中C0-C2硫代单金刚烷(易挥发硫代金刚烷)占据总硫代金刚烷含量的50%左右,中深1C和中深5井油样比较特殊,易挥发硫代金刚烷仅占据20%左右的相对丰度. 同时,中深1C和中深5井油样中硫代单金刚烷:硫代双金刚烷:硫代三金刚烷含量比值大约为4∶4∶1,而其它样品中该比值为8∶1∶0.硫代金刚烷的丰度可定量反映TSR作用的强度,硫代单金刚烷的高比值与易挥发硫代金刚烷的高相对丰度指示油样发生过运移. 这可有效应用于指示TSR作用强度以及TSR是否为原位反应,TSR作用的产物除了OSC组分还有大量H2S气体. 而原油中该发现为预测硫化氢分布与判识硫化氢成因及深层油气勘探提供理论依据.
硫代金刚烷 / 硫酸盐热化学还原反应(TSR) / 金刚烷硫醇 / 塔里木盆地 / 海相碳酸盐岩 / 石油地质
thiadiamondoid / thermochemical sulfate reduction(TSR) / diamondoidthiol / Tarim Basin / petroleum geology
| [1] |
Birch, S. F., Cullum, T. V., Dean, R. A., et al., 1952. Thiaadamantane. Nature, 170(4328): 629-630. https://doi.org/10.1038/170629b0 |
| [2] |
Cai, C. F., Amrani, A., Worden, R. H., et al., 2016a. Sulfur Isotopic Compositions of Individual Organosulfur Compounds and Their Genetic Links in the Lower Paleozoic Petroleum Pools of the Tarim Basin, NW China. Geochimica et Cosmochimica Acta, 182: 88-108. https://doi.org/10.1016/j.gca.2016.02.036 |
| [3] |
Cai, C. F., Xiao, Q. L., Fang, C. C., et al., 2016b. The Effect of Thermochemical Sulfate Reduction on Formation and Isomerization of Thiadiamondoids and Diamondoids in the Lower Paleozoic Petroleum Pools of the Tarim Basin, NW China. Organic Geochemistry, 101: 49-62. https://doi.org/10.1016/j.orggeochem.2016.08.006 |
| [4] |
Chen,Z.H.,Zhang,P.,Chai,Z.,et al.,2020.Identication and Geochemical Application in Crude Oil. Journal of Earth Sciences and Environment,42(2):143-158 (in Chinese with English abstract). |
| [5] |
Clark, T., Knox, T. M., McKervey, M. A., et al., 1979. Thermochemistry of Bridged-Ring Substances. Enthalpies of Formation of some Diamondoid Hydrocarbons and of Perhydroquinacene. Comparisons with Data from Empirical Force Field Calculations. Journal of the American Chemical Society, 101(9): 2404-2410. https://doi.org/10.1021/ja00503a028 |
| [6] |
Dahl, J. E., Moldowan, J. M., Peters, K. E., et al., 1999. Diamondoid Hydrocarbons as Indicators of Natural Oil Cracking. Nature, 399(6731): 54-57. https://doi.org/10.1038/19953 |
| [7] |
Fang,C.C.,Zhai,J.,Hu,G.Y., et al.,2021.A Simultaneous Determination Method for Diamondoids and Thiadiamondoids in Condensate Oil and Its Geological Significance.Petroleum Geology & Experiment,43(5):906-914 (in Chinese with English abstract). |
| [8] |
Gordadze, G. N., 2008. Geochemistry of Cage Hydrocarbons. Petroleum Chemistry, 48(4): 241-253. https://doi.org/10.1134/S0965544108040014 |
| [9] |
Gvirtzman, Z., Said-Ahmad, W., Ellis, G. S., et al., 2015. Compound-Specific Sulfur Isotope Analysis of Thiadiamondoids of Oils from the Smackover Formation, USA. Geochimica et Cosmochimica Acta, 167: 144-161. https://doi.org/10.1016/j.gca.2015.07.008 |
| [10] |
Jiang,N.H.,Zhu,G.Y.,Zhang,S.C., et al.,2008.Detection of 2-thiaadamantanes in the Oil from Well TZ-83 in Tarim Basin and Its Geological implication. Chinese Science Bulletin,53(3):396-401 (in Chinese). |
| [11] |
Li, S. M., Amrani, A., Pang, X. Q., et al., 2015. Origin and Quantitative Source Assessment of Deep Oils in the Tazhong Uplift, Tarim Basin. Organic Geochemistry, 78: 1-22. https://doi.org/10.1016/j.orggeochem.2014.10.004 |
| [12] |
Li,K.K.,Cai,C.F.,Cai,L.,et al.,2021. Origin of Sulfides in the Middle and Lower Ordovician Carbonates in Tahe Oilfield,Tarim Basin. Acta Petrologica Sinica,28(3):806-814 (in Chinese with English abstract). |
| [13] |
Li,X.Q.,Ding,H.K.,Peng,P.,et al.,2021.Provenance of Silurian Kepingtage Formation in Tazhong Area, Tarim Basin:Evidence from Detrital Zircon U-Pb Geochronology. Earth Science, 46(8):2819-2831 (in Chinese with English abstract). |
| [14] |
Machel, H. G., 2001. Bacterial and Thermochemical Sulfate Reduction in Diagenetic Settings:Old and New Insights. Sedimentary Geology, 140(1/2): 143-175. https://doi.org/10.1016/S0037-0738(0)00176-7 |
| [15] |
Ma, A. L., Jin, Z. J., Zhu, C. S., et al., 2018a. Detection and Significance of Higher Thiadiamondoids and Diamondoidthiols in Oil from the Zhongshen 1C Well of the Tarim Basin, NW China.Science China Earth Sciences, 61(10): 1440-1450. https://doi.org/10.1007/s11430-017-9244-7 |
| [16] |
Ma,A.,Zhu,C.S.,Gu,Y.,et al.,2018b.Concentrations Analysis of Lower Thiadiamondoids of Cambrian Oil from Well Zhongshen 1C of Tazhong Uplift, Tarim Basin, NW China. Natural Gas Geoscience,29(7):1009-1019 (in Chinese with English abstract). |
| [17] |
Ma,A.,Jin,Z.J.,Zhu,C.S.,et al.,2018c.Detection and Significance of Higher Thiadiamondoids and Diamondoidthiols in Oil from the Zhongshen 1C Well of the Tarim Basin, NW China. Science China Earth Sciences, 61:1440-1450 (in Chinese). |
| [18] |
Ma,A., Jin,Z.J., Zhu,C.S., et al.,2018d.Effect of TSR on the Crude Oil in Ordovician Reservoirs of Well Luosi-2 from Maigaiti Slope,Tarim Basin: Evidences from Molecular Markers. Oil & Gas Geology, 39(4):730-737(in Chinese with English abstract). |
| [19] |
Wei,Z.B.,2006.Molecular Organic Geochemistry of Cage Compounds and Biomarkers in the Geosphere: a Novel Approach to Understand Petroleum Evolution and Alteration(Dissertation). Stanford University, California, 274-309. |
| [20] |
Wei, Z. B., Moldowan, J. M., Fago, F., et al., 2007. Origins of Thiadiamondoids and Diamondoidthiols in Petroleum. Energy & Fuels, 21(6): 3431-3436. https://doi.org/10.1021/ef7003333 |
| [21] |
Wei, Z. B., Mankiewicz, P., Walters, C., et al., 2011. Natural Occurrence of Higher Thiadiamondoids and Diamondoidthiols in a Deep Petroleum Reservoir in the Mobile Bay Gas Field. Organic Geochemistry, 42(2): 121-133. https://doi.org/10.1016/j.orggeochem.2010.12.002 |
| [22] |
Wei, Z. B., Walters, C. C., Michael Moldowan, J., et al., 2012. Thiadiamondoids as Proxies for the Extent of Thermochemical Sulfate Reduction. Organic Geochemistry, 44: 53-70. https://doi.org/10.1016/j.orggeochem.2011.11.008 |
| [23] |
Yuan,Y.Y.,Wang,T.K.,Cai,C.F.et al.,2020.Relationships between Sulfur-Containing Conpound Types in Crude Oil and Causes of Thermochemical Sulphate Reduction in Tazhong Area. Journal of Southwest Petroleum University(Science & Technology Edition), 42(2):48-60 (in Chinese with English abstract). |
| [24] |
Zhang, Z. Y., Zhang, Y. J., Zhu, G. Y., et al., 2019. Impacts of Thermochemical Sulfate Reduction, Oil Cracking, and Gas Mixing on the Petroleum Fluid Phase in the Tazhong Area, Tarim Basin, China. Energy & Fuels, 33(2): 968-978. https://doi.org/10.1021/acs.energyfuels.8b03931 |
| [25] |
Zhu, G. Y., Huang, H. P., Wang, H. T., 2015. Geochemical Significance of Discovery in Cambrian Reservoirs at Well ZS1 of the Tarim Basin, Northwest China. Energy & Fuels, 29(3): 1332-1344. https://doi.org/10.1021/ef502345n |
| [26] |
Zhu, G. Y., Wang, H. T., Weng, N., 2016. TSR-Altered Oil with High-Abundance Thiaadamantanes of a Deep-Buried Cambrian Gas Condensate Reservoir in Tarim Basin. Marine and Petroleum Geology, 69: 1-12. https://doi.org/10.1016/j.marpetgeo.2015.10.007 |
| [27] |
Zhu, G. Y., Wang, M., Zhang, Y., et al., 2018a. Low-Molecular-Weight Organic Polysulfanes in Petroleum. Energy & Fuels, 32(6): 6770-6773. https://doi.org/10.1021/acs.energyfuels.8b01292 |
| [28] |
Zhu, G. Y., Zhang, Y., Wang, M., et al., 2018b. Discovery of High-Abundance Diamondoids and Thiadiamondoids and Severe TSR Alteration of Well ZS1C Condensate, Tarim Basin, China. Energy & Fuels, 32(7): 7383-7392. https://doi.org/10.1021/acs.energyfuels.8b00908 |
| [29] |
Zhu, G. Y., Zhang, Y., Zhang, Z. Y., et al., 2018c. High Abundance of Alkylated Diamondoids, Thiadiamondoids and Thioaromatics in Recently Discovered Sulfur-Rich LS2 Condensate in the Tarim Basin. Organic Geochemistry, 123: 136-143. https://doi.org/10.1016/j.orggeochem.2018.07.003 |
| [30] |
Zhu, G. Y., Wang, P., Wang, M., et al., 2019a. Occurrence and Origins of Thiols in Deep Strata Crude Oils, Tarim Basin, China. ACS Earth and Space Chemistry, 3(11): 2499-2509. https://doi.org/10.1021/acsearthspacechem.9b00070 |
| [31] |
Zhu, G. Y., Zhang, Y., Zhou, X. X., et al., 2019b. TSR, Deep Oil Cracking and Exploration Potential in the Hetianhe Gas Field, Tarim Basin, China. Fuel, 236: 1078-1092. https://doi.org/10.1016/j.fuel.2018.08.119 |
| [32] |
Zhu, G. Y., Zhang, Z. Y., Milkov, A. V., et al., 2019c. Diamondoids as Tracers of Late Gas Charge in Oil Reservoirs: Example from the Tazhong Area, Tarim Basin, China. Fuel, 253: 998-1017. https://doi.org/10.1016/j.fuel.2019.05.030 |
| [33] |
Zhu, G. Y., Zhang, Z. Y., Zhou, X. X., et al., 2019d. The Complexity, Secondary Geochemical Process, Genetic Mechanism and Distribution Prediction of Deep Marine Oil and Gas in the Tarim Basin, China. Earth-Science Reviews, 198: 102930. https://doi.org/10.1016/j.earscirev.2019.102930 |
| [34] |
Zhu, G.Y., Li, J.F., Zhang, Z.Y., 2021. Origin of Deep Oil and Gas Phase State Diversity and Evaluation of Secondary Geochemical Intensity: A Case Study of Marine Oil and Gas in Tarim Basin. Earth Science, 1-17. (2021-11-09). https://kns.cnkiet/kcms/detail/42.1874.P. 20211108. 1622. 004. html(in Chinese with English abstract). |
| [35] |
陈中红,张平,柴智,等,2020.原油中硫代金刚烷的分析鉴定和地球化学应用.地球科学与环境学报, 42 (2): 143-158. |
| [36] |
房忱琛,翟佳,胡国艺,等,2021.凝析油中金刚烷类和硫代金刚烷类化合物同步检测方法及地质意义——以塔里木盆地塔中地区凝析油为例.石油实验地质, 43 (5): 906-914. |
| [37] |
姜乃煌,朱光有,张水昌,等,2007.塔里木盆地塔中83井原油中检测出2-硫代金刚烷及其地质意义.科学通报, 52 (24): 2871-2875. |
| [38] |
李开开,蔡春芳,蔡镏璐,等,2012.塔河地区中下奥陶统储层硫化物成因分析.岩石学报, 28 (3): 806-814. |
| [39] |
李祥权,丁洪坤,彭鹏,等,2021. 塔里木盆地塔中志留系柯坪塔格组物源示踪:碎屑锆石U-Pb年代学证据.地球科学, 46 (8): 2819-2831. |
| [40] |
马安来,朱翠山,顾忆,等,2018b.塔中地区中深1C井寒武系原油低聚硫代金刚烷含量分析.天然气地球科学,188 (7): 93-103. |
| [41] |
马安来,金之钧,朱翠山,等,2018c.塔里木盆地中深1C井原油高聚硫代金刚烷及金刚烷硫醇的检出及意义. 中国科学:地球科学,48: 1312-1323. |
| [42] |
马安来,金之钧,朱翠山,等,2018d.塔里木盆地麦盖提斜坡罗斯2井奥陶系油气藏的TSR作用:来自分子标志物的证据.石油与天然气地质,39 (0): 730-737,748. |
| [43] |
袁余洋,汪天凯,蔡春芳,等,2020. 塔中地区原油含硫化合物类型与TSR成因关系.西南石油大学学报(自然科学版),42 (2): 48-60. |
| [44] |
朱光有,李婧菲; 张志遥, 2021.深层油气相态多样性成因与次生地球化学作用强度评价——以塔里木盆地海相油气为例.地球科学,https://kns.cnkiet/kcms/detail/42.1874.P.20211108.1622.004.html |
中国石油十四五上游领域前瞻性基础性项目《海相碳酸盐岩成藏理论与勘探技术研究》(2021DJ05)
/
| 〈 |
|
〉 |