广东省龙门岩溶热储温度计算及流体演化特征
王思佳 , 张敏 , 黄学莲 , 韩永杰 , 何沛欣 , 王帅 , 祁士华
地球科学 ›› 2024, Vol. 49 ›› Issue (03) : 992 -1004.
广东省龙门岩溶热储温度计算及流体演化特征
Geothermometry Calculation and Geothermal Fluid Evolution of Karst Geothermal Reservoir in Longmen County, Guangdong Province
,
岩溶地热系统具有巨大的能源开发潜力,广东省龙门县马星和隔陂地热异常区是两个典型的岩溶地热田.为探究热储温度及流体演化特征,基于离子比值关系、氘氧同位素、地温计等方法对其进行分析讨论.结果表明研究区为中性偏碱性低TDS的HCO3型地热水,方解石类碳酸盐矿物和硅酸盐矿物溶解及阳离子交换作用共同控制了水化学演化过程.大气降水是区内地热水的主要补给来源,马星和隔陂地热田的热储温度分别约为105.0~148.0 ℃和101.5~131.0 ℃,冷水混入的体积比约为44.2%和48.5%.在热储水化学及温度特征的基础上,建立了流体演化概念模型.
岩溶地热水 / 水化学 / 热储温度 / 概念模型 / 地热能
karst geothermal water / hydrochemistry / geothermal reservoir temperature / conceptual model / geothermal energy
| [1] |
Arnórsson, S., 1983. Chemical Equilibria in Icelandic Geothermal Systems-Implications for Chemical Geothermometry Investigations. Geothermics, 12(2-3): 119-128. https://doi.org/10.1016/0375-6505(83)90022-6 |
| [2] |
Aydin, H., Karakuş, H., Mutlu, H., 2020. Hydrogeochemistry of Geothermal Waters in Eastern Turkey: Geochemical and Isotopic Constraints on Water-Rock Interaction. Journal of Volcanology and Geothermal Research, 390: 106708. https://doi.org/10.1016/j.jvolgeores.2019.106708 |
| [3] |
Blasco, M., Gimeno, M. J., Auqué, L. F., 2018. Low Temperature Geothermal Systems in Carbonate-Evaporitic Rocks: Mineral Equilibria Assumptions and Geothermometrical Calculations. Insights from the Arnedillo Thermal Waters (Spain). Science of the Total Environment, 615: 526-539. https://doi.org/10.1016/j.scitotenv.2017.09.269 |
| [4] |
Chen, D., Niu, H. L., 2021. Geological Characteristics and Geothermal Exploration Direction in Yonghan Area, Longmen, Guangdong Province. Western Resources, (3): 169-171 (in Chinese with English abstract). |
| [5] |
Craig, H., 1961. Isotopic Variations in Meteoric Waters. Science, 133(3465): 1702-1703. https://doi.org/10.1126/science.133.3465.1702 |
| [6] |
Ding, X., Su, K. L., Yan, H. B., et al., 2022. Effect of F-Rich Fluids on the A-Type Magmatism and Related Metal Mobilization: New Insights from the Fogang-Nankunshan-Yajishan Igneous Rocks in Southeast China. Journal of Earth Science, 33(3): 591-608. https://doi.org/10.1007/s12583-022-1611-7 |
| [7] |
Fournier, R. O., 1977. Chemical Geothermometers and Mixing Models for Geothermal Systems. Geothermics, 5(1-4): 41-50. https://doi.org/10.1016/0375-6505(77)90007-4 |
| [8] |
Fu, C. C., Li, X. Q., Ma, J. F., et al., 2018. A Hydrochemistry and Multi-Isotopic Study of Groundwater Origin and Hydrochemical Evolution in the Middle Reaches of the Kuye River Basin. Applied Geochemistry, 98: 82-93. https://doi.org/10.1016/j.apgeochem.2018.08.030 |
| [9] |
Giggenbach, W. F., 1988. Geothermal Solute Equilibria. Derivation of Na-K-Mg-Ca Geoindicators. Geochimica et Cosmochimica Acta, 52(12): 2749-2765. https://doi.org/10.1016/0016-7037(88)90143-3 |
| [10] |
Goldscheider, N., Mádl-Szőnyi, J., Erőss, A., et al., 2010. Review: Thermal Water Resources in Carbonate Rock Aquifers. Hydrogeology Journal, 18(6): 1303-1318. https://doi.org/10.1007/s10040-010-0611-3 |
| [11] |
Guo, Q., Pang, Z. H., Wang, Y. C., et al., 2017. Fluid Geochemistry and Geothermometry Applications of the Kangding High-Temperature Geothermal System in Eastern Himalayas. Applied Geochemistry, 81: 63-75. https://doi.org/10.1016/j.apgeochem.2017.03.007 |
| [12] |
He, P. X., 2019. Hydrochemical Characteristics and Genesis of Thermal Fluid in a Covered Karst Geothermal Field in Longmen County, Huizhou City, Guangdong Province. Western Resources, (2): 62-64 (in Chinese with English abstract). |
| [13] |
Jiang, Y., Li, J., Xing, Y. F., et al., 2023. Evaluation of Geochemical Geothermometers with Borehole Geothermal Measurements: A Case Study of the Xiong’an New Area. Earth Science, 48(3): 958-972. (in Chinese with English abstract). |
| [14] |
Li, J. X., Sagoe, G., Li, Y. L., 2020. Applicability and Limitations of Potassium-Related Classical Geothermometers for Crystalline Basement Reservoirs. Geothermics, 84: 101728. https://doi.org/10.1016/j.geothermics.2019.101728 |
| [15] |
Li, J. X., Sagoe, G., Yang, G., et al., 2018. Evaluation of Mineral-Aqueous Chemical Equilibria of Felsic Reservoirs with Low-Medium Temperature: A Comparative Study in Yangbajing Geothermal Field and Guangdong Geothermal Fields. Journal of Volcanology and Geothermal Research, 352: 92-105. https://doi.org/10.1016/j.jvolgeores.2018.01.008 |
| [16] |
Li, J. X., Wu, Z. H., Tian, G. H., et al., 2022. Processes Controlling the Hydrochemical Composition of Geothermal Fluids in the Sandstone and Dolostone Reservoirs Beneath the Sedimentary Basin in North China. Applied Geochemistry, 138: 105211. https://doi.org/10.1016/j.apgeochem.2022.105211 |
| [17] |
Lin, W. J., Wang, G. L., Gan, H. N., et al., 2022. Heat Generation and Accumulation for Hot Dry Rock Resources in the Igneous Rock Distribution Areas of Southeastern China. Lithosphere, 2021(Special 5): 2039112. https://doi.org/10.2113/2022/2039112 |
| [18] |
Luo, J., Li, Y. M., Tian, J. A., et al., 2022. Geochemistry of Geothermal Fluid with Implications on Circulation and Evolution in Fengshun-Tangkeng Geothermal Field, South China. Geothermics, 100: 102323. https://doi.org/10.1016/j.geothermics.2021.102323 |
| [19] |
Mao, X. M., Zhu, D. B., Ndikubwimana, I., et al., 2021. The Mechanism of High-Salinity Thermal Groundwater in Xinzhou Geothermal Field, South China: Insight from Water Chemistry and Stable Isotopes. Journal of Hydrology, 593: 125889. https://doi.org/10.1016/j.jhydrol.2020.125889 |
| [20] |
Pang, Z. H., Reed, M., 1998. Theoretical Chemical Thermometry on Geothermal Waters: Problems and Methods. Geochimica et Cosmochimica Acta, 62(6): 1083-1091. https://doi.org/10.1016/S0016-7037(98)00037-4 |
| [21] |
Pang, Z. H., Kong, Y. L., Li, J., et al., 2017. An Isotopic Geoindicator in the Hydrological Cycle. Procedia Earth and Planetary Science, 17: 534-537. https://doi.org/10.1016/j.proeps.2016.12.135 |
| [22] |
Qiu, X. L., Wang, Y., Wang, Z. Z., et al., 2018. Determining the Origin, Circulation Path and Residence Time of Geothermal Groundwater Using Multiple Isotopic Techniques in the Heyuan Fault Zone of Southern China. Journal of Hydrology, 567: 339-350. https://doi.org/10.1016/j.jhydrol.2018.10.010 |
| [23] |
Reed, M., Spycher, N., 1984. Calculation of pH and Mineral Equilibria in Hydrothermal Waters with Application to Geothermometry and Studies of Boiling and Dilution. Geochimica et Cosmochimica Acta, 48(7): 1479-1492. https://doi.org/10.1016/0016-7037(84)90404-6 |
| [24] |
Shi, Z. D., Mao, X. M., Ye, J. Q., et al., 2024. Analysis of Source of Sodium of Low-Salinity High-Sodium Geothermal Water in Huangshadong Geothermal Field from the East Guangdong. Earth Science, 49(1): 288-298 (in Chinese with English abstract). |
| [25] |
Sun, H. Y., Sun, X. M., Wei, X. F., et al., 2023. Geochemical Characteristics and Origin of Nuanquanzi Geothermal Water in Yudaokou, Chengde, Hebei, North China. Journal of Earth Science, 34(3): 838-856. https://doi.org/10.1007/s12583-022-1635-z |
| [26] |
Wang, J. L., Jin, M. G., Jia, B. J., et al., 2015. Hydrochemical Characteristics and Geothermometry Applications of Thermal Groundwater in Northern Jinan, Shandong, China. Geothermics, 57: 185-195. https://doi.org/10.1016/j.geothermics.2015.07.002 |
| [27] |
Wang, S. A., Kuang, J. A., Huang, X. L., et al., 2022. Upwelling of Mantle-Derived Material in Southeast China: Evidence from Noble Gas Isotopes. Acta Geologica Sinica-English Edition, 96(1): 100-110. https://doi.org/10.1111/1755-6724.14686 |
| [28] |
Wang, X. A., Lu, G. P., Hu, B. X., 2018. Hydrogeochemical Characteristics and Geothermometry Applications of Thermal Waters in Coastal Xinzhou and Shenzao Geothermal Fields, Guangdong, China. Geofluids, 2018: 1-24. https://doi.org/10.1155/2018/8715080 |
| [29] |
Xi, Y. F., Wang, G. L., Liu, S., et al., 2018. The Formation of a Geothermal Anomaly and Extensional Structures in Guangdong, China: Evidence from Gravity Analyses. Geothermics, 72: 225-231. https://doi.org/10.1016/j.geothermics.2017.11.009 |
| [30] |
Xiao, Z. C., Wang, S., Qi, S. H., et al., 2020. Petrogenesis, Tectonic Evolution and Geothermal Implications of Mesozoic Granites in the Huangshadong Geothermal Field, South China. Journal of Earth Science, 31(1): 141-158. https://doi.org/10.1007/s12583-019-1242-9 |
| [31] |
Xiao, Z. C., Wang, S., Qi, S. H., et al., 2023. Crustal Thermo-Structure and Geothermal Implication of the Huangshadong Geothermal Field in Guangdong Province. Journal of Earth Science, 34(1): 194-204. https://doi.org/10.1007/s12583-021-1486-z |
| [32] |
Xu, Z. K., Xu, S. G., Zhang, S. T., 2021. Hydro-Geochemistry of Anning Geothermal Field and Flow Channels Inferring of Upper Geothermal Reservoir. Earth Science, 46(11): 4175-4187 (in Chinese with English abstract). |
| [33] |
Yan, X. X., Gan, H. N., Yue, G. F., 2019. Hydrogeochemical Characteristics and Genesis of Typical Geothermal Fileds from Huangshadong to Conghua in Guangdong. Geological Review, 65(3): 743-754 (in Chinese) |
| [34] |
Yan, X. X., Lin, W. J., Gan, H. N., et al., 2019. Hydrogeochemical Characteristics of Huangshadong Geothermal Filed in Guangdong. IOP Conference Series: Earth and Environmental Science, 237: 032128. https://doi.org/10.1088/1755-1315/237/3/032128 |
| [35] |
Yang, P. H., Dan, L., Groves, C., et al., 2019a. Geochemistry and Genesis of Geothermal Well Water from a Carbonate-Evaporite Aquifer in Chongqing, SW China. Environmental Earth Sciences, 78(1): 33. https://doi.org/10.1007/s12665-018-8004-3 |
| [36] |
Yang, P. H., Luo, D., Hong, A. H., et al., 2019b. Hydrogeochemistry and Geothermometry of the Carbonate-Evaporite Aquifers Controlled by Deep-Seated Faults Using Major Ions and Environmental Isotopes. Journal of Hydrology, 579: 124116. https://doi.org/10.1016/j.jhydrol.2019.124116 |
| [37] |
Zhang, M., Kuang, J., Xiao, Z. C., et al., 2021. Geological Evolution since the Yanshanian in Huizhou, Guangdong Province: New Implications for the Tectonics of South China. Earth Science, 46(1): 242-258 (in Chinese with English abstract). |
| [38] |
Zhang, Y., Luo, J., Feng, J. Y., 2020. Characteristics of Geothermal Reservoirs and Utilization of Geothermal Resources in the Southeastern Coastal Areas of China. Journal of Groundwater Science and Engineering, 8(2): 134-142. https://doi.org/10.19637/j.cnki.2305-7068.2020.02.005 |
| [39] |
Zhou, Z. M., Ma, C. Q., Qi, S. H., et al., 2020. Late Mesozoic High-Heat-Producing (HHP) and High- Temperature Geothermal Reservoir Granitoids: The most Significant Geothermal Mechanism in South China. Lithos, 366-367: 105568. https://doi.org/10.1016/j.lithos.2020.105568 |
| [40] |
Zhu, X., Wang, G. L., Ma, F., et al., 2021.Hydrogeochemistry of Geothermal Waters from Taihang Mountain-Xiongan New Area and Its Indicating Significance. Earth Science, 46(7): 2594-2608 (in Chinese with English abstract). |
广东省有色金属地质局龙门县地热资源调查评价项目(ZZHZCG202004)
珠江三角洲及周边地区控热地质构造调查研究项目(1212011220014)
/
| 〈 |
|
〉 |