基于贝叶斯集成学习算法的土体先期固结压力预测模型
Prediction Model of Soils’ Preconsolidation Pressure Based on Bayesian Ensemble Learning Algorithm
准确评估土体的先期固结压力(PS)是岩土工程实践中的一个重要问题.采用集成学习算法(XGBoost、RF)来捕捉各个土体参数之间的关系,建立先期固结压力预测模型.使用贝叶斯优化方法来确定模型的最优参数,并通过与SVR、KNN和MLP三种非集成算法进行对比,统计分析了不同模型在相关系数R2 、均方根误差RMSE和绝对平均误差MAPE三种误差指标下的表现;最后在5折交叉验证下,评估各个模型的预测精度及泛化性.结果表明基于XGBoost的预测精度最高,其RMSE及MAPE分别为20.80 kPa和18.29%;其次是RF,分别为24.532 kPa和19.15%.同时在PS作为回归变量的情况下,其特征重要性为:USS>VES>w>LL>PL.因此,在小规模数据集情况下,集成学习算法在预测精度及泛化性上要优于其他算法,且可作为岩土参数敏感性分析的有效方法.
先期固结压力 / 集成学习 / 贝叶斯优化 / 5折交叉验证 / XGBoost / 工程地质
preconsolidation stress / ensemble learning / Bayesian optimization / 5-fold cross-validation / XGBoost / engineering geology
| [1] |
Benesty, J., Chen, J.D., Huang, Y.T., 2008.On the Importance of the Pearson Correlation Coefficient in Noise Reduction. IEEE Transaction on Audio Speech Language Processing,16:757-765. https://doi.org/10.1109/TASL.2008.919072 |
| [2] |
Bergstra, J., Yamins, D., Cox, D., 2013. Hyperopt: A Python Library for Optimizing the Hyperparameters of Machine Learning Algorithms. Python in Science Conference, Texas, 13-19. https://doi.org/ 10.25080/Majora-8b375195-003 |
| [3] |
Breiman, L., 1996. Bagging Predictors. Mach Learn,24:123-140. https://doi.org/10.1007/BF00058655 |
| [4] |
Breiman, L., 2001. Random Forest. Mach Learn,45(1):5-32. https://doi.org/10.1023/A:1010933404324 |
| [5] |
Casagrande, A., 1936. The Determination of Pre- Consolidation Load and Its Practical Significance. Proc. of First Lcmfe, (3):60-64. |
| [6] |
Chang, L. Y., Wang, J. C., Zhu, X. R., 2009. Nonparametric Fitting Model for Determining Soil Preconsolidation Pressure. Rock and Soil Mechanics, 30(5): 1337-1342 (in Chinese with English abstract). |
| [7] |
Chen, T.Q., Guestrin, C., 2016. XGBoost: A Scalable Tree Boosting System. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, San Francisco, 785-794. https://doi.org/10.1145/2939672.2939785 |
| [8] |
Cortes, C., Vapnik, V., 1995. Support-Vector Networks. Mach Learn, 20: 273-297. https://doi.org/10.1007/BF00994018 |
| [9] |
D’Ignazio, M., Phoon, K.K., Tan, S.A., et al., 2016. Correlations for Undrained Shear Strength of Finnish Soft Clays. Candian Geotechnical Journal, 53:1628-1645. https://doi.org/10.1139/cgj-2016-0037 |
| [10] |
Dong, H. Y., Wang, Y. D., Li, L. H., 2021. A Review of Random Forest Optimization Algorithms. China Computer & Communication, 33(17):34-37 (in Chinese with English abstract). |
| [11] |
Gardner, M. W., 1998. Artificial Neural Networks (the Multilayer Perceptron)—A Review of Applications in the Atmospheric Sciences. Atmos Environment,32: 2627-2636. https://doi.org/10.1016/S1352-2310(97)00447-0 |
| [12] |
Hastie, T., Friedman, J.H., Tibshirani, R., 2009. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Math Inter, 27(2):83-85. https://doi.org/10.1007/BF02985802 |
| [13] |
Li, H., Zhang, Z.E., Zhao, Z.Z., 2019. Data-Mining for Processes in Chemistry, Materials, and Engineering. Processes,7(3):151. https://doi.org/10.3390/pr7030151 |
| [14] |
Li, S., Chen, J., Liu, C., et al., 2021. Mineral Prospectivity Prediction via Convolutional Neural Networks Based on Geological Big Data. Journal of Earth Science, 32(2): 327-347. https://doi.org/10.1007/s12583-020-1365-z |
| [15] |
Li, W. B., Fan, X. M., Huang, F. M., et al., 2021. Uncertainties of Landslide Susceptibility Modeling under Different Environmental Factor Connections and Prediction Models. Earth Science, 46(10): 3777-3795 (in Chinese with English abstract). |
| [16] |
Nascimento, D.S.C., Coelho, A.L.V., Canuto, A.M.P., 2014. Integrating Complementary Techniques for Promoting Diversity in Classifier Ensembles: A Systematic Study. Neurocomputing, 138: 347-357. https://doi.org/10.1016/j.neucom.2014.01.027 |
| [17] |
Shah, M. I., Javed, M. F., Abunama, T., 2021. Proposed Formulation of Surface Water Quality and Modelling Using Gene Expression, Machine Learning, and Regression Techniques. Environmental Science and Pollution Research International, 28(11): 13202-13220. https://doi.org/10.1007/s11356-020-11490-9 |
| [18] |
Sun, D.L., Wen, H.J., Wang, D.Z., et al., 2020. A Random Forest Model of Landslide Susceptibility Mapping Based on Hyperparameter Optimization Using Bayes Algorithm. Geomorphology, 362: 107201. https://doi.org/10.1016/j.geomorph.2020.107201 |
| [19] |
Vyas, R., Goel, P., Tambe, S.S., 2015. Genetic Programming Applications in Chemical Sciences and Engineering. In: Gandomi, A.H., Alavi, A.H., Ryan, C., eds., Handbook of Genetic Programming Applications. Springer International Publishing, Cham, 99-140. https://doi.org/10.1007/978-3-319-20883-1_5 |
| [20] |
Wong, T. T., 2015. Performance Evaluation of Classification Algorithms by K-Fold and Leave-One-out Cross Validation. Pattern Recognition, 48(9): 2839-2846. |
| [21] |
Wu, R. Z., Hu, X. D., Mei, H. B., et al., 2021. Spatial Susceptibility Assessment of Landslides Based on Random Forest: A Case Study from Hubei Section in the Three Gorges Reservoir Area. Earth Science, 46(1): 321-330 (in Chinese with English abstract). |
| [22] |
Xia, Y.F., Liu, C.Z., Li, Y.Y., et al., 2017. A Boosted Decision Tree Approach Using Bayesian Hyper-Parameter Optimization for Credit Scoring. Expert System with Applications, 78:225-241. |
| [23] |
Zhang, M.L., Zhou, Z. H., 2007. ML-KNN: A Lazy Learning Approach to Multi-label Learning. Pattern Recognition, 40: 2038-2048. https://doi.org/10.1016/j.patcog.2006.12.019 |
| [24] |
Zhang, W.G., Wu, C.Z., Zhong, H., et al., 2021.Prediction of Undrained Shear Strength Using Extreme Gradient Boosting and Random Forest Based on Bayesian Optimization. Geoscience Frontiers,12:469-477. https://doi.org/10.1016/j.gsf.2020.03.007 |
| [25] |
Zhang, W.G., Zhang, R.H., Wu, C.Z., et al., 2022.Assessment of Basal Heave Stability for Braced Excavations in Anisotropic Clay Using Extreme Gradient Boosting and Random Forest Regression. Underground Space, 7:233-241. https://doi.org/ 10.1016/j.undsp.2020.03.001 |
| [26] |
Zhang, W. Z., 2014. Research on Consolidation Characteristics of Ultra Soft Soil (Dissertation). Tianjin University, Tianjin, 41-42 (in Chinese with English abstract). |
| [27] |
Zhou, J., 2014. Research on Preconsolidation Pressure of Soil (Dissertation). Wuhan University of Technology, Wuhan, 12-15 (in Chinese with English abstract). |
| [28] |
Zhou, J., Qiu, Y.G., Zhu, S.L., 2021. Estimation of the TBM Advance Rate under Hard Rock Conditions Using XGBoost and Bayesian Optimization. Underground Spaceace, 6: 206-515. https://doi.org/10.1016/j.undsp.2020.05.008 |
| [29] |
Zhou, Z. H., 2016. Machine Learning. Tsinghua University Press, Beijing,171-196 (in Chinese). |
| [30] |
常林越, 王金昌, 朱向荣, 2009. 确定土体前期固结压力的非参数化拟合模型. 岩土力学, 30(5): 1337-1342. |
| [31] |
董红瑶, 王弈丹, 李丽红, 2021. 随机森林优化算法综述. 信息与电脑, 33(17): 34-37. |
| [32] |
李文彬, 范宣梅, 黄发明, 等, 2021. 不同环境因子联接和预测模型的滑坡易发性建模不确定性. 地球科学, 46(10): 3777-3795. |
| [33] |
吴润泽, 胡旭东, 梅红波, 等, 2021. 基于随机森林的滑坡空间易发性评价: 以三峡库区湖北段为例. 地球科学, 46(1): 321-330. |
| [34] |
张文振,2014.吹填超软土的固结特性试验分析(硕士学位论文).天津:天津大学,41-42. |
| [35] |
周军,2014.土先期固结压力问题的研究.(硕士学位论文).武汉:武汉理工大学,12-15. |
| [36] |
周志华,2016,机器学习.北京:清华大学出版社,171-196. |
国家自然科学基金项目(12172211)
国家重点研发计划项目(2019YFC1509800)
/
| 〈 |
|
〉 |