动水驱动型滑坡的状态仿射迁移学习方法
刘勇 , 李星瑞 , 詹伟文 , 李炳辰 , 郭敬楷 , 钟梁
地球科学 ›› 2023, Vol. 48 ›› Issue (05) : 1793 -1806.
动水驱动型滑坡的状态仿射迁移学习方法
State Affine Transfer Learning Method for Hydrodynamic Pressure-Driven Landslide
,
三峡库区的动水驱动型滑坡具有阶梯式变形特征,在监测数据不足的情况下,难以准确、合理地完成滑坡分析与预测预报等相关研究.针对监测数据不足的情况,设计了一种状态仿射迁移学习方法(State affine transfer learning method,SATLM),通过学习相似滑坡的知识完成对数据量不足的滑坡状态分析.为验证SATLM对滑坡状态分析的有效性,设计了一种状态相似分析方法,完成对库区多个滑坡的知识学习后实现对另一个数据量不足的滑坡地表位移预测.结果表明,完成状态仿射迁移后,本方法与BPNN和SVM相比,万州塘角1号滑坡地表位移预测的平均绝对误差和均方根误差都实现了较大降低.白家包滑坡、白水河滑坡、八字门滑坡知识的成功迁移,证明了SATLM在相似动水驱动型滑坡的知识迁移上具有较好效果.
滑坡 / 位移突变点 / 滑坡状态 / 状态仿射迁移 / 位移预测 / 灾害地质
landslide / displacement mutation point / landslide state / state affine transfer / displacement prediction / hazard geology
| [1] |
Ai, X., Sun, B.T., Chen, X.Z., 2022. Construction of Small Sample Seismic Landslide Susceptibility Evaluation Model Based on Transfer Learning: A Case Study of Jiuzhaigou Earthquake. Bulletin of Engineering Geology and the Environment, 81(3):81-116. |
| [2] |
Fu, Z., Long, J., Chen, W., et al., 2021. Reliability of the Prediction Model for Landslide Displacement with Step-Like Behavior. Stochastic Environmental Research and Risk Assessment, 35(11): 2335-2353. |
| [3] |
Gao, D.X., Li, K., Cai, Y.C., et al., 2021. Predicting of Landslide Displacement Based on Time Series and Pso-Bp Model in Three Georges Reservoir, China. Journal of Earth Science: 1-17. https://doi.org/10.1007/s12583-021-1575-z |
| [4] |
Guo, C.,Xu, Q., Dong, X.J., et al., 2021. Geohazard Recognition and Inventory Mapping Using Airborne LiDAR Data in Complex Mountainous Areas. Journal of Earth Science, 32(5):1079-1091. |
| [5] |
Guo, J.W., Li, Y.S., Li, Z., et al., 2016. An Automatic Interpretation Model for Mountains Landslide Disaster of High-Resolution Remote Sensing Images Based on Transfer Learning. Journal of Geomatics Science and Technology, 33(5): 496-501 (in Chinese with English abstract). |
| [6] |
Huang, F. M., Chen, J. W., Fan, X. M., et al., 2022. Logistic Regression Fitting of Rainfall-Induced Landslide Occurrence Probability and Continuous Landslide Hazard Prediction Modelling. Earth Science, 47(12): 4609-4628 (in Chinese with English abstract). |
| [7] |
Huang, F. M., Yin, K. L., Yang, B. B., et al., 2018. Step-Like Displacement Prediction of Landslide Based on Time Series Decomposition and Multivariate Chaotic Model. Earth Science, 43(3): 887-898 (in Chinese with English abstract). |
| [8] |
Li, L., Wu, Y., Miao, F., et al., 2021. A Hybrid Interval Displacement Forecasting Model for Reservoir Colluvial Landslides with Step-Like Deformation Characteristics Considering Dynamic Switching of Deformation States. Stochastic Environmental Research and Risk Assessment, 35: 1089-1112. |
| [9] |
Lian, C., Zhu, L., Zeng, Z., et al., 2018. Constructing Prediction Intervals for Landslide Displacement Using Bootstrapping Random Vector Functional Link Networks Selective Ensemble with Neural Networks Switched. Neurocomputing, 291: 1-10. |
| [10] |
Lin, Q.G., Liu, Y.Y., Liu, L.Y., et al., 2017. Earthquake-Triggered Landslide Susceptibility Assessment Based on Support Vector Machine Combined with Newmark Displacement Model. Journal of Geo-Information Science, 19(12): 1623-1633 (in Chinese with English abstract). |
| [11] |
Liu, P. Y., Chang, M., Wu, B. B., et al., 2022. Route Selection of Landslide Prone Area in Wenchuan Section of Chengdu-Wenchuan Expressway Based on SBAS- InSAR. Earth Science, 47(6): 2048-2057 (in Chinese with English abstract). |
| [12] |
Liu, Y., Hu, B. D., Chen, Z., 2019. A Similarity Measurement Method for Multiple Information Data of Landslide. Rock and Soil Mechanics, 40(10): 4001-4010 (in Chinese with English abstract). |
| [13] |
Liu, Y., Xu, C., Huang, B., et al., 2020. Landslide Displacement Prediction Based on Multi-Source Data Fusion and Sensitivity States. Engineering Geology, 271: 105608. |
| [14] |
Long, J., Li, C., Liu, Y., et al., 2022. A Multi-Feature Fusion Transfer Learning Method for Displacement Prediction of Rainfall Reservoir-Induced Landslide with Step-Like Deformation Characteristics. Engineering Geology, 297: 106494. |
| [15] |
Lu, H., Ma, L., Fu, X., et al., 2020. Landslides Information Extraction Using Object-Oriented Image Analysis Paradigm Based on Deep Learning and Transfer Learning. Remote Sensing, 12: 752. |
| [16] |
Qin, S., Guo, X., Sun, J., et al., 2021. Landslide Detection from Open Satellite Imagery Using Distant Domain Transfer Learning. Remote Sensing, 13: 3383. |
| [17] |
Rajakumar, R., 2021. One-Dimensional Quaternionic Special Affine Fourier Transform. Advances in Applied Clifford Algebras, 31(5):13. |
| [18] |
Shi, K. Y., Zhang, D. X., Han, X. Q., et al., 2022. Digital Twin Model of Photovoltaic Power Generation Prediction Based on LSTM and Transfer Learning. Power System Technology, 46(4): 1363-1371 (in Chinese with English abstract). |
| [19] |
Tsung, F., Zhang, K., Cheng, L. W., et al., 2018. Statistical Transfer Learning: A Review and Some Extensions to Statistical Process Control. Quality Engineering, 30(1): 115-128. https://doi.org/10.1080/08982112.2017.1373810 |
| [20] |
Xiao, T., 2020. Landslide Risk Assessment in Wanzhou District and a Key Section,Three Gorges Reservoir (Dissertation). China University of Geosciences, Wuhan, 146 (in Chinese with English abstract). |
| [21] |
Xu, S.L., 2018. Study on Dynamic Landslide Susceptibility Mapping Based on Multi-Source Remote Sensing Imagery (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract). |
| [22] |
Yang, Y., Mei, G., 2021. Deep Transfer Learning Approach for Identifying Slope Surface Cracks. Applied Sciences, 11: 11193. |
| [23] |
Yao, Y., Zhang, Z.X., Ni, X., et al., 2022. Cgnet: Detecting Computer-Generated Images Based on Transfer Learning with Attention Module. Signal Processing: Image Communication, 105:116692. |
| [24] |
Yu, M. L., Mei, H. B., Li, J. H., et al., 2016. Landslide Displacement Prediction Based on Varying Coefficient Regression Model in Three Gorges Reservoir Area. Earth Science, 41(9): 1593-1602 (in Chinese with English abstract). |
| [25] |
Zhou, C., Yin, K., Cao, Y., et al., 2016. Application of Time Series Analysis and PSO-SVM Model in Predicting the Bazimen Landslide in the Three Gorges Reservoir, China. Engineering Geology, 204: 108-120. |
| [26] |
Zou, Z., Yang, Y., Fan, Z., et al., 2020. Suitability of Data Preprocessing Methods for Landslide Displacement Forecasting. Stochastic Environmental Research and Risk Assessment, 34(8): 1105-1119. |
| [27] |
郭加伟, 李永树, 李政, 等, 2016. 迁移学习支持下的高分影像山地滑坡灾害解译模型. 测绘科学技术学报, 33(5): 496-501. |
| [28] |
黄发明, 陈佳武, 范宣梅, 等, 2022. 降雨型滑坡时间概率的逻辑回归拟合及连续概率滑坡危险性建模. 地球科学, 47(12): 4609-4628. |
| [29] |
黄发明, 殷坤龙, 杨背背, 等, 2018. 基于时间序列分解和多变量混沌模型的滑坡阶跃式位移预测. 地球科学, 43(3): 887-898. |
| [30] |
林齐根, 刘燕仪, 刘连友, 等, 2017. 支持向量机与Newmark模型结合的地震滑坡易发性评估研究. 地球信息科学学报, 19(12): 1623-1633. |
| [31] |
刘沛源, 常鸣, 武彬彬, 等, 2022. 基于SBAS-InSAR技术的成汶高速汶川段滑坡易发区选线研究. 地球科学, 47(6): 2048-2057. |
| [32] |
刘勇, 胡宝丹, 陈喆, 2019. 滑坡监测点多信息相似性度量方法研究. 岩土力学, 40(10): 4001-4010. |
| [33] |
史凯钰, 张东霞, 韩肖清, 等, 2022. 基于LSTM与迁移学习的光伏发电功率预测数字孪生模型. 电网技术, 46(4): 1363-1371. |
| [34] |
肖婷, 2020. 三峡库区万州区及重点库岸段滑坡灾害风险评价(博士学位论文). 武汉:中国地质大学. |
| [35] |
许石罗, 2018. 基于多源遥感影像的动态滑坡灾害空间预测模型研究(博士学位论文).武汉:中国地质大学. |
| [36] |
喻孟良, 梅红波, 李冀骅, 等, 2016. 基于变系数回归模型的三峡库区滑坡位移预测. 地球科学, 41(9): 1593-1602. |
国家自然科学基金重大项目(KZ21W30023)
国家自然科学基金面上项目(41772376)
/
| 〈 |
|
〉 |