坝后淤积条件下泥石流冲击拦挡坝动力响应研究
Study on Dynamic Response of Debris Flow Impact on Check Dam with Sediments
,
拦挡坝有效库容和泥石流冲击力是泥石流实体拦挡坝设计的重要指标,现有实体拦挡坝在泥石流反复冲击作用下淤积甚至填满,会对坝体调控能力产生重要影响.为此,基于理论分析和物理模型试验,开展坝后淤积条件下泥石流冲击实体拦挡坝动力响应研究,推导坝后淤积条件下泥石流速度衰减率、坝体拦挡率的无量纲计算公式,并建立考虑空间分布特性的坝后淤积条件下泥石流冲击力计算模型.结果表明:泥石流速度衰减率和坝体拦挡率与淤积体高度/淤积长度比值和泥石流相对容重呈正相关;泥石流冲击力静动荷载组合计算模型能较好反映坝后淤积条件下泥石流冲击力的组成和分布特征.上述研究可为泥石流实体拦挡坝工程设计提供理论及技术支持.
实体拦挡坝 / 坝后淤积 / 速度衰减率 / 拦挡率 / 冲击力 / 动力响应 / 工程地质
entity check dam / sediments behind the dam / velocity attenuation rate / blocking rate / impact force / dynamic response / engineering geology
| [1] |
Albaba, A., Lambert, S., Faug, T., 2018. Dry Granular Avalanche Impact Force on a Rigid Wall: Analytic Shock Solution Versus Discrete Element Simulations. Physical Review E, 97(5): 052903. https://doi.org/10.1103/physreve.97.052903 |
| [2] |
Armanini, A., Rossi, G., Larcher, M., 2020. Dynamic Impact of a Water and Sediments Surge Against a Rigid Wall. Journal of Hydraulic Research, 58(2): 314-325. https://doi.org/10.1080/00221686.2019.1579113 |
| [3] |
Ashwood, W., Hungr, O., 2016. Estimating Total Resisting Force in Flexible Barrier Impacted by a Granular Avalanche Using Physical and Numerical Modeling. Canadian Geotechnical Journal, 53(10): 1700-1717. https://doi.org/10.1139/cgj-2015-0481 |
| [4] |
Chai, B., Tao, Y. Y., Du, J., et al., 2020. Hazard Assessment of Debris Flow Triggered by Outburst of Jialong Glacial Lake in Nyalam County, Tibet. Earth Science, 45(12): 4630-4639 (in Chinese with English abstract) |
| [5] |
Chen, H. Y., Cui, P., Chen, J. G., et al., 2016. Effects of Spillway Types on Debris Flow Trajectory and Scour Behind a Sabo Dam. Journal of Mountain Science, 13(2): 203-212. https://doi.org/10.1007/s11629-015-3607-6 |
| [6] |
Chen, H. Y., Liu, J. F., Zhao, W. Y., et al., 2016. A Review and Prospect: The Study on the Closed-Type Check Dams. Journal of Disaster Prevention and Mitigation Engineering, 36(2): 323-330 (in Chinese with English abstract) |
| [7] |
Choi, C. E., Au-Yeung, S. C. H., Ng, C. W. W., et al., 2015. Flume Investigation of Landslide Granular Debris and Water Runup Mechanisms. Géotechnique Letters, 5(1): 28-32. https://doi.org/10.1680/geolett.14.00080 |
| [8] |
Cui, P., Zeng, C., Lei, Y., 2015. Experimental Analysis on the Impact Force of Viscous Debris Flow. Earth Surface Processes and Landforms, 40(12): 1644-1655. https://doi.org/10.1002/esp.3744 |
| [9] |
Faug, T., Caccamo, P., Chanut, B., 2012. A Scaling Law for Impact Force of a Granular Avalanche Flowing Past a Wall. Geophysical Research Letters, 39(23): L23401. https://doi.org/10.1029/2012gl054112 |
| [10] |
Hong, Y., Wang, J. P., Li, D. Q., et al., 2015. Statistical and Probabilistic Analyses of Impact Pressure and Discharge of Debris Flow from 139 Events during 1961 and 2000 at Jiangjia Ravine, China. Engineering Geology, 187: 122-134. https://doi.org/10.1016/j.enggeo.2014.12.011 |
| [11] |
Hu, K. H., Ge, Y. G., Cui, P., et al., 2010. Preliminary Analysis of Extra-Large-Scale Debris Flow Disaster in Zhouqu County of Gansu Province. Journal of Mountain Science, 28(5): 628-634 (in Chinese with English abstract) |
| [12] |
Hungr, O., 2008. Simplified Models of Spreading Flow of Dry Granular Material. Canadian Geotechnical Journal, 45(8): 1156-1168. https://doi.org/10.1139/t08-059 |
| [13] |
Jiang, Y. J., Towhata, I., 2013. Experimental Study of Dry Granular Flow and Impact Behavior Against a Rigid Retaining Wall. Rock Mechanics and Rock Engineering, 46(4): 713-729. https://doi.org/10.1007/s00603-012-0293-3 |
| [14] |
Kwan, J. S. H., Koo, R. C. H., Ng, C. W. W., 2015. Landslide Mobility Analysis for Design of Multiple Debris-Resisting Barriers. Canadian Geotechnical Journal, 52(9): 1345-1359. https://doi.org/10.1139/cgj-2014-0152 |
| [15] |
Kwan, J. S. H., Sze, E. H. Y., Lam, C., 2019. Finite Element Analysis for Rockfall and Debris Flow Mitigation Works. Canadian Geotechnical Journal, 56(9): 1225-1250. https://doi.org/10.1139/cgj-2017-0628 |
| [16] |
Law, R. P. H., Choi, C. E., Ng, C. W. W., 2016. Discrete-Element Investigation of Influence of Granular Debris Flow Baffles on Rigid Barrier Impact. Canadian Geotechnical Journal, 53(1): 179-185. https://doi.org/10.1139/cgj-2014-0394 |
| [17] |
Li, X. Y., Zhao, J. D., 2018. A Unified CFD-DEM Approach for Modeling of Debris Flow Impacts on Flexible Barriers. International Journal for Numerical and Analytical Methods in Geomechanics, 42(14): 1643-1670. https://doi.org/10.1002/nag.2806 |
| [18] |
Li, Y., Cui, Y. F., Li, Z. H., et al., 2022.Evolution of Glacier Debris Flow and Its Monitoring System along Sichuan-Tibet Traffic Corridor. Earth Science, 47(6): 1969-1984 (in Chinese with English abstract) |
| [19] |
Liu, D. C., You, Y., Liu, J. F., et al., 2019. Spatial-Temporal Distribution of Debris Flow Impact Pressure on Rigid Barrier. Journal of Mountain Science, 16(4): 793-805. https://doi.org/10.1007/s11629-018-5316-4 |
| [20] |
Liu, J. F., You, Y., 2011. Experimental Study on Back Siltation in the Outlet of Viscous Debris Flow Channel. Journal of Mountain Science, 29(2): 226-233 (in Chinese with English abstract) |
| [21] |
Liu, X. R., Wei, X. P., Chen, Y. J., et al., 2021. Numerical Simulation of Impact Resistance of Debris Flow Dam: A Case Study of the Debris Flow Dam in Sanyanyu Gully, Zhouqu County, Gansu Province. The Chinese Journal of Geological Hazard and Control, 32(2): 78-83 (in Chinese with English abstract) |
| [22] |
Ng, C. W. W., Majeed, U., Choi, C. E., et al., 2021. New Impact Equation Using Barrier Froude Number for the Design of Dual Rigid Barriers Against Debris Flows. Landslides, 18(6): 2309-2321. https://doi.org/10.1007/s10346-021-01631-7 |
| [23] |
Ng, C. W. W., Song, D., Choi, C. E., et al., 2017. Impact Mechanisms of Granular and Viscous Flows on Rigid and Flexible Barriers. Canadian Geotechnical Journal, 54(2): 188-206. https://doi.org/10.1139/cgj-2016-0128 |
| [24] |
Peng, M., Ma, C. Y., Chen, H. X., et al., 2021. Experimental Study on Breaching Mechanisms of Landslide Dams Composed of Different Materials under Surge Waves. Engineering Geology, 291: 106242. https://doi.org/10.1016/j.enggeo.2021.106242 |
| [25] |
Shi, H. B., Hu, X. W., Wen, Q., et al., 2021. Debris Flow Development Characteristics and Dynamic Process Numerical Simulation of Xiali 2# Gully on the Proposed Sichuan-Tibet Railway. Journal of Geological Hazards and Environment Preservation, 32(3): 39-46 (in Chinese with English abstract) |
| [26] |
Tiberghien, D., Laigle, D., Naaim, M., et al., 2007. Experimental Investigations of Interaction between Mudflow and an Obstacle. International Conference on Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment, Chengdu. |
| [27] |
Wendeler, C., Volkwein, A., McArdell, B. W., et al., 2019. Load Model for Designing Flexible Steel Barriers for Debris Flow Mitigation. Canadian Geotechnical Journal, 56(6): 893-910. https://doi.org/10.1139/cgj-2016-0157 |
| [28] |
Xiao, S. Y., Su, L. J., Jiang, Y. J., et al., 2019. Estimating the Maximum Impact Force of Dry Granular Flow Based on Pileup Characteristics. Journal of Mountain Science, 16(10): 2435-2452. https://doi.org/10.1007/s11629-019-5428-5 |
| [29] |
Xie, T., Xu, X. L., Chen, H. K., 2017. Review and Trends on Debris Dam Research. The Chinese Journal of Geological Hazard and Control, 28(2): 137-145 (in Chinese with English abstract) |
| [30] |
Zhang, F. S., Wang, T., Liu, F., et al., 2020. Modeling of Fluid-Particle Interaction by Coupling the Discrete Element Method with a Dynamic Fluid Mesh: Implications to Suffusion in Gap-Graded Soils. Computers and Geotechnics, 124: 103617. https://doi.org/10.1016/j.compgeo.2020.103617 |
| [31] |
Zhang, R. X., Su, D., Fan, X. Y., et al., 2022. Influence of Site Conditions on the Motion and Impact Effect of Rock Avalanches. Journal of Vibration and Shock, 41(2): 229-239 (in Chinese with English abstract) |
| [32] |
Zhou, C., Chang, M., Xu, L., et al., 2023. Failure Modes and Dynamic Characteristics of the Landslide Dams in Strong Earthquake Area. Earth Science, 48(8): 3115-3126 (in Chinese with English abstract) |
国家自然科学基金项目(42207232)
四川省交通科技项目(2021-A-04)
四川省科技计划项目任务书(2023YFS0444)
/
| 〈 |
|
〉 |