微生物参与的不产氧光合硫氧化过程中硫同位素分馏效应及其地质学意义

谢逸豪 ,  吴耿 ,  鲜文东 ,  李文均 ,  蒋宏忱

地球科学 ›› 2023, Vol. 48 ›› Issue (08) : 2837 -2850.

PDF (1575KB)
地球科学 ›› 2023, Vol. 48 ›› Issue (08) : 2837 -2850. DOI: 10.3799/dqkx.2022.420

微生物参与的不产氧光合硫氧化过程中硫同位素分馏效应及其地质学意义

作者信息 +

Sulfur Isotope Fractionation Mediated by Microbial Anoxygenic Photosynthetic Sulfur Oxidation Processes and Its Geological Implications

Author information +
文章历史 +
PDF (1612K)

摘要

微生物在利用含硫物质时的同位素偏好性会导致代谢产物中硫同位素的分馏,因此地质记录中的硫同位素可以用来反演其中的微生物活动以及古海洋和大气的氧化还原条件. 对微生物参与的硫循环的传统认知中,只有微生物介导的硫还原作用和硫歧化作用会导致明显的同位素分馏现象,而微生物硫氧化过程造成的分馏效应不明显. 而最近的研究发现一株硫氧化细菌可以产生巨大的硫同位素分馏,意味着我们需要重新评估地质记录中的硫氧化过程. 综述了微生物参与的不产氧光合硫氧化过程中硫同位素分馏效应及其地质学意义,包括硫氧化微生物及绿弯菌的分布和功能、微生物介导硫氧化过程的硫同位素分馏效应、以及微生物硫氧化过程硫同位素分馏研究的地质记录. 最后对微生物参与的不产氧光合硫氧化过程中硫同位素分馏效应研究现状和未来发展方向提出总结和展望.

关键词

绿弯菌 / 绿色非硫细菌 / 硫氧化 / 同位素分馏 / 不产氧光合作用 / 生物地球化学

Key words

Chloroflexota / green nonsulfur bacteria / sulfur oxidation / isotope fractionation / anoxygenic photosynthesis / biogeochemistry

引用本文

引用格式 ▾
谢逸豪,吴耿,鲜文东,李文均,蒋宏忱. 微生物参与的不产氧光合硫氧化过程中硫同位素分馏效应及其地质学意义[J]. 地球科学, 2023, 48(08): 2837-2850 DOI:10.3799/dqkx.2022.420

登录浏览全文

4963

注册一个新账户 忘记密码

硫是地球上含量最丰富的元素之一,主要以黄铁矿、重晶石和石膏的形式存在于岩石和沉积物中、或以硫酸盐形式存在于海水中. 硫元素也是细胞的重要组成元素,是氨基酸、维生素和各种辅酶和辅助因子的关键元素成分,对于细胞的代谢至关重要(Canfield, 2001Dahl et al., 2008). 在地质时间尺度上,硫循环可以通过改变海洋中氧化态和还原态硫埋藏通量的相对大小来调节大气氧含量和海洋氧化还原状态(Fike et al., 2015).
自然界中的硫循环包括硫酸盐还原过程、硫歧化过程和硫氧化过程(图1). 硫氧化是硫循环的重要组成部分. 在现代海洋中,绝大部分的还原态硫都会通过氧气(O2)、硝酸根(NO3 -)、Mn4+和Fe3+等氧化剂结合地球化学和微生物过程重新氧化成SO4 2–图1)(Jørgensen et al., 2019). 还原态硫既可以通过同化过程结合到生物体内的有机分子中,也可以通过氧化过程作为能量转移的基础(Dahl et al., 2008). 微生物是自然界硫氧化过程的重要参与者. 还原态无机硫在呼吸作用或光合作用的异化氧化过程中伴随着能量的产生,可以作为电子供体为微生物的生长代谢提供初始能量,其会被氧化到单质硫或其他更高价态的硫化合物包括聚硫化物、亚硫酸盐、硫代硫酸盐和硫酸根等(图1)(刘阳等, 2018Jørgensen et al., 2019).
硫在自然界中一共有4种同位素:32S、33S、34S、36S. 不同含硫化合物互相转变时,某种硫同位素的优先分配会导致物相中硫同位素的组成发生改变,形成同位素分馏(Canfield, 2001Seal, 2006). 由于微生物在利用不同含硫物质时具有偏好性,微生物进行硫代谢时会造成硫同位素的分馏. 研究微生物硫循环中的同位素分馏效应有助于我们阐明地球早期的硫循环和微生物过程,对理解地球早期生命与环境的协同作用至关重要.
在参与硫循环的微生物中,执行硫酸盐还原功能(硫酸盐还原原核生物,sulfate-reducing prokaryotes,简称SRP)和硫歧化功能的微生物(硫歧化原核生物,sulfur-disproportionation prokaryotes,简称SDP)能产生明显的硫同位素分馏效应(Habicht et al., 1998Pellerin et al., 2019),而微生物参与的硫氧化过程只能产生较小的分馏值从而无法被识别. 地质记录中强烈的硫同位素分馏值一般与上述前两种过程相关,可用于推定该功能微生物的起源时间以及古海水氧化还原条件的重建 (Canfield, 2001Baumgartner et al., 2020He et al., 2020Ohmoto, 2020). 最近的研究发现一株硫氧化细菌可以产生巨大的硫同位素分馏,意味着我们需要重新评估地质记录中的硫氧化过程. 光合硫氧化过程是硫氧化过程的重要途径之一,绿弯菌是其中的重要参与者. 目前,分离培养技术的不断进步使得以往难培养的光合硫氧化绿弯菌类群的室内纯培养成为可能. 本文将从硫氧化微生物及绿弯菌的分布和功能、微生物介导硫氧化过程的硫同位素分馏效应和微生物硫氧化过程硫同位素分馏的地质记录来进行综述,系统介绍光合硫氧化类群硫同位素分馏的地质意义以及主要光合光合硫氧化微生物了硫同位素分馏的研究进展,同时对不产氧光合微生物中深度分支的绿弯菌的光合硫氧化过程研究进展进行介绍并提出对该过程硫同位素分馏效应研究的必要性.

1 硫氧化微生物及绿弯菌的分布和功能

1.1 硫氧化微生物分类

硫氧化微生物主要包括无色硫细菌、紫硫细菌、绿硫细菌、绿弯菌和紫色非硫细菌(刘阳等., 2018). 无色硫细菌(CSB)由于缺少光合色素无法进行光合作用而得名,大多CSB是在好氧条件下进行硫氧化. 以还原态硫作为电子供体,硝酸根(NO3 -)或者氧气(O2)作为电子受体进行化能自养生长(Visscher et al., 1992). 紫硫细菌、绿硫细菌、紫色非硫细菌和绿弯菌都属于不产养光合细菌,可以在厌氧光照下,以H2S作为电子供体固定CO2,同时进行硫化物的厌氧氧化来支持自身生长(Dahl, 2008),这一过程叫做硫化物介导的不产氧光合作用(sulfide-mediated anoxygenic photosynthesis,简称SMAP)(Brabec et al., 2012). 绿硫细菌(GSB)和紫硫细菌(PSB)都是厌氧菌,可以将还原态硫完全氧化至硫酸根(SO4 2–)(Madigan, 1984van Gemerden, 1986刘阳等, 2018). 紫色非硫细菌(PNSB)可以将还原态硫不完全氧化至单质硫或完全氧化至硫酸根,一般来说它耐受的硫化物浓度比GSB和PSB更低 (Neutzling et al., 1985). 与GSB 和PSB不同,PNSB是兼性菌,还可以在微养和好氧条件下进行硫氧化 (刘阳等, 2018). 绿弯菌与绿色硫细菌在结构和功能上存在许多相似性,例如都可以在细胞内合成储存大量光合色素的绿色体,以及合成含有单甘糖二甘油和二甘糖二甘油类甘脂的脂类(Madigan and Brock, 1975). 因此,绿弯菌又被称为“绿色非硫细菌(GNSB)”. 目前研究认为绿弯菌可以在厌氧光照条件下将还原态硫不完全氧化至单质硫进行自养生长,但没有进一步氧化的能力(Madigan and Brock, 1975Kanno et al., 2019).

微生物介导的SMAP过程是硫氧化过程的重要途径之一. 参与这一过程的不产氧光合细菌在进化上都比较古老,被认为是光合生物的祖先类群(Xiong et al., 2000Xiong and Bauer, 2002). 光合作用起源与进化一直是地球科学和生命科学研究的重要议题之一. 目前认为光合生物可能是原始地球最早的生命形式之一,但关于其起源和进化的时间仍不清晰 (Blankenship, 1992Xiong and Bauer, 2002Tice and Lowe, 2004Butterfield, 2015Cardona et al., 2019). 微生物系统发育证据表明,绿弯菌比绿硫细菌和紫硫细菌更为古老,可能是最接近光合作用祖先的细菌(Neefs et al., 1993Gupta et al., 1999Tang et al., 2011Ménez, 2020). 地球早期记录微生物活动的叠层石可能保存着绿弯菌的信息(Pierson et al., 1993Tice and Lowe, 2004). 比如35亿年前的叠层石中的丝状细菌由于在形态学上与绿弯菌相似而被认为是绿弯菌的生物化石(Walsh and Lowe, 1985Oyaizu et al., 1987Van Der Meer et al., 2000). 目前的研究发现这些古老的叠层石有强烈硫化证据,暗示其中存在古老微生物参与硫循环的可能性 (Baumgartner et al., 2020). 由于细菌难以保存为化石,形态学上的证据说服力也有限,如果能在这些古老的记录中找到绿弯菌的代谢产物(比如单质硫),结合硫同位素可以提供更可信的证据. Chloroflexus同时拥有细菌叶绿素a(Bchl a,位于细胞质)和细菌叶绿素c (Bchl c,位于绿色体),并可通过一种独特的固碳途径-3-羟基丙酸双循环(3-hydroxypropionate bicycle,3-HP)和Ⅱ型光反应中心进行光能自养生长 (Zarzycki et al., 2009Shih et al., 2017). 3-HP途径是自然界中发现的第4种生物固碳途径,目前只有绿弯菌中的成员拥有该功能. 而由于绿弯菌在光合作用微生物类群中的特殊地位,尤其是其代表性的3-HP固碳途径,是用来研究光合作用起源的良好载体. 如果能识别光营养型绿弯菌或更古老的依赖3-HP进行光合作用类群在地质上的记录,将加深对光合作用起源这一问题的认识. 然而由于纯培养的困难性以及分菌技术的限制,目前绿弯菌门中的菌株较少,对其硫氧化同位素分馏效应的研究尚未起步.

1.2 绿弯菌的分类和功能

绿弯菌的名字来源于其首个发现并研究最详细的物种(Chloroflexus aurantiacus). Chloroflexus aurantiacus形状特征为弯曲的多丝状,最早在1971年由Pierson等人在热泉菌席中发现,并由此确立了绿弯菌属(Chloroflexus)(Pierson and Castenholz, 1971). 由于绿弯菌具有不产养光合作用和弯曲多细胞丝状的形态,在早期研究中又被描述为丝状不产养光合细菌(filamentous anoxygenic phototrophic(FAP)bacteria)(Madigan and Brock, 1975),直到2001 年,Garrity 等才在《伯杰氏系统细菌学手册》(Bergey’s Manual of Systematic Bacteriology) 中首次提出并定义了绿弯菌门(Chloroflexota)并被广泛接受(鲜文东等, 2020). 绿弯菌是典型的难培养微生物,有些纲中只有一个种,且每个种的纯培养菌株也很少(图2)(Xian et al., 2020鲜文东等, 2020).

绿弯菌门中的SMAP类群都属于绿弯菌属(Chloroflexus). 绿弯菌属目前有3个种,即Chloroflexus aurantiacusChloroflexus aggregansChloroflexus islandicus图2)(Gaisin et al., 2017). Chloroflexus的代表性营养方式为光能营养型,以光能自养为典型,在厌氧光照条件下,以H2S为电子供体固定CO2;也可以利用简单的有机质进行光能异养生长,而在无光照条件下,还能化能异养生长 (Giovannoni et al., 1987Van Der Meer et al., 2000Otaki et al., 2009Zarzycki et al., 2009). 除此之外,最近研究发现Chloroflexus aggregansChloroflexus aurantiacus都能利用H2作为电子供体进行化能自养生长 (Kawai et al., 2019a). 在自然环境中,绿弯菌会分泌胞外多糖形成微生物席和蓝细菌等光合细菌紧密协作,是热泉环境的主要造席微生物(图3);在光照条件充足时可以利用蓝细菌光合作用产生的有机质进行异养生长,而在弱光条件下则进行光能自养生长,贡献初级生产力(Giovannoni et al., 1987Kawai et al., 2021). 该属目前的菌株全部分离自热泉环境,室内培养的最适生长温度在50到55度之间(图3)(Zeng et al., 1992a). 在热泉环境中,该类群分布的温度梯度跨度很大,从37度到73度都有分布(Miller et al., 2009Weltzer and Miller, 2013). 在盐湖,海洋,淡水等中低温环境的菌席中或者沉积物中也大量观察到类似物种,尽管还没有实现纯培养,但原位实验证明这些菌席中有硫氧化光合作用活性(Pierson et al., 1994Nubel et al., 2001). 最近在岩石表面以下也有发现,比如在冰岛火山地区的火山玻璃(Herrera et al., 2009)和海滨的碳酸盐岩(Roush et al., 2018)中的石内微生物群落(Endolish)也发现有绿弯菌,上述发现进一步说明绿弯菌的生境分布广泛.

2 微生物介导硫氧化过程的硫同位素分馏效应

2.1 硫氧化微生物介导的硫同位素分馏效应

目前普遍认为硫氧化微生物产生的硫同位素分馏效应较小(<5‰),只有Thiobacillius concretivorus(现在更名为Acidithiobacillus thiooxidans)可以造成较大的硫同位素分馏(-13.2‰至-10.6‰),但较大的同位素分馏仅出现在次要产物聚硫酸盐(SxO6 2-)中,而与之同时生成的主要产物单质硫仅有2.5‰的硫同位素亏损(Kaplan and Rittenberg, 1964Fike et al., 2015). 根据前人关于还原态硫和硫化物矿物的微生物硫氧化研究结果表明:化能营养的好氧SOB一般会产生0~5.2‰的硫同位素分馏值,厌氧SOB可以产生-4.2‰~+2‰的同位素分馏(Balci et al., 2007Hubert et al., 2009Thurston et al., 2010Poser et al., 2014). Poser et al.(2014)对比研究了两种硫氧化途径:硫化物醌还原酶 (sulfide: quinone reductase,SQR)途径和硫氧化多酶复合体系(Sox)途径(Poser et al., 2014). 发现两种途径产生的硫同位素分馏值相似,均在-2.4‰至-3.6‰之间. 不产氧光合硫氧化过程产生的分馏同样较小,目前对该过程的研究主要集中在GSB和PSB两个类群,其代表性菌株的硫同位素分馏效应已经有详细报道(表1). 这些菌株产生的的硫同位素分馏值普遍较小(<5‰).

由于非生物的硫氧化过程同样能够产生5‰左右的硫同位素分馏 (Fry et al., 1988Balci et al., 2007),而硫酸盐限制条件的硫酸盐还原作用也能造成较小的分馏值 (Sælen et al., 1993Gomes and Hurtgen, 2013),因此硫氧化在地质记录上的证据往往会被其它过程所掩盖. 最近,Pellerin等(2019)发现一株分离自盐湖的硫氧化细菌Desulfurivibrio alkaliphilus AHT 2可以造成明显的硫同位素分馏现象. 该菌利用硝酸根作为电子受体,H2S作为电子供体进行化能自养生长,并在产物硫酸根中富集34S,该产物 (Sorokin et al., 2008Pellerin et al., 2019). 这一现象打破了人们关于硫氧化过程同位素分馏效应不明显的传统认知,但该过程中的硫同位素分馏机制尚不明确. 由于D. alkaliphilus AHT 2在系统发育上属于硫酸盐还原菌,推测D. alkaliphilus AHT 2可能通过硫酸盐还原逆过程来进行硫氧化,从而形成了巨大的硫同位素分馏(Wing and Halevy, 2014Thorup et al., 2017Pellerin et al., 2019). 由于在特定条件下(如:限制营养环境和微生物代谢速率低)可能导致更显著的同位素分馏效应(Keplan and Rittenberg, 1964;Leavitt et al., 2013Sim, 2019),这意味着该菌株在自然环境中产生的的硫同位素分馏值可能比实验室的结果更为显著. 上述研究进展表明,目前人们对自然界硫氧化过程的重要性和微生物硫氧化过程中同位素效应的认识还不够充分,需要更多相关研究来加深理解.

2.2 绿弯菌介导的光合硫氧化过程及硫同位素分馏研究现状

绿弯菌SMAP的研究起源于Chloroflexus中研究最为详细的菌株Chloroflexus aurantiacus OK-70-fl,在二十世纪七十年代Madigan等发现将H2S作为电子供体时Chloroflexus aurantiacus既能进行光能自养生长也能光能异养生长,并观察到有70%的硫化氢被氧化为单质硫并分泌到细胞外(Madigan and Brock, 1975). 改研究还验证了其它多种含硫电子供体的可利用性,包括硫代硫酸盐、硫酸盐、亚硫酸盐、硫代糖酸盐、蛋氨酸、半胱氨酸和元素硫(Madigan and Brock, 1975),但发现除了元素硫之外均不能被该菌株利用,且单质硫只有在胶体状态下才能被利用以维持绿弯菌的缓慢生长,遗憾的是该研究并没有对元素硫的氧化产物进行后续表征. 早期有研究系统的比较了光合硫氧化微生物之间对S2-的亲和性,相比将硫保存在细胞体内的细菌,能将硫代谢到胞外的细菌对S2-的利用亲和性更强,且前者生长速率更高(Van Gemerden, 1984). 但由于绿弯菌的研究起步较晚,因此绿弯菌对S2-的亲和性以及具体氧化产物的相关研究依然十分缺乏.

受高通量测序技术和宏基因组技术的冲击,以及难培养微生物纯培养化的瓶颈难以突破,后续在纯菌株层面对绿弯菌硫氧化通路的研究基本停滞,更多研究通过基因的角度来阐释绿弯菌参与硫循环的能力. Chloroflexus aurantiacus的全基因组显示其基因组上缺少SOX系统(参与单质硫后续氧化到SO4 -)(Tang et al., 2011). 这一基因系统在大部分参与硫氧化的绿硫细菌和紫硫细菌中都存在,而绿弯菌只能依靠Ⅱ型SQR基因参与硫氧化,目前发现的三种SQR基因都被验证有将H2S催化氧化到元素硫的能力,在其它类群的光合细菌例如蓝细菌和紫色非硫细菌中也存在该基因(Tang et al., 2011). 直到2019年,Chloroflexus的另一个菌种Chloroflexus aggregans的SMAP功能才首次被证实: C. aggregansACA-12被分离自日本热泉环境,可利用H2S进行光能自养生长,具有Ⅱ型SQR基因,但没有展示出将元素硫继续氧化的能力(Kanno et al., 2019). 另外一株分离自日本热泉C. aggregans NA9-6菌株可用硫化氢和氢气作为电子供体获得很好地生长,颗粒态硫对其生长具有明显的抑制作用;而当其与硫歧化菌Caldimicrobium thiodismutans TF1的共培养时,体系中元素硫的去除提升了C. aggregans NA9-6的生长活力(Kawai et al., 2019a). 这表明颗粒态元素硫对C. aggregans NA9-6的生长有抑制作用,且该绿弯菌对颗粒态元素硫没有解毒能力,但可以依靠与其它细菌协同生长(Kawai et al., 2019b). 在以往的研究中元素硫到硫聚合物的非生物转变也被认为可以通过影响醌氧化还原酶(SQR基因编码蛋白)的活性来抑制绿弯菌的硫代谢能力(Kamyshny Jr., 2009),但该研究没有验证胶体状态下硫的可利用性. 值得注意的是,研究者在Chloroflexus aurantiacus的基因组中还发现了一条将硫酸盐还原到H2S的完整通路(Tang et al., 2011),但绿弯菌的硫酸盐还原能力从未有实验证明. 因此,目前普遍认为绿弯菌并没有参与硫酸盐还原的能力. 这意味着在基因水平推测的微生物的功能必须通过实验来验证,仅靠遗传特征并不能反映微生物真实的代谢能力.

3 微生物硫氧化过程硫同位素分馏研究的地质记录

地层或沉积物中的硫化物和硫酸盐中硫同位素记录可以作为一种有效的指标,用于识别地质记录中微生物参与的硫代谢过程,有助于我们理解现代和地质历史时期的硫循环(Canfield, 2001Sim et al., 2011Bontognali et al., 2012Fike et al., 2015). 硫氧化过程可以通过多种形式影响地层中的硫同位素组成. 例如硫氧化作用生成的单质硫发生的歧化反应可以产生高达30‰的硫同位素分馏值,且此过程具有叠加效应(Canfield and Thamdrup, 1994Jørgensen et al., 2019). 单质硫还可与H2S反应生成高反应活性的硫聚合物(S x 2 -, polysulfifides)并参与黄铁矿(FeS2)的形成而影响黄铁矿的硫同位素组成(Butler et al., 2004Thiel et al., 2019). 还原态硫的重新氧化还会改变地质记录中硫歧化过程和硫还原过程的原始信号. 可见,在开展地质历史时期硫循环研究时,需要评估硫氧化过程的作用.

3.1 不产氧光合硫氧化作用的地质记录

地质记录中寻找生物信号的方法主要通过寻找地层中的实体化石;受生命过程影响的矿物记录、有机分子化石、碳和硫等同位素特征等,这些都被叫做生物标志物(Campbell et al., 2015Westall et al., 2015Teece et al., 2020吴一帆等, 2022). 由于难以留下实体化石,微生物在地质历史中存在的证据主要依靠生物标志化合物和同位素记录来识别(House et al., 2000Brocks and Schaeffer, 2008Smith et al., 2015李猛 et al., 2021). 比如奥氏酮(okenone)作为透光带紫硫细菌特有的一种胡罗卜素,它对应的成岩产物奥氏烷(okenane)就被用于地质记录中紫硫细菌的分子化石(Brocks et al., 2005Brocks and Schaeffer, 2008Smith et al., 2015). 然而,因为绿弯菌复杂多样的代谢特点,一些常见的生物标志化合物比如长链烯烃指示意义有限,会随着绿弯菌代谢方式的改变而失去代表性(Shiea et al., 1991). 当前最具诊断意义的绿弯菌生物标志物是其代谢产物C28-C38蜡脂,它是绿弯菌脂类的重要组成部分. 根据绿弯菌和绿硫细菌C28-C38蜡脂含量上的显著差异可以将二者进行区分(Knudsen et al., 1982Zeng et al., 1992a, 1992b). 目前绿弯菌生物标志物的工作多开展于现在热泉菌席中,而地层中的工作较少(Schidlowski, 1988Blankenship, 1992). 但在地球早期不产氧光合生物也可以通过SMAP过程留下硫同位素的地质记录,对SMAP过程硫同位素分馏效应的研究有助于在地质记录中对这一过程的准确识别,这对光合作用起源时间的限制有着重要意义. 比如在早期研究中,地层中保存的较小的硫同位素分馏信号被认为是不产氧光合作用的证据(Canfield and Raiswell, 1999).

在地球历史中,硫化海洋的出现与地球的氧化还原水平紧密相关. 在地球早期海洋硫化带可能是普遍存在的(Brocks et al., 2005Meyer and Kump, 2008Poulton et al., 2010Magnall et al., 2022). 元古代时期的海洋中表层,硫化区域可从海岸线沿着大陆架一直可以延伸到外海域(Poulton et al., 2010Boyle et al., 2013),甚至在深海也可能出现硫化海水(Canfield, 1998Meyer and Kump, 2008). 在太古宙晚期的大氧化事件之前也有硫化海洋的报道(Scott et al., 2011). 有研究表明,在元古宙到显生宙的过渡时期,光合硫细菌出现了生态位的扩张(Cui et al., 2020). 因此地球早期光合硫细菌可能是海洋初级生产力的重要组成部分,这意味着其介导的SMAP过程是地球早期硫循环的重要环节,可以通过消耗硫化物产生有机质从而对海洋硫化水平起到积极的调节作用(Johnston et al., 2009). 在地球早期大约24亿年前大气氧气浓度上升之前,海洋中的硫酸盐浓度与今天相比非常之低(Habicht et al., 2002Crowe et al., 2014Zhelezinskaia et al., 2014Fike et al., 2015). 在这种底物限制条件下,硫酸盐还原过程的硫同位素分馏效应无法完全表达(Sælen et al., 1993Sim, 2019),这可能导致太古宙地层记录中硫酸盐和黄铁矿之间的最大硫同位素分馏值(Δ34SS04-黄铁矿)的普遍很低. 但这一现象并不能排除硫氧化过程,尤其是当时可能很普遍的光合硫氧化过程. 由于微生物硫化物氧化过程通常表现出小的硫同位素分馏,这一过程也可能导致在太古宙晚期观察到的低Δ34SS04-黄铁矿值. 显生宙硫化海洋的出现是几次生物大灭绝事件的重要机制 (Grice et al., 2005Kump et al., 2005). 由于透光带光合硫氧化细菌的繁盛往往与硫化海水的扩张相关联(Algeo et al., 2008Brabec et al., 2012Xie et al., 2012),因此对该过程的识别有重要的环境意义. 例如,有研究将二叠纪至三叠纪界限处发现的碳酸盐晶格硫酸根中硫同位素(δ34SCAS)的负偏归功于光合硫氧化菌的作用,因为还原态硫的不完全氧化会使δ34S亏损的同位素值记录在单质硫中被保存下来,从而指示了当时海洋透光带硫化缺氧的环境 (Riccardi et al., 2006Zhang et al., 2015). 因此对该过程硫同位素分馏效应的研究有助于理解地球早期硫循环.

3.2 绿弯菌硫同位素分馏效应亟待开展

绿弯菌的同位素分馏研究目前只开展了碳同位素,早期研究利用碳同位素标记和同位素分馏特征来阐明3-HP的代谢途径和亲缘关系的鉴定(Klatt et al., 2007). 通过Chloroflexus aurantiacus的碳同位素分馏特征,发现3-HP固碳途径产生的碳同位素分馏值较其他途径明显较小 (Holo and Sirevåg, 1986;van der Meer et al., 2007). 对比分析多种固碳途径的碳同位素分馏特征,发现3-HP固碳途径会产生较重的碳同位素值,分馏值可被约束在0~5‰范围内(House et al., 2003). 然而由于当时对3-HP循环的认识不足,错误的将利用3-羟基丙酸/4-羟基丁酸(3-hydroxypropionate/4-hydroxybutyrate,3-HP/4-BP)固碳途径的古菌代替绿弯菌进行实验,因此得到的结论并不可靠(Menendez et al., 1999Berg et al., 2007). 事实上,3-HP/4-BP固碳过程产生的C同位素分馏值更小(Pearson et al., 2019). 关于绿弯菌3-HP固碳途径碳同位素分馏的研究也同样扩展到了地质研究中. 该途径被用来解释地层中有机质保存的较重的同位素分馏值(Van Der Meer et al., 2000). 同样,对绿弯菌的同位素分馏研究还能帮助鉴别地质记录中的微生物实体化石以及对3-HP循环进化时间的标定.

光合硫氧化过程是硫氧化过程中的重要环节,尤其在地球早期,该过程对海洋环境和硫同位素记录会有显著影响. 现在关于SMAP过程硫同位素效应的研究主要通过GSB和PSB类群开展工作. 由于绿硫细菌和紫硫细菌在高温环境少见,主要适应中到低温环境. 因此目前SMAP过程硫同位素分馏的研究主要在低到中温环境(28~48 oC)开展(表1). 然而在地球早期,同位素证据和生物演化的证据都指向一个高温的环境(Knauth and Lowe, 2003Knauth, 2005McGunnigle et al., 2022). 有研究表明从太古宙晚期到新元古代,温度从大约70 ℃下降到30 ℃左右(Robert and Chaussidon, 2006). 因此绿弯菌在地球早期的分布更为广泛. 可能是早期SMAP过程的主导者. 同时,与GSB和PSB不同,绿弯菌SMAP 过程的产物为单质硫,该过程会影响海洋硫酸盐的储库并可以结合硫歧化过程或介导黄铁矿的形成来影响硫同位素的记录. 因此绿弯菌SMAP过程的硫同位素分馏效应亟待解决,不仅可以帮助我们更好的理解地球早期高温环境的硫循环过程还有助于地层中硫同位素信号的解析.

一直以来,由于常规的分离方法难以获得绿弯菌纯菌株,加之其光合硫氧化代谢下可获得的能量远低于异养代谢导致的生长速率缓慢,即使分离后也难以培养,使得基于绿弯菌培养物的各项研究都受到不同程度的制约. 因此,绿弯菌硫同位素工作的开展必须建立在纯培养技术的发展上. 近年来,随着绿弯菌分离培养技术的不断进步,不断有新的绿弯菌新菌株从各个环境中被分离出来. 例如孙超珉课题组近期利用在富集培养基中不断添加一种绿弯菌耐受的抗生素的方法成功分离培养了一株深海冷泉绿弯菌phototrophicus methaneseepsis ZRK33,该菌株属于绿弯菌门中的未定义纲“Ca. Thermofonsia”(Zheng et al., 2022),拥有光合作用的能力并可以通过3-HP循环固碳,验证了前人基于宏基因组的预测. 鲜文东等基于高通量测序及共现网络分析预测热泉菌席微生物的互作模式的思路,实现了部分绿弯菌的定向分离,证明了互养和共生有助于培养前人难培养的绿弯菌,通过对潜在促生菌的验证获得了一株高效促生菌株,对绿弯菌门的许多菌株包括绿弯菌属的光合类群都有着促生作用,大幅降低了绿弯菌纯培养物获得的难度(Xian et al., 2020鲜文东 等., 2020). 本课题组目前基于实验验证了绿弯菌属中的新分离菌株Chloroflexus sp. SYSUG00190R同样能在厌氧光照条件下利用H2S进行自养生长,意味着该属普遍拥有光合硫氧化的能力,进一步说明绿弯菌在自然界硫循环中扮演者不可忽视的角色. 借助上述技术的发展,预期绿弯菌硫同位素分馏效应将在不久的未来得以准确的厘定.

4 总结和展望

微生物硫氧化过程是硫循环中极为重要的一环,但目前我们对微生物硫氧化过程中同位素分馏效应的认识还远远不够. 新的研究表明硫氧化过程的同位素分馏可能远比以前所认识的大. 光合硫氧化过程是硫氧化过程中的重要途径之一,对地球早期以及显生宙海洋硫化时期的初级生产力有重要贡献并对海水硫化带的维持起到了积极的反馈作用. 对该过程硫同位素分馏效应的研究有助于我们了解地球早期的硫循环. 绿弯菌作为深度分支的不产氧光合细菌也可以参与光合硫氧化过程,且分离培养技术的不断进步使得以往难培养的光合硫氧化类群的室内纯培养成为可能,对绿弯菌光合硫氧化过程的硫同位素分馏效应研究有助于我们了解绿弯菌在地球早期扮演的角色和定位.

目前关于绿弯菌光合硫氧化过程的硫同位素分馏效应还有部分问题需要解决:(1)在基于现有基因水平的认识上绿弯菌只能将还原态硫氧化到单质硫,然而,基于基因水平的推测距离实验验证有着差距,并不能反映微生物真实的代谢能力,因此能否进一步氧化还需要详细的基于实验的验证. 同时,自然界中单质硫的种类多样,来源有所差异. 这会导致对地球化学以及生物代谢过程的反应性不同,例如生物纳米硫颗粒和无机α-S8(Findlay, 2016Jørgensen et al., 2019). 而此前的研究缺少这一块的内容,因此绿弯菌是否能够将单质硫进一步氧化还无法下定论,需要详细的实验验证(2)目前关于厌氧不产氧光合作用的绿弯菌分离培养的技术已有进步,在多个生境中都分离到了新菌株,在纯培养方面也有突破,但是绿弯菌自养生长时仍然难以培养,这制约了基于实验水平的研究. 如果能解决上述问题,将有助于进一步开展硫同位素分馏效应的工作,从而更好的了解地质历史时期的硫循环中绿弯菌的角色和地位.

参考文献

[1]

Algeo, T., Shen, Y., Zhang, T., et al.,2008. Association of 34S-Depleted Pyrite Layers with Negative Carbonate δ13C Excursions at the Permian-Triassic Boundary: Evidence for Upwelling of Sulfidic Deep-Ocean Water Masses. Geochemistry, Geophysics, Geosystems, 9(4): 25.

[2]

Balci, N., Shanks, W. C. III, Mayer, B., et al., 2007. Oxygen and Sulfur Isotope Systematics of Sulfate Produced by Bacterial and Abiotic Oxidation of Pyrite. Geochimica et Cosmochimica Acta, 71(15): 3796-3811. https://doi.org/10.1016/j.gca.2007.04.017

[3]

Baumgartner, R. J., Caruso, S., Fiorentini, M. L., et al., 2020. Sulfidization of 3.48 Billion-Year-Old Stromatolites of the Dresser Formation, Pilbara Craton: Constraints from In-Situ Sulfur Isotope Analysis of Pyrite. Chemical Geology, 538(11): 119488. https://doi.org/10.1016/j.chemgeo.2020.119488

[4]

Berg, I. A., Kockelkorn, D., Buckel, W., et al., 2007. A 3-Hydroxypropionate/4-Hydroxybutyrate Autotrophic Carbon Dioxide Assimilation Pathway in Archaea. Science, 318(5857): 1782-1786. https://doi.org/10.1126/science. 1149976

[5]

Blankenship, R. E., 1992. Origin and Early Evolution of Photosynthesis. Photosynthesis Research, 33(2): 91-111. https://doi.org/10.1007/bf00039173

[6]

Bontognali, T. R. R., Sessions, A. L., Allwood, A. C., et al., 2012. Sulfur Isotopes of Organic Matter Preserved in 3.45-Billion-Year-Old Stromatolites Reveal Microbial Metabolism. Proceedings of the National Academy of Sciences, 109(38): 15146-15151. https://doi.org/10.1073/pnas. 1207491109

[7]

Boyle, R. A., Clark, J. R., Poulton, S. W., et al., 2013. Nitrogen Cycle Feedbacks as a Control on Euxinia in the Mid-Proterozoic Ocean. Nature Communications, 4(1): 1533. https://doi.org/10.1038/ncomms2511

[8]

Brabec, M. Y., Lyons, T. W., Mandernack, K. W., 2012. Oxygen and Sulfur Isotope Fractionation during Sulfide Oxidation by Anoxygenic Phototrophic Bacteria. Geochimica et Cosmochimica Acta, 83: 234-251. https://doi.org/10.1016/j.gca.2011.12.008

[9]

Brocks, J. J., Love, G. D., Summons, R. E., et al., 2005. Biomarker Evidence for Green and Purple Sulphur Bacteria in a Stratified Palaeoproterozoic Sea. Nature, 437(7060): 866-870. https://doi.org/10.1038/nature04068

[10]

Brocks, J. J., Schaeffer, P., 2008. Okenane, a Biomarker for Purple Sulfur Bacteria (Chromatiaceae), and other New Carotenoid Derivatives from the 1640Ma Barney Creek Formation. Geochimica et Cosmochimica Acta, 72(5): 1396-1414. https://doi.org/10.1016/j.gca.2007.12.006

[11]

Butler, I. B., Böttcher, M. E., Rickard, D., et al., 2004. Sulfur Isotope Partitioning during Experimental Formation of Pyrite Via the Polysulfide and Hydrogen Sulfide Pathways: Implications for the Interpretation of Sedimentary and Hydrothermal Pyrite Isotope Records. Earth and Planetary Science Letters, 228(3/4): 495-509. https://doi.org/10.1016/j.epsl.2004.10.005

[12]

Butterfield, N. J., 2015. Proterozoic Photosynthesis: A Critical Review. Palaeontology, 58(6): 953-972. https://doi.org/10.1111/pala.12211

[13]

Campbell, K. A., Lynne, B. Y., Handley, K. M., et al.,2015. Tracing Biosignature Preservation of Geothermally Silicified Microbial Textures into the Geological Record. Astrobiology, 15(10): 858-882.

[14]

Canfield, D. E., 1998. A New Model for Proterozoic Ocean Chemistry. Nature, 396(6710): 450-453. https://doi.org/10.1038/24839

[15]

Canfield, D. E., 2001. Biogeochemistry of Sulfur Isotopes. Reviews in Mineralogy and Geochemistry, 43(1): 607-636. https://doi.org/10.2138/gsrmg.43.1.607

[16]

Canfield, D. E., Raiswell, R.,1999. The Evolution of the Sulfur Cycle. American Journal of Science, 299(7/8/9): 697-723. https://doi.org/10.2475/ajs.299.7-9.697

[17]

Canfield, D. E., Thamdrup, B., 1994. The Production of 34S-Depleted Sulfide during Bacterial Disproportionation of Elemental Sulfur. Science, 266(5193): 1973-1975. https://doi.org/10.1126/science.11540246

[18]

Cardona, T., Sánchez-Baracaldo, P., Rutherford, A. W., et al., 2019. Early Archean Origin of Photosystem II. Geobiology, 17(2): 127-150. https://doi.org/10.1111/gbi. 12322

[19]

Crowe, S. A., Paris, G., Katsev, S., et al., 2014. Sulfate was a Trace Constituent of Archean Seawater. Science, 346(6210): 735-739. https://doi.org/10.1126/science. 1258966

[20]

Cui, X., Liu, X. L., Shen, G., et al., 2020. Niche Expansion for Phototrophic Sulfur Bacteria at the Proterozoic-Phanerozoic Transition. Proceedings of the National Academy of Sciences, 117(30): 17599-17606. https://doi.org/10.1073/pnas.2006379117

[21]

Dahl, C.,2008. Inorganic Sulfur Compounds as Electron Donors in Purple Sulfur Bacteria. Sulfur Metabolism in Phototrophic Organisms. Sulfur Metabolism in Phototrophic Organisms, Springer Netherlands, Dordrecht, 289-317.

[22]

Fike, D. A., Bradley, A. S., Rose, C. V., 2015. Rethinking the Ancient Sulfur Cycle. Annual Review of Earth and Planetary Sciences, 43(1): 593-622. https://doi.org/10.1146/annurev-earth-060313-054802

[23]

Findlay, A. J., 2016. Microbial Impact on Polysulfide Dynamics in the Environment. FEMS Microbiology Letters, 363(11): fnw103. https://doi.org/10.1093/femsle/fnw103

[24]

Fry, B., Gest, H., Hayes, J. M., 1985. Isotope Effects Associated with the Anaerobic Oxidation of Sulfite and Thiosulfate by the Photosynthetic Bacterium,Chromatium Vinosum. FEMS Microbiology Letters, 27(2): 227-232. https://doi.org/10.1111/j.1574-6968.1985.tb00672.x

[25]

Fry, B., Ruf, W., Gest, H., et al., 1988. Sulfur Isotope Effects Associated with Oxidation of Sulfide by O2 in Aqueous Solution. Chemical Geology: Isotope Geoscience section, 73(3): 205-210. https://doi.org/10.1016/0168-9622(88)90001-2

[26]

Gaisin, V. A., Kalashnikov, A. M., Grouzdev, D. S., et al., 2017. Chloroflexus Islandicus Sp. Nov., a Thermophilic Filamentous Anoxygenic Phototrophic Bacterium from a Geyser. International Journal of Systematic and Evolutionary Microbiology, 67(5): 1381-1386. https://doi.org/10.1099/ijsem.0.001820

[27]

Giovannoni, S. J., Revsbech, N. P., Ward, D. M., et al., 1987. Obligately Phototrophic Chloroflexus: Primary Production in Anaerobic Hot Spring Microbial Mats. Archives of Microbiology, 147(1): 80-87. https://doi.org/10.1007/bf00492909

[28]

Gomes, M. L., Hurtgen, M. T., 2013. Sulfur Isotope Systematics of a Euxinic, Low-Sulfate Lake: Evaluating the Importance of the Reservoir Effect in Modern and Ancient Oceans. Geology, 41(6): 663-666. https://doi.org/10.1130/g34187.1

[29]

Grice, K., Cao, C., Love, G. D., et al., 2005. Photic Zone Euxinia during the Permian-Triassic Superanoxic Event. Science, 307(5710): 706-709. https://doi.org/10.1126/science.1104323

[30]

Gupta, R. S., Mukhtar, T., Singh, B., 1999. Evolutionary Relationships among Photosynthetic Prokaryotes (Heliobacterium Chlorum, Chloroflexus Aurantiacus, Cyanobacteria, Chlorobium Tepidum and Proteobacteria): Implications Regarding the Origin of Photosynthesis. Molecular Microbiology, 32(5): 893-906. https://doi.org/10.1046/j.1365-2958.1999.01417.x

[31]

Habicht, K. S., Canfield, D. E., Rethmeier, J., 1998. Sulfur Isotope Fractionation during Bacterial Reduction and Disproportionation of Thiosulfate and Sulfite. Geochimica et Cosmochimica Acta, 62(15): 2585-2595. https://doi.org/10.1016/s0016-7037(98)00167-7

[32]

Habicht, K. S., Gade, M., Thamdrup, B., et al.,2002. Calibration of Sulfate Levels in the Archean Ocean. Science, 298(5602): 2372-2374.

[33]

He, T., Dal Corso, J., Newton, R. J., et al., 2020. An Enormous Sulfur Isotope Excursion Indicates Marine Anoxia during the End-Triassic Mass Extinction. Science Advances, 6(37): eabb6704. https://doi.org/10.1126/sciadv.abb6704

[34]

Herrera, A., Cockell, C. S., Self, S., et al., 2009. A Cryptoendolithic Community in Volcanic Glass. Astrobiology, 9(4): 369-381. https://doi.org/10.1089/ast.2008.0278

[35]

Holo, H., Sirevåg, R., 1986. Autotrophic Growth and CO2 Fixation of Chloroflexus Aurantiacus. Archives of Microbiology, 145(2): 173-180. https://doi.org/10.1007/bf00446776

[36]

House, C. H., Schopf, J. W., McKeegan, K. D., et al., 2000. Carbon Isotopic Composition of Individual Precambrian Microfossils. Geology, 28(8): 707. https://doi.org/10.1130/0091-7613(2000)28<707:cicoip>2.0.co;2

[37]

House, C. H., Schopf, J. W., Stetter, K. O., 2003. Carbon Isotopic Fractionation by Archaeans and other Thermophilic Prokaryotes. Organic Geochemistry, 34(3): 345-356. https://doi.org/10.1016/s0146-6380(02)00237-1

[38]

Howard Gest, B. F., Hayes, J. M., 1984. Isotope Effects Associated with the Anaerobic Oxidation of Sulfide by the Purple Photosynthetic Bacterium,Chromatium Vinosum. FEMS Microbiology Letters, 22(3): 283-287. https://doi.org/10.1111/j.1574-6968.1984.tb00742.x

[39]

Hubert, C., Voordouw, G., Mayer, B., 2009. Elucidating Microbial Processes in Nitrate- and Sulfate-Reducing Systems Using Sulfur and Oxygen Isotope Ratios: The Example of Oil Reservoir Souring Control. Geochimica et Cosmochimica Acta, 73(13): 3864-3879. https://doi.org/10.1016/j.gca.2009.03.025

[40]

Ivanov, M., Gogotova, G., Matrosov, A., et al.,1976. Fractionation of Sulfur Isotopes by Phototrophic Sulfur Bacterium Ectothiorhodospira Shaposhnikovii. Mikrobiologiia, 45(5): 757-762.

[41]

Johnston, D. T., Wolfe-Simon, F., Pearson, A.,et al., 2009. Anoxygenic Photosynthesis Modulated Proterozoic Oxygen and Sustained Earth's Middle Age. Proceedings of the National Academy of Sciences, 106(40): 16925-16929. https://doi.org/10.1073/pnas.0909248106

[42]

Jørgensen, B. B., Findlay, A. J., Pellerin, A., 2019. The Biogeochemical Sulfur Cycle of Marine Sediments. Frontiers in Microbiology, 10:849. https://doi.org/10.3389/fmicb.2019.00849

[43]

Kamyshny, A. Jr, 2009. Solubility of Cyclooctasulfur in Pure Water and Sea Water at Different Temperatures. Geochimica et Cosmochimica Acta, 73(20): 6022-6028. https://doi.org/10.1016/j.gca.2009.07.003

[44]

Kanno, N., Haruta, S., Hanada, S., 2019. Sulfide-Dependent Photoautotrophy in the Filamentous Anoxygenic Phototrophic Bacterium, Chloroflexus Aggregans. Microbes and Environments, 34(3): 304-309. https://doi.org/10.1264/jsme2.me19008

[45]

Kaplan, I. R., Rittenberg, S. C., 1964. Microbiological Fractionation of Sulphur Isotopes. Journal of General Microbiology, 34(2): 195-212. https://doi.org/10.1099/00221287-34-2-195

[46]

Kawai, S., Kamiya, N., Matsuura, K., et al., 2019a. Symbiotic Growth of a Thermophilic Sulfide-Oxidizing Photoautotroph and an Elemental Sulfur-Disproportionating Chemolithoautotroph and Cooperative Dissimilatory Oxidation of Sulfide to Sulfate. Frontiers in Microbiology, 10: 1150. https://doi.org/10.3389/fmicb.2019.01150

[47]

Kawai, S., Martinez, J. N., Lichtenberg, M., et al., 2021. In-Situ Metatranscriptomic Analyses Reveal the Metabolic Flexibility of the Thermophilic Anoxygenic Photosynthetic Bacterium Chloroflexus Aggregans in a Hot Spring Cyanobacteria-Dominated Microbial Mat. Microorganisms, 9(3): 652. https://doi.org/10.3390/microorganisms9030652

[48]

Kawai, S., Nishihara, A., Matsuura, K., et al., 2019b. Hydrogen-Dependent Autotrophic Growth in Phototrophic and Chemolithotrophic Cultures of Thermophilic Bacteria, Chloroflexus Aggregans and Chloroflexus Aurantiacus, Isolated from Nakabusa Hot Springs. FEMS Microbiology Letters, 366(10): fnz122. https://doi.org/10.1093/femsle/fnz122

[49]

Klatt, C. G., Bryant, D. A., Ward, D. M., 2007. Comparative Genomics Provides Evidence for the 3-Hydroxypropionate Autotrophic Pathway in Filamentous Anoxygenic Phototrophic Bacteria and in Hot Spring Microbial Mats. Environmental Microbiology, 9(8): 2067-2078. https://doi.org/10.1111/j.1462-2920.2007.01323.x

[50]

Knauth, L. P., 2005. Temperature and Salinity History of the Precambrian Ocean: Implications for the Course of Microbial Evolution. Palaeogeography, Palaeoclimatology, Palaeoecology, 219(1/2):53-69.https://doi.org/10.1016/j.palaeo.2004.10.014

[51]

Knauth, L. P., Lowe, D. R., 2003. High Archean Climatic Temperature Inferred from Oxygen Isotope Geochemistry of Cherts in the 3.5 Ga Swaziland Supergroup, South Africa. Geological Society of America Bulletin, 115: 566-580. https://doi.org/10.1130/0016-7606(2003)115<0566:hactif>2.0.co;2

[52]

Knudsen, E., Jantzen, E., Bryn, K., et al., 1982. Quantitative and Structural Characteristics of Lipids in Chlorobium and Chloroflexus. Archives of Microbiology, 132(2): 149-154. https://doi.org/10.1007/bf00508721

[53]

Kump, L. R., Pavlov, A., Arthur, M. A., 2005. Massive Release of Hydrogen Sulfide to the Surface Ocean and Atmosphere during Intervals of Oceanic Anoxia. Geology, 33(5): 397. https://doi.org/10.1130/g21295.1

[54]

Leavitt, W. D., Halevy, I., Bradley, A. S., et al., 2013. Influence of Sulfate Reduction Rates on the Phanerozoic Sulfur Isotope Record. Proceedings of the National Academy of Sciences, 110(28): 11244-11249. https://doi.org/10.1073/pnas.1218874110

[55]

Li, M., Wang, Z.F., Yao, Z.L.,2021. Microfossils and Paleoenvironmental Significance of Late Paleoproterozoic Ruyang Group in South Margin of North China Craton: Evidence from Microstructure and Biomarker. Earth Science, 46(11): 4072-4083 (in Chinese with English abstract).

[56]

Liu, Y., Jiang, L.J., Shao, Z.Z.,2018. Advances in Sulfur-Oxidizing Bacterial Taxa and Their Sulfur Oxidation Pathways. Acta Microbiologica Sinica, 58(2): 191-201 (in Chinese with English abstract).

[57]

Madigan, M. T., 1984. A Novel Photosynthetic Purple Bacterium Isolated from a Yellowstone Hot Spring. Science, 225(4659): 313-315. https://doi.org/10.1126/science. 225. 4659.313

[58]

Madigan, M. T., Brock, T. D., 1975. Photosynthetic Sulfide Oxidation by Chloroflexus Aurantiacus, a Filamentous, Photosynthetic, Gliding Bacterium. Journal of Bacteriology, 122(2): 782-784. https://doi.org/10.1128/jb.122. 2. 782-784.1975

[59]

Magnall, J. M., Gleeson, S. A., Hayward, N., et al., 2022. Using Whole Rock and in Situ Pyrite Chemistry to Evaluate Authigenic and Hydrothermal Controls on Trace Element Variability in a Zn Mineralized Proterozoic Subbasin. Geochimica et Cosmochimica Acta, 318: 366-387. https://doi.org/10.1016/j.gca.2021.12.001

[60]

McGunnigle, J. P., Cano, E. J., Sharp, Z. D., et al., 2022. Triple Oxygen Isotope Evidence for a Hot Archean Ocean. Geology, 50(9): 991-995. https://doi.org/10.1130/g50230.1

[61]

Menendez, C., Bauer, Z., Huber, H., et al.,1999. Presence of Acetyl Coenzyme a (Coa) Carboxylase and Propionyl-Coa Carboxylase in Autotrophic Crenarchaeota and Indication for Operation of a 3-Hydroxypropionate Cycle in Autotrophic Carbon Fixation. Journal of Bacteriology, 181(4): 1088-1098. https://doi.org/10.1128/jb.181.4.1088-1098. 1999

[62]

Ménez, B., 2020. Abiotic Hydrogen and Methane: Fuels for Life. Elements, 16(1): 39-46. https://doi.org/10.2138/gselements.16.1.39

[63]

Meyer, K. M., Kump, L. R., 2008. Oceanic Euxinia in Earth History: Causes and Consequences. Annual Review of Earth and Planetary Sciences, 36(1): 251-288. https://doi.org/10.1146/annurev.earth.36.031207.124256

[64]

Miller, S. R., Strong, A. L., Jones, K. L., et al., 2009. Bar-Coded Pyrosequencing Reveals Shared Bacterial Community Properties along the Temperature Gradients of Two Alkaline Hot Springs in Yellowstone National Park. Applied and Environmental Microbiology, 75(13): 4565-4572. https://doi.org/10.1128/aem.02792-08

[65]

Neefs, J. M., Van de Peer, Y., De Rijk, P., et al., 1993. Compilation of Small Ribosomal Subunit RNA Structures. Nucleic Acids Research, 21(13): 3025-3049. https://doi.org/10.1093/nar/21.13.3025

[66]

Neutzling, O., Pfleiderer, C., Truper, H. G., 1985. Dissimilatory Sulphur Metabolism in Phototrophic 'Non-Sulphur' Bacteria. Microbiology, 131(4): 791-798. https://doi.org/10.1099/00221287-131-4-791

[67]

Nubel, U., Bateson, M. M., Madigan, M. T., et al.,2001. Diversity and Distribution in Hypersaline Microbial Mats of Bacteria Related to Chloroflexus Spp. Applied and Environmental Microbiology, 67(9): 4365-4371. https://doi.org/10.1128/aem.67.9.4365-4371.2001

[68]

Ohmoto, H., 2020. A Seawater-Sulfate Origin for Early Earth’s Volcanic Sulfur. Nature Geoscience, 13(8): 576-583. https://doi.org/10.1038/s41561-020-0601-6

[69]

Otaki, H., Everroad, R. C., Matsuura, K.,et al., 2009. Production and Consumption of Hydrogen in Hot Spring Microbial Mats Dominated by a Filamentous Anoxygenic Photosynthetic Bacterium. Microbes and Environments, 27(3): 293-299. https://doi.org/10.1264/jsme2.me11348

[70]

Oyaizu, H., Debrunner-Vossbrinck, B., Mandelco, L., et al., 1987. The Green Non-Sulfur Bacteria: A Deep Branching in the Eubacterial Line of Descent. Systematic and Applied Microbiology, 9(1/2): 47-53. https://doi.org/10.1016/s0723-2020(87)80055-3

[71]

Pearson, A., Hurley, S. J., Elling, F. J., et al., 2019. CO2-Dependent Carbon Isotope Fractionation in Archaea, Part I: Modeling the 3HP/4HB Pathway. Geochimica et Cosmochimica Acta, 261(4): 368-382. https://doi.org/10.1016/j.gca.2019.06.042

[72]

Pellerin, A., Antler, G., Holm, S. A., et al., 2019. Large Sulfur Isotope Fractionation by Bacterial Sulfide Oxidation. Science Advances, 5(7): eaaw1480. https://doi.org/10.1126/sciadv.aaw1480

[73]

Pierson, B. K., Castenholz, R. W., 1971. Bacteriochlorophylls in Gliding Filamentous Prokaryotes from Hot Springs. Nature New Biology, 233(35): 25-27. https://doi.org/10.1038/newbio233025a0

[74]

Pierson, B. K., Mitchell, H. K., Ruff-Roberts, A. L., 1993. Chloroflexus Aurantiacus and Ultraviolet Radiation: Implications for Archean Shallow-Water Stromatolites. Origins of Life and Evolution of the Biosphere, 23(4): 243-260. https://doi.org/10.1007/bf01581902

[75]

Pierson, B. K., Valdez, D., Larsen, M., et al., 1994. Chloroflexus-Like Organisms from Marine and Hypersaline Environments: Distribution and Diversity. Photosynthesis Research, 41(1): 35-52. https://doi.org/10.1007/bf02184144

[76]

Poser, A., Vogt, C., Knöller, K., et al., 2014. Stable Sulfur and Oxygen Isotope Fractionation of Anoxic Sulfide Oxidation by Two Different Enzymatic Pathways. Environmental Science & Technology, 48(16): 9094-9102. https://doi.org/10.1021/es404808r

[77]

Poulton, S. W., Fralick, P. W., Canfield, D. E., 2010. Spatial Variability in Oceanic Redox Structure 1.8 billion Years ago. Nature Geoscience, 3(7): 486-490. https://doi.org/10.1038/ngeo889

[78]

Riccardi, A. L., Arthur, M. A., Kump, L. R., 2006. Sulfur Isotopic Evidence for Chemocline Upward Excursions during the End-Permian Mass Extinction. Geochimica et Cosmochimica Acta, 70(23): 5740-5752. https://doi.org/10.1016/j.gca.2006.08.005

[79]

Robert, F., Chaussidon, M., 2006. A Palaeotemperature Curve for the Precambrian Oceans Based on Silicon Isotopes in Cherts. Nature, 443(7114): 969-972. https://doi.org/10.1038/nature05239

[80]

Roush, D., Couradeau, E., Guida, B., et al., 2018. A New Niche for Anoxygenic Phototrophs as Endoliths. Applied and Environmental Microbiology, 84(4): e02055-02017. https://doi.org/10.1128/aem.02055-17

[81]

Sælen, G., Raiswell, R., Talbot, M. R., et al., 1993. Heavy Sedimentary Sulfur Isotopes as Indicators of Super-Anoxic Bottom-Water Conditions. Geology, 21(12): 1091-1094. https://doi.org/10.1130/0091-7613(1993)021<1091:hssiai>2.3.co;2

[82]

Schidlowski, M., 1988. A 3,800-Million-Year Isotopic Record of Life from Carbon in Sedimentary Rocks. Nature, 333(6171): 313-318. https://doi.org/10.1038/333313a0

[83]

Scott, C. T., Bekker, A., Reinhard, C. T., et al., 2011. Late Archean Euxinic Conditions before the Rise of Atmospheric Oxygen. Geology, 39(2): 119-122. https://doi.org/10.1130/g31571.1

[84]

Seal, R. R., 2006. Sulfur Isotope Geochemistry of Sulfide Minerals. Reviews in Mineralogy and Geochemistry, 61(1): 633-677. https://doi.org/10.2138/rmg.2006.61.12

[85]

Shiea, J., Brassel, S. C., Ward, D. M., 1991. Comparative Analysis of Extractable Lipids in Hot Spring Microbial Mats and their Component Photosynthetic Bacteria. Organic Geochemistry, 17(3): 309-319. https://doi.org/10.1016/0146-6380(91)90094-z

[86]

Shih, P. M., Ward, L. M., Fischer, W. W.,et al., 2017. Evolution of the 3-Hydroxypropionate Bicycle and Recent Transfer of Anoxygenic Photosynthesis into the Chloroflexi. Proceedings of the National Academy of Sciences, 114(40): 10749-10754. https://doi.org/10.1073/pnas. 1710798114

[87]

Sim, M. S., 2019. Effect of Sulfate Limitation on Sulfur Isotope Fractionation in Batch Cultures of Sulfate Reducing Bacteria. Geosciences Journal, 23(5): 687-694. https://doi.org/10.1007/s12303-019-0015-x

[88]

Sim, M. S., Bosak, T., Ono, S., 2011. Large Sulfur Isotope Fractionation does not Require Disproportionation. Science, 333(6038): 74-77. https://doi.org/10.1126/science.1205103

[89]

Smith, D. A., Steele, A., Fogel, M. L.,et al., 2015. Pigment Production and Isotopic Fractionations in Continuous Culture: Okenone Producing Purple Sulfur Bacteria Part II. Geobiology, 13(3): 292-301. https://doi.org/10.1111/gbi.12135

[90]

Sorokin, D. Y., Tourova, T. P., Mußmann, M., et al., 2008. Dethiobacter Alkaliphilus Gen. Nov. Sp. Nov., and Desulfurivibrio Alkaliphilus Gen. Nov. Sp. Nov.: Two Novel Representatives of Reductive Sulfur Cycle from Soda Lakes. Extremophiles, 12(3): 431-439. https://doi.org/10.1007/s00792-008-0148-8

[91]

Tang, K. H., Barry, K., Chertkov, O., et al., 2011. Complete Genome Sequence of the Filamentous Anoxygenic Phototrophic Bacterium Chloroflexus Aurantiacus. BMC Genomics, 12(1): 1-21. https://doi.org/10.1186/1471-2164-12-334

[92]

Teece, B. L., George, S. C., Djokic, T., et al., 2020. Biomolecules from Fossilized Hot Spring Sinters: Implications for the Search for Life on Mars. Astrobiology, 20(4): 537-551. https://doi.org/10.1089/ast.2018.2018

[93]

Thiel, J., Byrne, J. M., Kappler, A., et al.,2019. Pyrite Formation from FeS and H2S Is Mediated through Microbial Redox Activity. Proceedings of the National Academy of Sciences, 116(14): 6897-6902. https://doi.org/10.1073/pnas.1814412116

[94]

Thorup, C., Schramm, A., Findlay, A. J., et al.,2017. Disguised as a Sulfate Reducer: Growth of the Deltaproteobacterium Desulfurivibrio Alkaliphilus by Sulfide Oxidation with Nitrate. mBio, 8(4). https://doi.org/10.1128/mbio.00671-17

[95]

Thurston, R. S., Mandernack, K. W., Shanks, W. C. III, 2010. Laboratory Chalcopyrite Oxidation by Acidithiobacillus Ferrooxidans: Oxygen and Sulfur Isotope Fractionation. Chemical Geology, 269(3/4): 252-261. https://doi.org/10.1016/j.chemgeo.2009.10.001

[96]

Tice, M. M., Lowe, D. R., 2004. Photosynthetic Microbial Mats in the 3,416-Myr-Old Ocean. Nature, 431(7008): 549-552. https://doi.org/10.1038/nature02888

[97]

van der Meer, M. T. J., Schouten, S., Damsté, J. S. S., et al., 2007. Impact of Carbon Metabolism On 13C Signatures of Cyanobacteria and Green Non-Sulfur-Like Bacteria Inhabiting a Microbial Mat from an Alkaline Siliceous Hot Spring in Yellowstone National Park (USA). Environmental Microbiology, 9(2): 482-491. https://doi.org/10.1111/j.1462-2920.2006.01165.x

[98]

Van Der Meer, M. T. J., Schouten, S., de Leeuw, J. W., et al., 2000. Autotrophy of Green Non-Sulphur Bacteria in Hot Spring Microbial Mats: Biological Explanations for Isotopically Heavy Organic Carbon in the Geological Record. Environmental Microbiology, 2(4): 428-435. https://doi.org/10.1046/j.1462-2920.2000.00124.x

[99]

Van Gemerden, H., 1984. The Sulfide Affinity of Phototrophic Bacteria in Relation to the Location of Elemental Sulfur. Archives of Microbiology, 139(4): 289-294. https://doi.org/10.1007/bf00408368

[100]

van Gemerden, H., 1986. Production of Elemental Sulfur by Green and Purple Sulfur Bacteria. Archives of Microbiology, 146(1): 52-56. https://doi.org/10.1007/bf00690158

[101]

Visscher, P. T., Ende, F. P., Schaub, B. E. M., et al., 1992. Competition between Anoxygenic Phototrophic Bacteria and Colorless Sulfur Bacteria in a Microbial Mat. FEMS Microbiology Letters, 101(1): 51-58. https://doi.org/10.1111/j.1574-6968.1992.tb05761.x

[102]

Walsh, M. M., Lowe, D. R., 1985. Filamentous Microfossils from the 3,500-Myr-Old Onverwacht Group, Barberton Mountain Land, South Africa. Nature, 314(6011): 530-532. https://doi.org/10.1038/314530a0

[103]

Weltzer, M. L., Miller, S. R., 2013. Ecological Divergence of a Novel Group of Chloroflexus Strains along a Geothermal Gradient. Applied and Environmental Microbiology, 79(4): 1353-1358. https://doi.org/10.1128/aem.02753-12

[104]

Westall, F., Foucher, F., Bost, N., et al., 2015. Biosignatures on Mars: What, Where, and How? Implications for the Search for Martian Life. Astrobiology, 15(11): 998-1029. https://doi.org/10.1089/ast.2015.1374

[105]

Wing, B. A., Halevy, I., 2014. Intracellular Metabolite Levels Shape Sulfur Isotope Fractionation during Microbial Sulfate Respiration. Proceedings of the National Academy of Sciences, 111(51): 18116-18125. https://doi.org/10.1073/pnas.1407502111

[106]

Wu, Y.F., Guan, H.X., Xu, L.F., et al.,2022. Characteristics and Significance of Biomarkers Related to AOM in Surface Sediments of the Haima Cold Seep in the Northern South China Sea. Earth Science, 47(8): 3005-3015 (in Chinese with English abstract).

[107]

Xian, W. D., Salam, N., Li, M. M., et al., 2020. Network-Directed Efficient Isolation of Previously Uncultivated Chloroflexi and Related Bacteria in Hot Spring Microbial Mats. npj Biofilms and Microbiomes, 6(1): 20. https://doi.org/10.1038/s41522-020-0131-4

[108]

Xian, W. D., Zhang, X.T., Li W.J.,2020. Research Status and Prospect on Bacterial Phylum Chloroflexi. Acta Microbiologica Sinica, 60(9): 1801-1820 (in Chinese with English abstract).

[109]

Xie, S. C., Yang, H., Luo, G. M., et al., 2012. Geomicrobial Functional Groups: A Window on the Interaction between Life and Environments. Chinese Science Bulletin, 57(1): 2-19. https://doi.org/10.1007/s11434-011-4860-x

[110]

Xiong, J. and Bauer, C. E.,2002. Complex Evolution of Photosynthesis. Annual Review of Plant Biology, 53: 503-521.

[111]

Xiong, J., Fischer, W. M., Inoue, K., et al., 2000. Molecular Evidence for the Early Evolution of Photosynthesis. Science, 289(5485): 1724-1730. https://doi.org/10.1126/science.289.5485.1724

[112]

Zarzycki, J., Brecht, V., Müller, M., et al.,2009. Identifying the Missing Steps of the Autotrophic 3-Hydroxypropionate CO2 Fixation Cycle in Chloroflexus Aurantiacus. Proceedings of the National Academy of Sciences, 106(50): 21317-21322. https://doi.org/10.1073/pnas.0908356106

[113]

Zeng, Y. B., Ward, D. M., Brassell, S. C., et al.,1992a. Biogeochemistry of Hot Spring Environments: 2. Lipid Compositions of Yellowstone (Wyoming, U.S.A.) Cyanobacterial and Chloroflexus Mats. Chemical Geology, 95(3): 327-345.

[114]

Zeng, Y. B., Ward, D. M., Brassell, S. C., et al.,1992b. Biogeochemistry of Hot Spring Environments: 3. Apolar and Polar Lipids in the Biologically Active Layers of a Cyanobacterial Mat. Chemical Geology, 95(3): 347-360.

[115]

Zerkle, A. L., Farquhar, J., Johnston, D. T., et al., 2009. Fractionation of Multiple Sulfur Isotopes during Phototrophic Oxidation of Sulfide and Elemental Sulfur by a Green Sulfur Bacterium. Geochimica et Cosmochimica Acta, 73(2): 291-306. https://doi.org/10.1016/j.gca.2008.10.027

[116]

Zhang, G. J., Zhang, X. L., Li, D. D., et al., 2015. Widespread Shoaling of Sulfidic Waters Linked to the End-Guadalupian (Permian) Mass Extinction. Geology, 43(12): 1091-1094. https://doi.org/10.1130/g37284.1

[117]

Zhelezinskaia, I., Kaufman, A. J., Farquhar, J., et al., 2014. Large Sulfur Isotope Fractionations Associated with Neoarchean Microbial Sulfate Reduction. Science, 346(6210): 742-744. https://doi.org/10.1126/science. 1256211

[118]

Zheng, R., Cai, R., Wang, C., et al.,2022. Characterization of the First Cultured Representative of “Candidatus Thermofonsia” Clade 2 within Chloroflexi Reveals Its Phototrophic Lifestyle. mBio, 13(2): e00287-00222.https://doi.org/10.1128/mbio.00287-22

[119]

李猛,王钊飞,姚志亮,2021. 华北克拉通南缘古元古代晚期汝阳群微体化石及其古环境意义:来自微细构造和生物标志化合物的证据. 地球科学, 46(11): 4072-4083.

[120]

刘阳,姜丽晶,邵宗泽,2018. 硫氧化细菌的种类及硫氧化途径的研究进展. 微生物学报, 58(2): 191-201.

[121]

吴一帆,管红香,许兰芳,等,2022. 南海北部海马冷泉区表层沉积物的AOM生物标志化合物特征及意义. 地球科学, 47(8): 3005-3015.

[122]

鲜文东,张潇橦,李文均,2020. 绿弯菌的研究现状及展望. 微生物学报, 60(9): 1801-1820.

基金资助

国家自然科学基金(41877322;42172339;91951205)

AI Summary AI Mindmap
PDF (1575KB)

259

访问

0

被引

详细

导航
相关文章

AI思维导图

/