基于深度学习单阶段算法的䗴类化石检测
Fusulinid Detection Based on Deep Learning Single-Stage Algorithm
,
䗴化石是石炭纪、二叠纪重要的标准化石,其详细的鉴定工作对确定地质时代和划分石炭系‒二叠系具有重要意义.鉴于目前䗴类化石检测方法的局限性,提出一种基于深度学习单阶段算法的䗴类化石检测.以䗴类化石为研究对象,对原始模型进行分析,之后联合优化权重损失函数和BN层尺度因子的L1正则化等方式进行通道剪枝,再使用知识蒸馏使剪枝后模型恢复检测性能.实验结果表明,该方法可实现薄片图像中䗴类所在区域的定位和分类,平均精度均值达到98.1%,满足实时检测模型的要求,并且剪枝后参数量压缩了74.1%,解决了真实场景中存在的算力缺乏等问题.该方法能够有效保证䗴类化石的检测效果,同时扩展了该模型在嵌入式设备的适用范围,为深度学习在古生物化石图像的智能识别方面提供更多可能性.
䗴类化石 / 深度学习 / 目标检测 / 石炭系‒二叠系 / 知识蒸馏 / 地层学
fusulinid / deep learning / object detection / Carboniferous-Permian / knowledge distillation / stratigraphy
| [1] |
Bochkovskiy, A., Wang, C. Y., Liao, H. Y. M., 2020. YOLOv4: Optimal Speed and Accuracy of Object Detection. ArXiv, 2004.10934. https://arxiv.org/abs/2004.10934 |
| [2] |
Bu, J. J., He, W. H., Zhang, K. X., et al., 2020. Evolution of the Paleo-Asian Ocean: Evidences from Paleontology and Stratigraphy. Earth Science, 45(3): 711-727 (in Chinese with English abstract). |
| [3] |
Denil, M., Shakibi, B., Dinh, L., et al., 2013. Predicting Parameters in Deep Learning. ArXiv, 1306.0543. https://doi.org/10.48550/arXiv.1306.0543 |
| [4] |
Du, Y. S., Tong, J. N., 2009. Introduction to Palaeontology and Historical Geology. China University of Geosciences Press, Wuhan (in Chinese). |
| [5] |
Girshick, R., 2015. Fast R-CNN. 2015 IEEE International Conference on Computer Vision (ICCV). Santiago. https://doi.org/10.1109/ICCV.2015.169 |
| [6] |
Girshick, R., Donahue, J., Darrell, T., et al., 2014. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation. 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus. https://doi.org/10.1109/CVPR.2014.81 |
| [7] |
Guo, W., Lin, Y. T., Liu, G. H., 2003. Early Permian Rugose Coral Assemblage and Its Geological Significances in Xiwuqi of Inner Mongolia. Journal of Jilin University (Earth Science Edition), 33(4): 399-405 (in Chinese with English abstract). |
| [8] |
He, K. M., Zhang, X. Y., Ren, S. Q., et al., 2016. Deep Residual Learning for Image Recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas. https://doi.org/10.1109/CVPR.2016.90 |
| [9] |
Hinton, G., Vinyals, O., Dean, J., 2015. Distilling the Knowledge in a Neural Network. ArXiv, 1503.02531. https://doi.org/10.48550/arXiv.1503.02531 |
| [10] |
Hou, X. H., Feng, L., Zheng, M. P., et al., 2022. Recognition Method of Potassium-Rich Lithium Brine Reservoir in Nanyishan. Earth Science, 47(1): 45-55 (in Chinese with English abstract). |
| [11] |
Huang, Z., Bai, Z. Q., Chai, H., 2009.Identification of the ‘Ambiguity Features’ of the Conodont by the Artificial Neural Network. Geological Science and Technology Information, 28(3): 94-98 (in Chinese with English abstract). |
| [12] |
Li, P. F., Wang, H., Wu, Y. C., et al., 2022. Recognition of Dangerous Rock Mass and Seismic Risk Analysis of Highway Based on UAV Images. China Earthquake Engineering Journal, 44(4): 777-785 (in Chinese with English abstract). |
| [13] |
Liu, W., Anguelov, D., Erhan, D., et al., 2016. Ssd: Single Shot MultiBox Detector. 2016 European Conference on Computer Vision, Amsterdam. https://doi.org/10.1007/978-3-319-46448-0_2 |
| [14] |
Liu, X. Y., 2018. The Application of Image Recognition Technology in Paleontological Fossil Image (Dissertation). Jilin University, Changchun (in Chinese with English abstract). |
| [15] |
Liu, Z., Li, J. G., Shen, Z. Q., et al., 2017. Learning Efficient Convolutional Networks through Network Slimming. 2017 IEEE International Conference on Computer Vision (ICCV). Venice. https://doi.org/10.1109/ICCV.2017.298 |
| [16] |
Lowe, D. G., 2004. Distinctive Image Features from Scale-Invariant Keypoints. International Journal of Computer Vision, 60(2): 91-110. https://doi.org/10.1023/B: VISI.0000029664.99615.94 |
| [17] |
Mehta, R., Ozturk, C., 2018. Object Detection at 200 Frames Per Second. ArXiv, 1805.06361. https://doi.org/10.48550/arXiv.1805.06361 |
| [18] |
Peng, X. D., Zhang, M. S., Li, X. M., 1999. The Evolution of Paleozoic Tectonic Paleogeography in Jilin and Heilongjiang Orogenic Belt. World Geology, 18(3): 24-28 (in Chinese). |
| [19] |
Redmon, J., Divvala, S., Girshick, R., et al., 2016. You only Look Once: Unified, Real-Time Object Detection. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas. https://doi.org/10.1109/CVPR.2016.91 |
| [20] |
Redmon, J., Farhadi, A., 2018. Yolov3: An Incremental Improvement. arXiv, 1804.02767. https://doi.org/10.48550/arXiv.1804.02767 |
| [21] |
Ren, S. Q., He, K. M., Girshick, R., et al., 2015. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. arXiv, 1506.01497. https://doi.org/10.48550/arXiv.1506.01497 |
| [22] |
Shen, S. Z., Zhang, H., Zhang, Y. C., et al., 2019. Permian Integrative Stratigraphy and Timescale of China. Science in China (Series D), 49(1): 160-193 (in Chinese). |
| [23] |
Simonyan, K., Zisserman, A., 2014. Very Deep Convolutional Networks for Large-Scale Visual Recognition. ArXiv, 1409.1556. https://doi.org/10.48550/arXiv.1409.1556 |
| [24] |
Szegedy, C., Liu, W., Jia, Y. Q., et al., 2015. Going Deeper with Convolutions. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)., Boston. https://doi.org/10.1109/CVPR.2015.7298594 |
| [25] |
Weller, A. F., Harris, A. J., Ware, J. A., 2006. Artificial Neural Networks as Potential Classification Tools for Dinoflagellate Cyst Images: A Case Using the Self- Organizing Map Clustering Algorithm. Review of Palaeobotany and Palynology, 141(3-4): 287-302. https://doi.org/10.1016/j.revpalbo.2006.06.001 |
| [26] |
Yu, X. L., Ye, K., Du, C. J., et al., 2021. Microscopic Recognition of Micro Fossils in Carbonate Rocks Based on Convolutional Neural Network. Petroleum Geology & Experiment, 43(5): 880-885, 895 (in Chinese with English abstract). |
| [27] |
Yue, X., Hu, H., Jia, J. Z., 2019. A Method for Identifying Foraminifera Fossils Based on Deep Learning. Computer Knowledge and Technology, 15(27): 173, 178 (in Chinese). |
| [28] |
Zhang, Z. C., 1987. Correlation of the Shanxi Stage in North China and Related Fusulinid-Bearing Strata in Certain Areas. Regional Geology of China, 6(4): 359-363 (in Chinese). |
| [29] |
Zuo, R. G., Peng, Y., Li, T., et al., 2021. Challenges of Geological Prospecting Big Data Mining and Integration Using Deep Learning Algorithms. Earth Science, 46(1): 350-358 (in Chinese with English abstract). |
国家自然科学基金项目(41871333;41773024)
河南理工大学博士基金资助项目(B2014-043)
河南省高等学校重点科研项目(21A520016)
河南省高校国家级大学生创新创业训练计划项目(202110460078)
河南省本科高校省级大学生创新创业训练计划项目(S202110460005)
/
| 〈 |
|
〉 |