基于滑坡致灾强度预测的建筑物易损性定量评价
曾韬睿 , 殷坤龙 , 桂蕾 , 金必晶 , 刘谢攀 , 刘真意 , 郭子正 , 蒋宏伟 , 邬礼扬
地球科学 ›› 2023, Vol. 48 ›› Issue (05) : 1807 -1824.
基于滑坡致灾强度预测的建筑物易损性定量评价
Quantitative Vulnerability Analysis of Buildings Based on Landslide Intensity Prediction
,
针对目前建筑物易损性定量评价中缺乏滑坡致灾强度预测研究,创新性地提出了一种基于InSAR技术的致灾强度经验曲线与ABAQUS二次开发的空间化位移预测相结合的建筑物易损性定量评价方法.以三峡库区石龙门滑坡为例,利用PS-InSAR解译的2017-2020年间滑坡年平均位移,通过函数反演获取了滑坡累积位移‒致灾强度经验曲线;使用ABAQUS编写荷载和孔隙水压力子程序模拟了极端工况下(库水位下降+强降雨)的滑坡累积位移,用于建筑物易损性预测计算.建筑物抗灾能力由PSO-Fuzzy AHP模型加权赋值8个指标构成,与滑坡致灾强度两部分相结合即可定量评价建筑物易损性.研究结果表明:(1)本文提出的抗灾能力评价体系能够很好表征三峡库区农村建筑物的结构特征,具备较高的评价精度;(2) 基于PS-InSAR得到的上限致灾强度曲线为I pu = 0.065 × D tot 0.236,具备更高的预测精度,有效减少了假阴性误报;(3)通过ABAQUS模拟的极端工况致灾强度随着降雨量增加而增加,预测的房屋易损性等级随之提高,并且成功预警了前期调查有明显变形的房屋.可见提出的致灾强度预测方法和易损性评价模型具有很高的空间辨识度和预警精度,通过滑坡强度信息能够开展实时建筑物易损性制图.
滑坡致灾强度 / 易损性 / 建筑物 / PS-InSAR / ABAQUS / 灾害地质
landslide intensify / vulnerability / building / PS-InSAR / ABAQUS / hazard geology
| [1] |
Agliata, R., Bortone, A., Mollo, L., 2021. Indicator-Based Approach for the Assessment of Intrinsic Physical Vulnerability of the Built Environment to Hydro- Meteorological Hazards: Review of Indicators and Example of Parameters Selection for a Sample Area. International Journal of Disaster Risk Reduction, 58: 102199. |
| [2] |
Bera, S., Guru, B., Oommen, T., 2020. Indicator-Based Approach for Assigning Physical Vulnerability of the Houses to Landslide Hazard in the Himalayan Region of India. International Journal of Disaster Risk Reduction, 50: 101891. |
| [3] |
Bianchini, S., Pratesi, F., Nolesini, T., et al., 2015. Building Deformation Assessment by Means of Persistent Scatterer Interferometry Analysis on a Landslide- Affected Area: The Volterra (Italy) Case Study. Remote Sensing, 7(4): 4678-4701. |
| [4] |
Cascini, L., Fornaro, G., Peduto, D., 2010. Advanced Low- and Full-Resolution DInSAR Map Generation for Slow-Moving Landslide Analysis at Different Scales. Engineering Geology, 112(1-4): 29-42. |
| [5] |
Cruden, D. M., Varnes, D. J., 1996. Landslide Types and Processes. In: Landslide Investigation and Mitigation. National Academy Press, Washington, 36-75. |
| [6] |
Dai, C., Li, W., Wang, D., et al., 2021. Active Landslide Detection Based on Sentinel-1 Data and InSAR Technology in Zhouqu County, Gansu Province, Northwest China. Journal of Earth Science, 32(5): 1092-1103. |
| [7] |
Del Soldato, M., Bianchini, S., Calcaterra, D., et al., 2017. A New Approach for Landslide-Induced Damage Assessment. Geomatics, Natural Hazards and Risk, 8(2): 1524-1537. |
| [8] |
Du, J., 2012. Risk Assessment of Individual Landslide (Dissertation).China University of Geosciences, Wuhan (in Chinese with English abstract). |
| [9] |
Fell, R., Corominas, J., Bonnard, C., et al., 2008. Guidelines for Landslide Susceptibility, Hazard and Risk Zoning for Land Use Planning. Engineering Geology, 102(3-4): 85-98. |
| [10] |
Ferretti, A., Prati, C., Rocca, F., 2000. Nonlinear Subsidence Rate Estimation Using Permanent Scatterers in Differential SAR Interferometry. IEEE Transactions on Geoscience and Remote Sensing, 38(5): 2202-2212. |
| [11] |
Guo, Z., Chen, L., Yin, K., et al., 2020. Quantitative Risk Assessment of Slow-Moving Landslides from the Viewpoint of Decision-Making: A Case Study of the Three Gorges Reservoir in China. Engineering Geology, 273:105667. |
| [12] |
Guo, Z. Z., Yin, K. L., Tang, Y., et al., 2017. Stability Evaluation and Prediction of Maliulin Landslide under Reservoir Water Level Decline and Rainfall. Geological Science and Technology Information, 36(4): 260-265, 270 (in Chinese with English abstract). |
| [13] |
Huang, F., Huang, J., Jiang, S., et al., 2017. Landslide Displacement Prediction Based on Multivariate Chaotic Model and Extreme Learning Machine. Engineering Geology, 218: 173-186. |
| [14] |
Huang, F. M., Cao, Y., Fan, X. M., et al., 2021a. Effects of Different Landslide Boundaries and Their Spatial Shapes on the Uncertainty of Landslide Susceptibility Prediction. Chinese Journal of Rock Mechanics and Engineering, 40(S02): 3227-3240 (in Chinese with English abstract). |
| [15] |
Huang, F.M., Chen, J.W., Tang, Z.P., et al., 2021b. Uncertainties of Landslide Susceptibility Prediction Due to Different Spatial Resolutions and Different Proportions of Training and Testing Datasets. Chinese Journal of Rock Mechanics and Engineering, 40(6): 1155-1169 (in Chinese with English abstract). |
| [16] |
Huang, F. M., Chen, B., Mao, D. X., et al., 2023. Landslide Susceptibility Prediction Modeling and Interpretability Based on Self-Screening Deep Learning Model. Earth Science, 48(5): 1696-1710 (in Chinese with English abstract). |
| [17] |
Huang, F. M., Chen, J. W., Fan, X. M., et al., 2022a. Logistic Regression Fitting of Rainfall-Induced Landslide Occurrence Probability and Continuous Landslide Hazard Prediction Modelling. Earth Science, 47(12): 4609-4628 (in Chinese with English abstract). |
| [18] |
Huang, F. M., Hu, S. Y., Yan, X. Y., et al., 2022b. Landslide Susceptibility Prediction and Identification of Its Main Environmental Factors Based on Machine Learning Models. Bulletin of Geological Science and Technology, 41(2): 79-90 (in Chinese with English abstract). |
| [19] |
Huang, F. M., Li, J. F., Wang, J. Y., et al., 2022c. Modelling Rules of Landslide Susceptibility Prediction Considering the Suitability of Linear Environmental Factors and Different Machine Learning Models. Bulletin of Geological Science and Technology, 41(2): 44-59 (in Chinese with English abstract). |
| [20] |
Huang, F. M., Ye, Z., Yao, C., et al., 2020. Uncertainties of Landslide Susceptibility Prediction: Different Attribute Interval Divisions of Environmental Factors and Different Data-Based Models. Earth Science, 45(12): 4535-4549 (in Chinese with English abstract). |
| [21] |
Huang, F.M., Yin, K.L., Jiang, S.H., et al., 2018. Landslide Susceptibility Assessment Based on Clustering Analysis and Support Vector Machine. Chinese Journal of Rock Mechanics and Engineering, 37(1): 156-167 (in Chinese with English abstract). |
| [22] |
Javanbarg, M. B., Scawthorn, C., Kiyono, J., et al., 2012. Fuzzy AHP-Based Multicriteria Decision Making Systems Using Particle Swarm Optimization. Expert Systems with Applications, 39(1): 960-966. |
| [23] |
Kalia, A., 2018. Classification of Landslide Activity on a Regional Scale Using Persistent Scatterer Interferometry at the Moselle Valley (Germany). Remote Sensing, 10(12): 1880. |
| [24] |
Li, Z., Nadim, F., Huang, H., et al., 2010. Quantitative Vulnerability Estimation for Scenario-Based Landslide Hazards. Landslides, 7(2): 125-134. |
| [25] |
Lin, X.S., 2001. The Study of Landslide Related to Rainfall. Journal of Geological Hazards and Environment Preservation, 12(3): 1-7 (in Chinese with English abstract). |
| [26] |
Notti, D., Herrera, G., Bianchini, S., et al., 2014. A Methodology for Improving Landslide PSI Data Analysis. International Journal of Remote Sensing, 35(6): 2186-2214. https://doi.org/10.1080/01431161.2014.889864 |
| [27] |
Papathoma-Köhle, M., Neuhäuser, B., Ratzinger, K., et al., 2007. Elements at Risk as a Framework for Assessing the Vulnerability of Communities to Landslides. Natural Hazards and Earth System Sciences, 7(6): 765-779. |
| [28] |
Peduto, D., Ferlisi, S., Nicodemo, G., et al., 2017. Empirical Fragility and Vulnerability Curves for Buildings Exposed to Slow-Moving Landslides at Medium and Large Scales. Landslides, 14(6): 1993-2007. |
| [29] |
Peduto, D., Nicodemo, G., Caraffa, M., et al., 2018. Quantitative Analysis of Consequences to Masonry Buildings Interacting with Slow-Moving Landslide Mechanisms: A Case Study. Landslides, 15(10): 2017-2030. |
| [30] |
Peduto, D., Oricchio, L., Nicodemo, G., et al., 2021. Investigating the Kinematics of the Unstable Slope of Barbera de la Conca (Catalonia, Spain) and the Effects on the Exposed Facilities by GBSAR and Multi-Source Conventional Monitoring. Landslides, 18(1): 457-469. |
| [31] |
Peng, L., Xu, S., Hou, J., et al., 2015. Quantitative Risk Analysis for Landslides: The Case of the Three Gorges Area, China. Landslides, 12(5): 943-960. |
| [32] |
Pereira, S., Santos, P. P., Zêzere, J. L., et al., 2020. A Landslide Risk Index for Municipal Land Use Planning in Portugal. The Science of the Total Environment, 735: 139463. |
| [33] |
Silva, V., Brzev, S., Scawthorn, C., et al., 2022. A Building Classification System for Multi-Hazard Risk Assessment. International Journal of Disaster Risk Science, (2): 161-177. |
| [34] |
Singh, A., Kanungo, D. P., Pal, S., 2019. Physical Vulnerability Assessment of Buildings Exposed to Landslides in India. Natural Hazards, 96(2): 753-790. |
| [35] |
Subasinghe, C. N., Kawasaki, A., 2021. Assessment of Physical Vulnerability of Buildings and Socio- Economic Vulnerability of Residents to Rainfall Induced Cut Slope Failures: A Case Study in Central Highlands, Sri Lanka. International Journal of Disaster Risk Reduction, 65: 102550. |
| [36] |
Uzielli, M., Catani, F., Tofani, V., et al., 2015. Risk Analysis for the Ancona Landslide—II: Estimation of Risk to Buildings. Landslides, 12(1): 83-100. |
| [37] |
Wu, Y., Liu, D.S., Lu, X., et al., 2011. Vulnerability Assessment Model for Hazard Bearing Body and Landslide Risk Index. Rock and Soil Mechanics, 32(8): 2487-2492, 2499 (in Chinese with English abstract). |
| [38] |
Wu, Y., Miao, F., Li, L., et al., 2017. Time-Varying Reliability Analysis of Huangtupo Riverside No.2 Landslide in the Three Gorges Reservoir Based on Water-Soil Coupling. Engineering Geology, 226: 267-276. |
| [39] |
Zeng, T., Jiang, H., Liu, Q., et al., 2022. Landslide Displacement Prediction Based on Variational Mode Decomposition and MIC-GWO-LSTM Model. Stochastic Environmental Research and Risk Assessment, 36: 1353-1372. |
| [40] |
Zhang, Y.S., Liu, X.Y., Yao, X., 2020. InSAR-Based Method for Early Recognition of Ancient Landslide Reactivation in Dadu River, China. Journal of Hydraulic Engineering, 51(5): 545-555 (in Chinese with English abstract). |
| [41] |
Zhang, Z., Qian, M., Wei, S., et al., 2018. Failure Mechanism of the Qianjiangping Slope in Three Gorges Reservoir Area, China. Geofluids, (5): 1-12. |
| [42] |
Zhou, C., 2018. Landslide Identification and Prediction with the Application of Time Series InSAR (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract). |
| [43] |
Zhou, C., Cao, Y., Yin, K., et al., 2022. Characteristic Comparison of Seepage-Driven and Buoyancy-Driven Landslides in Three Gorges Reservoir Area, China. Engineering Geology, 301: 106590. |
| [44] |
杜娟,2012. 单体滑坡灾害风险评价研究(博士学位论文). 武汉:中国地质大学. |
| [45] |
郭子正, 殷坤龙, 唐扬, 等, 2017. 库水位下降及降雨作用下麻柳林滑坡稳定性评价与预测. 地质科技情报, 36(4): 260-265, 270. |
| [46] |
黄发明, 曹昱, 范宣梅, 等, 2021a. 不同滑坡边界及其空间形状对滑坡易发性预测不确定性的影响规律. 岩石力学与工程学报, 40(S02): 3227-3240. |
| [47] |
黄发明, 陈佳武, 唐志鹏, 等, 2021b. 不同空间分辨率和训练测试集比例下的滑坡易发性预测不确定性. 岩石力学与工程学报, 40(6): 1155-1169. |
| [48] |
黄发明,陈彬,毛达雄,等, 2023. 基于自筛选深度学习的滑坡易发性预测建模及其可解释性. 地球科学,48(5): 1696-1710. |
| [49] |
黄发明, 陈佳武, 范宣梅, 等, 2022a. 降雨型滑坡时间概率的逻辑回归拟合及连续概率滑坡危险性建模. 地球科学, 47(12): 4609-4628. |
| [50] |
黄发明, 胡松雁, 闫学涯, 等, 2022b. 基于机器学习的滑坡易发性预测建模及其主控因子识别. 地质科技通报, 41(2): 79-90. |
| [51] |
黄发明, 李金凤, 王俊宇, 等, 2022c. 考虑线状环境因子适宜性和不同机器学习模型的滑坡易发性预测建模规律. 地质科技通报, 41(2): 44-59. |
| [52] |
黄发明, 叶舟, 姚池, 等, 2020. 滑坡易发性预测不确定性: 环境因子不同属性区间划分和不同数据驱动模型的影响. 地球科学, 45(12): 4535-4549. |
| [53] |
黄发明, 殷坤龙, 蒋水华, 等, 2018. 基于聚类分析和支持向量机的滑坡易发性评价. 岩石力学与工程学报, 37(1): 156-167. |
| [54] |
林孝松, 2001. 滑坡与降雨研究. 地质灾害与环境保护, 12(3): 1-7. |
| [55] |
吴越, 刘东升, 陆新, 等, 2011. 承灾体易损性评估模型与滑坡灾害风险度指标. 岩土力学, 32(8): 2487- 2492, 2499. |
| [56] |
张永双, 刘筱怡, 姚鑫, 2020. 基于InSAR技术的古滑坡复活早期识别方法研究: 以大渡河流域为例. 水利学报, 51(5): 545-555. |
| [57] |
周超,2018. 集成时间序列InSAR技术的滑坡早期识别与预测研究(博士学位论文).武汉:中国地质大学. |
国家自然科学基金资助项目(41877525)
国家自然科学基金资助项目(41601563)
/
| 〈 |
|
〉 |