海洋汞同位素研究进展
王丽娟 , 孟梅 , 何晟 , 郑旺 , 孙若愚 , 张尧榕 , 张可 , 蔡虹明 , 陈玖斌
地球科学 ›› 2023, Vol. 48 ›› Issue (07) : 2778 -2806.
海洋汞同位素研究进展
Progresses in Study of Mercury Isotopic Compositions in the Ocean
,
海洋作为地球上最重要的汞储库之一,在调节全球汞循环中起着关键作用.近年来,汞同位素在研究海洋汞生物地球化学循环方面展现出明显优势,不但能示踪现代海洋汞污染来源及转化过程,还可重建古环境、古气候.总结了不同类型海洋样品汞同位素检测方法,系统归纳了其汞同位素数据,并重点阐述了海洋汞同位素分馏机制.总体上,目前海洋汞同位素数据还很有限,海洋汞循环关键过程的同位素分馏效应及潜在机理研究相对缺乏,精确源解析困难,难以对全球汞关键过程和循环通量进行准确验证和制约.未来还需要深入研究汞同位素分馏机理,进一步明确海洋中汞的来源、迁移及转化,为完善全球汞循环及精准防控海洋汞污染提供基础数据和理论支持.
海水 / 海洋沉积物 / 海洋生物 / 汞稳定同位素 / 汞浓度 / 汞形态 / 海洋学
seawater / marine sediment / marine biota / Hg stable isotope / Hg concentration / Hg speciation / oceanography
| [1] |
Achá, D., Hintelmann, H., Yee, J., 2011. Importance of Sulfate Reducing Bacteria in Mercury Methylation and Demethylation in Periphyton from Bolivian Amazon Region. Chemosphere, 82(6): 911-916. https://doi.org/10.1016/j.chemosphere.2010.10.050 |
| [2] |
Acquavita, A., Covelli, S., Emili, A., et al., 2012. Mercury in the Sediments of the Marano and Grado Lagoon (Northern Adriatic Sea): Sources, Distribution and Speciation. Estuarine, Coastal and Shelf Science, 113: 20-31. https://doi.org/10.1016/j.ecss.2012.02.012 |
| [3] |
Afonso, C., Lourenço, H.M., Dias, A., et al., 2007. Contaminant Metals in Black Scabbard Fish (Aphanopus Carbo) Caught off Madeira and the Azores. Food Chemistry, 101(1): 120-125. https://doi.org/10.1016/j.foodchem.2006.01.030 |
| [4] |
Aksentov, K.I., Sattarova, V.V., 2020. Mercury Geochemistry of Deep-Sea Sediment Cores from the Kuril Area, Northwest Pacific. Progress in Oceanography, 180: 102235. https://doi.org/10.1016/j.pocean.2019.102235 |
| [5] |
Aksentov, K.I., Astakhov, A.S., Ivanov, M.V., et al., 2021. Assessment of Mercury Levels in Modern Sediments of the East Siberian Sea. Marine Pollution Bulletin, 168: 112426. https://doi.org/10.1016/j.marpolbul.2021.112426 |
| [6] |
Amos, H.M., Jacob, D.J., Kocman, D., et al., 2014. Global Biogeochemical Implications of Mercury Discharges from Rivers and Sediment Burial. Environmental Science & Technology, 48(16): 9514-9522. https://doi.org/10.1021/es502134t |
| [7] |
Amyot, M., Gill, G.A., Morel, F.M.M., 1997. Production and Loss of Dissolved Gaseous Mercury in Coastal Seawater. Environmental Science & Technology, 31(12): 3606-3611. https://doi.org/10.1021/es9703685 |
| [8] |
Anbar, A.D., Rouxel, O., 2007. Metal Stable Isotopes in Paleoceanography. Annual Review of Earth and Planetary Sciences, 35: 717-746. https://doi.org/10.1146/annurev.earth.34.031405.125029 |
| [9] |
Azaroff, A., Tessier, E., Deborde, J., et al., 2019. Mercury and Methylmercury Concentrations, Sources and Distribution in Submarine Canyon Sediments (Capbreton, SW France): Implications for the Net Methylmercury Production. Science of the Total Environment, 673: 511-521. https://doi.org/10.1016/j.scitotenv.2019.04.111 |
| [10] |
Balogh, S.J., Tsui, M.T.K., Blum, J.D., et al., 2015. Tracking the Fate of Mercury in the Fish and Bottom Sediments of Minamata Bay, Japan, Using Stable Mercury Isotopes. Environmental Science & Technology, 49(9): 5399-5406. https://doi.org/10.1021/acs.est.5b00631 |
| [11] |
Barkay, T., Poulain, A.J., 2007. Mercury (Micro)Biogeochemistry in Polar Environments. FEMS Microbiology Ecology, 59(2): 232-241. https://doi.org/10.1111/j.1574-6941.2006.00246.x |
| [12] |
Beldowski, J., Pempkowiak, J., 2009. Mercury Concentration and Solid Phase Speciation Changes in the Course of Early Diagenesis in Marine Coastal Sediments (Southern Baltic Sea). Marine and Freshwater Research, 60.(7): 745-757. https://doi.org/10.1071/MF08060 |
| [13] |
Bergquist, B.A., Blum, J.D., 2007. Mass-Dependent and -Independent Fractionation of Hg Isotopes by Photoreduction in Aquatic Systems. Science, 318(5849): 417-420. https://doi.org/10.1126/science.1148050 |
| [14] |
Bergquist, B.A., Blum, J.D., 2009. The Odds and Evens of Mercury Isotopes: Applications of Mass-Dependent and Mass-Independent Isotope Fractionation. Elements, 5(6): 353-357. https://doi.org/10.2113/gselements.5.6.353 |
| [15] |
Biswas, A., Blum, J.D., Bergquist, B.A., et al., 2008. Natural Mercury Isotope Variation in Coal Deposits and Organic Soils. Environmental Science & Technology, 42(22): 8303-8309. https://doi.org/10.1021/es801444b |
| [16] |
Black, F.J., Paytan, A., Knee, K.L., et al., 2009. Submarine Groundwater Discharge of Total Mercury and Monomethylmercury to Central California Coastal Waters. Environmental Science & Technology, 43(15): 5652-5659. https://doi.org/10.1021/es900539c |
| [17] |
Bloom, N.S., Preus, E., Katon, J., et al., 2003. Selective Extractions to Assess the Biogeochemically Relevant Fractionation of Inorganic Mercury in Sediments and Soils. Analytica Chimica Acta, 479(2): 233-248. https://doi.org/10.1016/S0003-2670(02)01550-7 |
| [18] |
Blum, J.D., 2012. Applications of Stable Mercury Isotopes to Biogeochemistry. Springer, Berlin, 229-245. https://doi.org/10.1007/978-3-642-10637-8_12 |
| [19] |
Blum, J.D., Drazen, J.C., Johnson, M.W., et al., 2020. Mercury Isotopes Identify near-Surface Marine Mercury in Deep-Sea Trench Biota. PNAS, 117(47): 29292-29298. https://doi.org/10.1073/pnas.2012773117 |
| [20] |
Blum, J.D., Johnson, M.W., 2017. Recent Developments in Mercury Stable Isotope Analysis. Reviews in Mineralogy and Geochemistry, 82(1): 733-757. https://doi.org/10.2138/rmg.2017.82.17 |
| [21] |
Blum, J.D., Popp, B.N., Drazen, J.C., et al., 2013. Methylmercury Production below the Mixed Layer in the North Pacific Ocean. Nature Geoscience, 6(10): 879-884. https://doi.org/10.1038/ngeo1918 |
| [22] |
Blum, J.D., Sherman, L.S., Johnson, M.W., 2014. Mercury Isotopes in Earth and Environmental Sciences. Annual Review of Earth and Planetary Sciences, 42(1): 249-269. https://doi.org/10.1146/annurev-earth-050212-124107 |
| [23] |
Blum, J.E., Bartha, R., 1980. Effect of Salinity on Methylation of Mercury. Bulletin of Environmental Contamination and Toxicology, 25(1): 404-408. https://doi.org/10.1007/BF01985546 |
| [24] |
Bone, S.E., Charette, M.A., Lamborg, C.H., et al., 2007. Has Submarine Groundwater Discharge been Overlooked as a Source of Mercury to Coastal Waters? Environmental Science & Technology, 41(9): 3090-3095. https://doi.org/10.1021/es0622453 |
| [25] |
Bonsignore, M., Manta, D.S., Barsanti, M., et al., 2020. Mercury Isotope Signatures in Sediments and Marine Organisms as Tracers of Historical Industrial Pollution. Chemosphere, 258: 127435. https://doi.org/10.1016/j.chemosphere.2020.127435 |
| [26] |
Bonsignore, M., Tamburrino, S., Oliveri, E., et al., 2015. Tracing Mercury Pathways in Augusta Bay (Southern Italy) by Total Concentration and Isotope Determination. Environmental Pollution, 205: 178-185. https://doi.org/10.1016/j.envpol.2015.05.033 |
| [27] |
Bowman, K.L., Hammerschmidt, C.R., Lamborg, C.H., et al., 2015. Mercury in the North Atlantic Ocean: The U.S. Geotraces Zonal and Meridional Sections. Deep Sea Research Part II: Topical Studies in Oceanography, 116: 251-261. https://doi.org/10.1016/j.dsr2.2014.07.004 |
| [28] |
Braune, B., Chételat, J., Amyot, M., et al., 2015. Mercury in the Marine Environment of the Canadian Arctic: Review of Recent Findings. Science of the Total Environment, 509-510: 67-90. https://doi.org/10.1016/j.scitotenv.2014.05.133 |
| [29] |
Brocza, F.M., Biester, H., Richard, J.H., et al., 2019. Mercury Isotope Fractionation in the Subsurface of a Hg(II) Chloride-Contaminated Industrial Legacy Site. Environmental Science & Technology, 53(13): 7296-7305. https://doi.org/10.1021/acs.est.9b00619 |
| [30] |
Buck, C.S., Hammerschmidt, C.R., Bowman, K.L., et al., 2015. Flux of Total Mercury and Methylmercury to the Northern Gulf of Mexico from U.S. Estuaries. Environmental Science & Technology, 49(24): 13992-13999. https://doi.org/10.1021/acs.est.5b03538 |
| [31] |
Burger, J., Gochfeld, M., 2013. Selenium and Mercury Molar Ratios in Commercial Fish from New Jersey and Illinois: Variation within Species and Relevance to Risk Communication. Food and Chemical Toxicology, 57: 235-245. https://doi.org/10.1016/j.fct.2013.03.021 |
| [32] |
Celo, V., Lean, D.R., Scott, S.L., 2006. Abiotic Methylation of Mercury in the Aquatic Environment. Science of the Total Environment, 368(1): 126-137. https://doi.org/10.1016/j.scitotenv.2005.09.043 |
| [33] |
Chakraborty, P., Raghunadh Babu, P.V., Vudamala, K., et al., 2014. Mercury Speciation in Coastal Sediments from the Central East Coast of India by Modified BCR Method. Marine Pollution Bulletin, 81(1): 282-288. https://doi.org/10.1016/j.marpolbul.2013.12.054 |
| [34] |
Chakraborty, P., Vudamala, K., Coulibaly, M., et al., 2015. Reduction of Mercury (II) by Humic Substances—Influence of pH, Salinity of Aquatic System. Environmental Science and Pollution Research, 22(14): 10529-10538. https://doi.org/10.1007/s11356-015-4258-4 |
| [35] |
Chandan, P., Ghosh, S., Bergquist, B.A., 2015. Mercury Isotope Fractionation during Aqueous Photoreduction of Monomethylmercury in the Presence of Dissolved Organic Matter. Environmental Science & Technology, 49(1): 259-267. https://doi.org/10.1021/es5034553 |
| [36] |
Chen, J., Pehkonen, S.O., Lin, C.J., 2003. Degradation of Monomethylmercury Chloride by Hydroxyl Radicals in Simulated Natural Waters. Water Research, 37(10): 2496-2504. https://doi.org/10.1016/S0043-1354(03)00039-3 |
| [37] |
Chen, J.B., Hintelmann, H., Feng, X.B., et al., 2012. Unusual Fractionation of Both Odd and Even Mercury Isotopes in Precipitation from Peterborough, on, Canada. Geochimica et Cosmochimica Acta, 90: 33-46. https://doi.org/10.1016/j.gca.2012.05.005 |
| [38] |
Cheng, J.P., Gao, L.L., Zhao, W.C., et al., 2009. Mercury Levels in Fisherman and Their Household Members in Zhoushan, China: Impact of Public Health. Science of the Total Environment, 407(8): 2625-2630. https://doi.org/10.1016/j.scitotenv.2009.01.032 |
| [39] |
Chouvelon, T., Cresson, P., Bouchoucha, M., et al., 2018. Oligotrophy as a Major Driver of Mercury Bioaccumulation in Medium- to High-Trophic Level Consumers: A Marine Ecosystem-Comparative Study. Environmental Pollution, 233: 844-854. https://doi.org/10.1016/j.envpol.2017.11.015 |
| [40] |
Chouvelon, T., Spitz, J., Caurant, F., et al., 2012. Enhanced Bioaccumulation of Mercury in Deep-Sea Fauna from the Bay of Biscay (North-East Atlantic) in Relation to Trophic Positions Identified by Analysis of Carbon and Nitrogen Stable Isotopes. Deep Sea Research Part I: Oceanographic Research Papers, 65: 113-124. https://doi.org/10.1016/j.dsr.2012.02.010 |
| [41] |
Ci, Z.J., Wang, C.J., Wang, Z.W., et al., 2015. Elemental Mercury (Hg(0)) in Air and Surface Waters of the Yellow Sea during Late Spring and Late Fall 2012: Concentration, Spatial-Temporal Distribution and Air/Sea Flux. Chemosphere, 119: 199-208. https://doi.org/10.1016/j.chemosphere.2014.05.064 |
| [42] |
Ci, Z.J., Zhang, X.S., Yin, Y.G., et al., 2016. Mercury Redox Chemistry in Waters of the Eastern Asian Seas: From Polluted Coast to Clean Open Ocean. Environmental Science & Technology, 50(5): 2371-2380. https://doi.org/10.1021/acs.est.5b05372 |
| [43] |
Compeau, G.C., Bartha, R., 1987. Effect of Salinity on Mercury-Methylating Activity of Sulfate-Reducing Bacteria in Estuarine Sediments. Applied and Environmental Microbiology, 53(2): 261-265. https://doi.org/10.1128/aem.53.2.261-265.1987 |
| [44] |
Correa, L., Rea, L.D., Bentzen, R., et al., 2014. Assessment of Mercury and Selenium Tissular Concentrations and Total Mercury Body Burden in 6 Steller Sea Lion Pups from the Aleutian Islands. Marine Pollution Bulletin, 82(1-2): 175-182. https://doi.org/10.1016/j.marpolbul.2014.02.022 |
| [45] |
Cossa, D., Averty, B., Pirrone, N., 2009. The Origin of Methylmercury in Open Mediterranean Waters. Limnology and Oceanography, 54(3): 837-844. https://doi.org/10.4319/lo.2009.54.3.0837 |
| [46] |
Cossa, D., Heimburger, L.E., Lannuzel, D., et al., 2011. Mercury in the Southern Ocean. Geochimica et Cosmochimica Acta, 75(14): 4037-4052. https://doi.org/10.1016/j.gca.2011.05.001 |
| [47] |
Cossa, D., Knoery, J., Bănaru, D., et al., 2022. Mediterranean Mercury Assessment 2022: An Updated Budget, Health Consequences, and Research Perspectives. Environmental Science & Technology, 56(7): 3840-3862. https://doi.org/10.1021/acs.est.1c03044 |
| [48] |
Cossa, D., Martin, J.M., Takayanagi, K., et al., 1997. The Distribution and Cycling of Mercury Species in the Western Mediterranean. Deep Sea Research Part II: Topical Studies in Oceanography, 44(3-4): 721-740. https://doi.org/10.1016/S0967-0645(96)00097-5 |
| [49] |
Cossa, D., Mucci, A., Guédron, S., et al., 2021. Mercury Accumulation in the Sediment of the Western Mediterranean Abyssal Plain: A Reliable Archive of the Late Holocene. Geochimica et Cosmochimica Acta, 309: 1-15. https://doi.org/10.1016/j.gca.2021.06.014 |
| [50] |
Covelli, S., Faganeli, J., Horvat, M., et al., 1999. Porewater Distribution and Benthic Flux Measurements of Mercury and Methylmercury in the Gulf of Trieste (Northern Adriatic Sea). Estuarine, Coastal and Shelf Science, 48(4): 415-428. https://doi.org/10.1006/ecss.1999.0466 |
| [51] |
Cox, M.E., McMurtry, G.M., 1981. Vertical Distribution of Mercury in Sediments from the East Pacific Rise. Nature, 289(5800): 789-792. https://doi.org/10.1038/289789a0 |
| [52] |
Criss, R.E., 1999. Principles of Stable Isotope Distribution.Oxford University Press, New York,264. https://doi.org/10.1093/oso/9780195117752.001.0001. |
| [53] |
Crowther, E.R., Demers, J.D., Blum, J.D., et al., 2021. Use of Sequential Extraction and Mercury Stable Isotope Analysis to Assess Remobilization of Sediment-Bound Legacy Mercury. Environmental Science: Processes & Impacts, 23(5): 756-775. https://doi.org/10.1039/D1EM00019E |
| [54] |
Demers, J.D., Blum, J.D., Brooks, S.C., et al., 2018. Hg Isotopes Reveal in-Stream Processing and Legacy Inputs in East Fork Poplar Creek, Oak Ridge, Tennessee, USA. Environmental Science: Processes & Impacts, 20(4): 686-707. https://doi.org/10.1039/C7EM00538E |
| [55] |
Depew, D.C., Basu, N., Burgess, N.M., et al., 2012. Toxicity of Dietary Methylmercury to Fish: Derivation of Ecologically Meaningful Threshold Concentrations. Environmental Toxicology and Chemistry, 31(7): 1536-1547. https://doi.org/10.1002/etc.1859 |
| [56] |
Donovan, P.M., Blum, J.D., Yee, D., et al., 2013. An Isotopic Record of Mercury in San Francisco Bay Sediment. Chemical Geology, 349-350: 87-98. https://doi.org/10.1016/j.chemgeo.2013.04.017 |
| [57] |
Engle, M.A., Gustin, M.S., Goff, F., et al., 2006. Atmospheric Mercury Emissions from Substrates and Fumaroles Associated with Three Hydrothermal Systems in the Western United States. Journal of Geophysical Research: Atmospheres, 111(D17). https://doi.org/10.1029/2005JD006563 |
| [58] |
Estrade, N., Carignan, J., Sonke, J.E., et al., 2009. Mercury Isotope Fractionation during Liquid-Vapor Evaporation Experiments. Geochimica et Cosmochimica Acta, 73(10): 2693-2711. https://doi.org/10.1016/j.gca.2009.01.024 |
| [59] |
Feng, X.B., Yin, R.S., Yu, B., et al., 2015. A Review of Hg Isotope Geochemistry. Earth Science Frontiers, 22(5): 124-135 (in Chinese with English abstract). |
| [60] |
Foucher, D., Hintelmann, H., 2006. High-Precision Measurement of Mercury Isotope Ratios in Sediments Using Cold-Vapor Generation Multi-Collector Inductively Coupled Plasma Mass Spectrometry. Analytical and Bioanalytical Chemistry, 384(7): 1470-1478. https://doi.org/10.1007/s00216-006-0373-x |
| [61] |
Foucher, D., Hintelmann, H., Al, T.A., et al., 2013. Mercury Isotope Fractionation in Waters and Sediments of the Murray Brook Mine Watershed (New Brunswick, Canada): Tracing Mercury Contamination and Transformation. Chemical Geology, 336: 87-95. https://doi.org/10.1016/j.chemgeo.2012.04.014 |
| [62] |
Fu, L.W., Yu, F., Huan, Z., et al., 2020. Aqua Regia Digestion cannot Completely Extract Hg from Biochar: A Synchrotron-Based Study. Environmental Pollution, 265: 115002. https://doi.org/10.1016/j.envpol.2020.115002 |
| [63] |
Fu, X. W., Feng, X. B., Zhang, G., et al., 2010. Mercury in the Marine Boundary Layer and Seawater of the South China Sea: Concentrations, Sea/Air Flux, and Implication for Land Outflow. Journal of Geophysical Research: Atmospheres, 115(D6): D06303. https://doi.org/10.1029/2009jd012958 |
| [64] |
Gantner, N., Hintelmann, H., Zheng, W., et al., 2009. Variations in Stable Isotope Fractionation of Hg in Food Webs of Arctic Lakes. Environmental Science & Technology, 43(24): 9148-9154. https://doi.org/10.1021/es901771r |
| [65] |
Gårdfeldt, K., Sommar, J., Ferrara, R., et al., 2003. Evasion of Mercury from Coastal and Open Waters of the Atlantic Ocean and the Mediterranean Sea. Atmospheric Environment, 37(1): 73-84. https://doi.org/10.1016/S1352-2310(03)00238-3 |
| [66] |
Gehrke, G.E., Blum, J.D., Meyers, P.A., 2009. The Geochemical Behavior and Isotopic Composition of Hg in a Mid-Pleistocene Western Mediterranean Sapropel. Geochimica et Cosmochimica Acta, 73(6): 1651-1665. https://doi.org/10.1016/j.gca.2008.12.012 |
| [67] |
Gehrke, G.E., Blum, J.D., Slotton, D.G., et al., 2011. Mercury Isotopes Link Mercury in San Francisco Bay Forage Fish to Surface Sediments. Environmental Science & Technology, 45(4): 1264-1270. https://doi.org/10.1021/es103053y |
| [68] |
Ghosh, S., Schauble, E.A., Lacrampe Couloume, G., et al., 2013. Estimation of Nuclear Volume Dependent Fractionation of Mercury Isotopes in Equilibrium Liquid-Vapor Evaporation Experiments. Chemical Geology, 336: 5-12. https://doi.org/10.1016/j.chemgeo.2012.01.008 |
| [69] |
Gilmour, C.C., Henry, E.A., Mitchell, R., 1992. Sulfate Stimulation of Mercury Methylation in Freshwater Sediments. Environmental Science & Technology, 26(11): 2281-2287. https://doi.org/10.1021/es00035a029 |
| [70] |
Gilmour, C. C., Podar, M., Bullock, A. L., et al., 2013. Mercury Methylation by Novel Microorganisms from New Environments. Environmental Science & Technology, 47(20): 11810-11820. https://doi.org/10.1021/es403075t |
| [71] |
Gionfriddo, C.M., Tate, M.T., Wick, R.R., et al., 2016. Microbial Mercury Methylation in Antarctic Sea Ice. Nature Microbiology, 1(10): 16127. https://doi.org/10.1038/nmicrobiol.2016.127 |
| [72] |
Gleason, J.D., Blum, J.D., Moore, T.C., et al., 2017. Sources and Cycling of Mercury in the Paleo Arctic Ocean from Hg Stable Isotope Variations in Eocene and Quaternary Sediments. Geochimica et Cosmochimica Acta, 197(16): 245-262. https://doi.org/10.1016/j.gca.2016.10.033 |
| [73] |
Gobeil, C., MacDonald, R.W., Smith, J.N., 1999. Mercury Profiles in Sediments of the Arctic Ocean Basins. Environmental Science & Technology, 33(23): 4194-4198. https://doi.org/10.1021/es990471p |
| [74] |
Gratz, L. E., Keeler, G. J., Blum, J. D., et al., 2010. Isotopic Composition and Fractionation of Mercury in Great Lakes Precipitation and Ambient Air. Environmental Science & Technology, 44(20): 7764-7770. https://doi.org/10.1021/es100383w |
| [75] |
Green-Ruiz, C., 2009. Effect of Salinity and Temperature on the Adsorption of Hg(II) from Aqueous Solutions by a Ca-Montmorillonite. Environmental Technology, 30(1): 63-68. https://doi.org/10.1080/09593330802503859 |
| [76] |
Grigg, A.R.C., Kretzschmar, R., Gilli, R.S., et al., 2018. Mercury Isotope Signatures of Digests and Sequential Extracts from Industrially Contaminated Soils and Sediments. Science of the Total Environment, 636(22): 1344-1354. https://doi.org/10.1016/j.scitotenv.2018.04.261 |
| [77] |
Gu, B.H., Bian, Y.R., Miller, C.L., et al., 2011. Mercury Reduction and Complexation by Natural Organic Matter in Anoxic Environments. PNAS, 108(4): 1479-1483. https://doi.org/10.1073/pnas.1008747108 |
| [78] |
Gworek, B., Bemowska-Kałabun, O., Kijeńska, M., et al., 2016. Mercury in Marine and Oceanic Waters—A Review. Water, Air, & Soil Pollution, 227(10): 371. https://doi.org/10.1007/s11270-016-3060-3 |
| [79] |
Hassan, H., Elezz, A.A., Abuasali, M., et al., 2019. Baseline Concentrations of Mercury Species within Sediments from Qatar's Coastal Marine Zone. Marine Pollution Bulletin, 142: 595-602. https://doi.org/10.1016/j.marpolbul.2019.04.022 |
| [80] |
Heimbürger, L. E., Sonke, J. E., Cossa, D., et al., 2015. Shallow Methylmercury Production in the Marginal Sea Ice Zone of the Central Arctic Ocean. Scientific Reports, 5: 10318. https://doi.org/10.1038/srep10318 |
| [81] |
Heyes, A., Mason, R.P., Kim, E.H., et al., 2006. Mercury Methylation in Estuaries: Insights from Using Measuring Rates Using Stable Mercury Isotopes. Marine Chemistry, 102(1-2): 134-147. https://doi.org/10.1016/j.marchem.2005.09.018 |
| [82] |
Hilgendag, I.R., Swanson, H.K., Lewis, C.W., et al., 2022. Mercury Biomagnification in Benthic, Pelagic, and Benthopelagic Food Webs in an Arctic Marine Ecosystem. Science of the Total Environment, 841: 156424. https://doi.org/10.1016/j.scitotenv.2022.156424 |
| [83] |
Hintelmann, H., Zheng, W., 2011. Tracking Geochemical Transformations and Transport of Mercury through Isotope Fractionation. In: Liu, G.L., Cai, Y., O'Driscoll, N., eds., Environmental Chemistry and Toxicology of Mercury. John Wiley & Sons Inc., Hoboken, 293-327. https://doi.org/10.1002/9781118146644.ch9 |
| [84] |
Hollweg, T.A., Gilmour, C.C., Mason, R.P., 2009. Methylmercury Production in Sediments of Chesapeake Bay and the Mid-Atlantic Continental Margin. Marine Chemistry, 114(3-4): 86-101. https://doi.org/10.1016/j.marchem.2009.04.004 |
| [85] |
Hollweg, T.A., Gilmour, C.C., Mason, R.P., 2010. Mercury and Methylmercury Cycling in Sediments of the Mid-Atlantic Continental Shelf and Slope. Limnology and Oceanography, 55(6): 2703-2722. https://doi.org/10.4319/lo.2010.55.6.2703 |
| [86] |
Ikemoto, T., Kunito, T., Tanaka, H., et al., 2004. Detoxification Mechanism of Heavy Metals in Marine Mammals and Seabirds: Interaction of Selenium with Mercury, Silver, Copper, Zinc, and Cadmium in Liver. Archives of Environmental Contamination and Toxicology, 47(3): 402-413. https://doi.org/10.1007/s00244-004-3188-9 |
| [87] |
Janssen, S.E., Schaefer, J.K., Barkay, T., et al., 2016. Fractionation of Mercury Stable Isotopes during Microbial Methylmercury Production by Iron- and Sulfate- Reducing Bacteria. Environmental Science & Technology, 50(15): 8077-8083. https://doi.org/10.1021/acs.est.6b00854 |
| [88] |
Jeong, D. H., Jeong, W., Baeg, S., et al., 2021. Datasets on the Spatial Distribution of Mercury and Its Controlling Factors in the Yellow Sea. Data Brief, 35: 106792. https://doi.org/10.1016/j.dib.2021.106792 |
| [89] |
Jeremiason, J.D., Portner, J.C., Aiken, G.R., et al., 2015. Photoreduction of Hg(II) and Photodemethylation of Methylmercury: The Key Role of Thiol Sites on Dissolved Organic Matter. Environmental Science: Processes & Impacts, 17(11): 1892-1903. https://doi.org/10.1039/C5EM00305A |
| [90] |
Jiang, T., Skyllberg, U., Björn, E., et al., 2017. Characteristics of Dissolved Organic Matter (DOM) and Relationship with Dissolved Mercury in Xiaoqing River-Laizhou Bay Estuary, Bohai Sea, China. Environmental Pollution, 223(6): 19-30. https://doi.org/10.1016/j.envpol.2016.12.006 |
| [91] |
Jiménez-Moreno, M., Perrot, V., Epov, V.N., et al., 2013. Chemical Kinetic Isotope Fractionation of Mercury during Abiotic Methylation of Hg(II) by Methylcobalamin in Aqueous Chloride Media. Chemical Geology, 336: 26-36. https://doi.org/10.1016/j.chemgeo.2012.08.029 |
| [92] |
Jin, H.F., Liebezeit, G., 2013. Distribution of Total Mercury in Coastal Sediments from Jade Bay and Its Catchment, Lower Saxony, Germany. Journal of Soils and Sediments, 13(2): 441-449. https://doi.org/10.1007/s11368-012-0626-6 |
| [93] |
Jiskra, M., Heimbürger-Boavida, L. E., Desgranges, M. M., et al., 2021. Mercury Stable Isotopes Constrain Atmospheric Sources to the Ocean. Nature, 597(7878): 678-682. https://doi.org/10.1038/s41586-021-03859-8 |
| [94] |
Jiskra, M., Wiederhold, J.G., Bourdon, B., et al., 2012. Solution Speciation Controls Mercury Isotope Fractionation of Hg(II) Sorption to Goethite. Environmental Science & Technology, 46(12): 6654-6662. https://doi.org/10.1021/es3008112 |
| [95] |
Jung, S., Kwon, S.Y., Li, M.L., et al., 2022. Elucidating Sources of Mercury in the West Coast of Korea and the Chinese Marginal Seas Using Mercury Stable Isotopes. Science of the Total Environment, 814: 152598. https://doi.org/10.1016/j.scitotenv.2021.152598 |
| [96] |
Kannan, K., Falandysz, J., 1998. Speciation and Concentrations of Mercury in Certain Coastal Marine Sediments. Water, Air, and Soil Pollution, 103(1-4): 129-136. https://doi.org/10.1023/A:1004967112178 |
| [97] |
Kim, E., Noh, S., Lee, Y.G., et al., 2014. Mercury and Methylmercury Flux Estimation and Sediment Distribution in an Industrialized Urban Bay. Marine Chemistry, 158: 59-68. https://doi.org/10.1016/j.marchem.2013.11.004 |
| [98] |
Kim, H., Lee, K., Lim, D.I., et al., 2019. Increase in Anthropogenic Mercury in Marginal Sea Sediments of the Northwest Pacific Ocean. Science of the Total Environment, 654: 801-810. https://doi.org/10.1016/j.scitotenv.2018.11.076 |
| [99] |
Kim, J., Lim, D., Jeong, D., et al., 2022. Mercury (Hg) Geochemistry of Mid-Ocean Ridge Sediments on the Central Indian Ridge: Chemical Forms and Isotopic Composition. Chemical Geology, 604: 120942. https://doi.org/10.1016/j.chemgeo.2022.120942 |
| [100] |
Kirk, J.L., Lehnherr, I., Andersson, M., et al., 2012. Mercury in Arctic Marine Ecosystems: Sources, Pathways and Exposure. Environmental Research, 119: 64-87. https://doi.org/10.1016/j.envres.2012.08.012 |
| [101] |
Kita, I., Yamashita, T., Chiyonobu, S., et al., 2016. Mercury Content in Atlantic Sediments as a New Indicator of the Enlargement and Reduction of Northern Hemisphere Ice Sheets. Journal of Quaternary Science, 31(3): 167-177. https://doi.org/10.1002/jqs.2854 |
| [102] |
Koenig, S., Solé, M., Fernández-Gómez, C., et al., 2013. New Insights into Mercury Bioaccumulation in Deep-Sea Organisms from the NW Mediterranean and Their Human Health Implications. Science of the Total Environment, 442: 329-335. https://doi.org/10.1016/j.scitotenv.2012.10.036 |
| [103] |
Kojadinovic, J., Potier, M., Le Corre, M., et al., 2007. Bioaccumulation of Trace Elements in Pelagic Fish from the Western Indian Ocean. Environmental Pollution, 146(2): 548-566. https://doi.org/10.1016/j.envpol.2006.07.015 |
| [104] |
Koster Van Groos, P.G., Esser, B.K., Williams, R.W., et al., 2014. Isotope Effect of Mercury Diffusion in Air. Environmental Science & Technology, 48(1): 227-233. https://doi.org/10.1021/es4033666 |
| [105] |
Kritee, K., Barkay, T., Blum, J.D., 2009. Mass Dependent Stable Isotope Fractionation of Mercury during Mer Mediated Microbial Degradation of Monomethylmercury. Geochimica et Cosmochimica Acta, 73(5): 1285-1296. https://doi.org/10.1016/j.gca.2008.11.038 |
| [106] |
Kritee, K., Blum, J.D., Barkay, T., 2008. Mercury Stable Isotope Fractionation during Reduction of Hg(II) by Different Microbial Pathways. Environmental Science & Technology, 42(24): 9171-9177. https://doi.org/10.1021/es801591k |
| [107] |
Kritee, K., Blum, J.D., Johnson, M.W., et al., 2007. Mercury Stable Isotope Fractionation during Reduction of Hg(II) to Hg(0) by Mercury Resistant Microorganisms. Environmental Science & Technology, 41(6): 1889-1895. https://doi.org/10.1021/es062019t |
| [108] |
Kritee, K., Motta, L.C., Blum, J.D., et al., 2018. Photomicrobial Visible Light-Induced Magnetic Mass Independent Fractionation of Mercury in a Marine Microalga. ACS Earth and Space Chemistry, 2(5): 432-440. https://doi.org/10.1021/acsearthspacechem.7b00056 |
| [109] |
Kwasigroch, U., Bełdowska, M., Jędruch, A., et al., 2021. Distribution and Bioavailability of Mercury in the Surface Sediments of the Baltic Sea. Environmental Science and Pollution Research, 28(27): 35690-35708. https://doi.org/10.1007/s11356-021-13023-4 |
| [110] |
Kwon, S.Y., Blum, J.D., Yin, R., et al., 2020. Mercury Stable Isotopes for Monitoring the Effectiveness of the Minamata Convention on Mercury. Earth-Science Reviews, 203: 103111. https://doi.org/10.1016/j.earscirev.2020.103111 |
| [111] |
Lalonde, J.D., Amyot, M., Kraepiel, A.M.L., et al., 2001. Photooxidation of Hg(0) in Artificial and Natural Waters. Environmental Science & Technology, 35(7): 1367-1372. https://doi.org/10.1021/es001408z |
| [112] |
Lalonde, J.D., Amyot, M., Orvoine, J., et al., 2004. Photoinduced Oxidation of Hg0(Aq) in the Waters from the St. Lawrence Estuary. Environmental Science & Technology, 38(2): 508-514. https://doi.org/10.1021/es034394g |
| [113] |
Lamborg, C.H., Hammerschmidt, C.R., Bowman, K.L., 2016. An Examination of the Role of Particles in Oceanic Mercury Cycling. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374(2081): 20150297. https://doi.org/10.1098/rsta.2015.0297 |
| [114] |
Laporte, J.M., Truchot, J.P., Ribeyre, F., et al., 1997. Combined Effects of Water pH and Salinity on the Bioaccumulation of Inorganic Mercury and Methylmercury in the Shore Crab Carcinus Maenas. Marine Pollution Bulletin, 34(11): 880-893. https://doi.org/10.1016/ S0025-326X(97)00059-3 |
| [115] |
Laurier, F.J.G., Cossa, D., Beucher, C., et al., 2007. The Impact of Groundwater Discharges on Mercury Partitioning, Speciation and Bioavailability to Mussels in a Coastal Zone. Marine Chemistry, 104(3-4): 143-155. https://doi.org/10.1016/j.marchem.2006.10.010 |
| [116] |
Laurier, F.J.G., Mason, R.P., Gill, G.A., et al., 2004. Mercury Distributions in the North Pacific Ocean—20 Years of Observations. Marine Chemistry, 90(1-4): 3-19. https://doi.org/10.1016/j.marchem.2004.02.025 |
| [117] |
Lee, S. H., Suh, J.K., Lee, S. H., et al., 2005. Determination of Mercury in Tuna Fish Tissue Using Isotope Dilution-Inductively Coupled Plasma Mass Spectrometry. Microchemical Journal, 80(2): 233-236. https://doi.org/10.1016/j.microc.2004.07.007 |
| [118] |
Lehnherr, I., 2014. Methylmercury Biogeochemistry: A Review with Special Reference to Arctic Aquatic Ecosystems. Environmental Reviews, 22(3): 229-243. https://doi.org/10.1139/er-2013-0059 |
| [119] |
Lehnherr, I., St. Louis, V.L., Hintelmann, H., et al., 2011. Methylation of Inorganic Mercury in Polar Marine Waters. Nature Geoscience, 4(5): 298-302. https://doi.org/10.1038/ngeo1134 |
| [120] |
Li, C.H., Wang, T., Liang, H.D., et al., 2017. Progresses in Study of Hg Isotope Database. Ecology and Environmental Sciences, 26(9): 1627-1638 (in Chinese with English abstract). |
| [121] |
Liang, L., Horvat, M., Li, H., et al., 2003. Determination of Mercury in Minerals by Combustion/Trap/Atomic Fluorescence Spectrometry. Journal of Analytical Atomic Spectrometry, 18(11): 1383-1385. https://doi.org/10.1039/B306603G |
| [122] |
Liem-Nguyen, V., Wild, B., Gustafsson, Ö., et al., 2022. Spatial Patterns and Distributional Controls of Total and Methylated Mercury off the Lena River in the Laptev Sea Sediments. Marine Chemistry, 238(17): 104052. https://doi.org/10.1016/j.marchem.2021.104052 |
| [123] |
Lim, D., Kim, H., Kim, J., et al., 2020. Mercury Proxy for Hydrothermal and Submarine Volcanic Activities in the Sediment Cores of Central Indian Ridge. Marine Pollution Bulletin, 159: 111513. https://doi.org/10.1016/j.marpolbul.2020.111513 |
| [124] |
Lin, H. Y., Yuan, D. X., Lu, B. Y., et al., 2015. Isotopic Composition Analysis of Dissolved Mercury in Seawater with Purge and Trap Preconcentration and a Modified Hg Introduction Device for MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 30(2): 353-359. https://doi.org/10.1039/C4JA00242C |
| [125] |
Liu, C., Chen, L.F., Gao, H.Y., et al., 2018. Distribution of Mercury Species and Their Controlling Factors in the Sediment of the East China Sea. Periodical of Ocean University of China, 48(S2): 59-66 (in Chinese with English abstract). |
| [126] |
Liu, C., Chen, L.F., Liang, S.K., et al., 2020. Distribution of Total Mercury and Methylmercury and Their Controlling Factors in the East China Sea. Environmental Pollution, 258(6): 113667. https://doi.org/10.1016/j.envpol.2019.113667 |
| [127] |
Liu, J.H., Cao, L., Huang, W., et al., 2013. Species- and Tissue-Specific Mercury Bioaccumulation in Five Fish Species from Laizhou Bay in the Bohai Sea of China. Chinese Journal of Oceanology and Limnology, 31(3): 504-513. https://doi.org/10.1007/s00343-013-2277-x |
| [128] |
Liu, J.L., Xu, X.R., Yu, S., et al., 2014. Mercury Pollution in Fish from South China Sea: Levels, Species- Specific Accumulation, and Possible Sources. Environmental Research, 131: 160-164. https://doi.org/10.1016/j.envres.2014.03.004 |
| [129] |
Liu, M.D., Xiao, W.J., Zhang, Q.R., et al., 2021a. Substantial Accumulation of Mercury in the Deepest Parts of the Ocean and Implications for the Environmental Mercury Cycle. PNAS, 118(51): e2102629118. https://doi.org/10.1073/pnas.2102629118 |
| [130] |
Liu, M.D., Zhang, Q.R., Maavara, T., et al., 2021b. Rivers as the Largest Source of Mercury to Coastal Oceans Worldwide. Nature Geoscience, 14(9): 672-677. https://doi.org/10.1038/s41561-021-00793-2 |
| [131] |
Liu, Y.L., Chen, J.B., Liu, J.F., et al., 2021c. Coprecipitation of Mercury from Natural Iodine-Containing Seawater for Accurate Isotope Measurement. Analytical Chemistry, 93(48): 15905-15912. https://doi.org/10.1021/acs.analchem.1c03060 |
| [132] |
López-Berenguer, G., Peñalver, J., Martínez-López, E., 2020. A Critical Review about Neurotoxic Effects in Marine Mammals of Mercury and Other Trace Elements. Chemosphere, 246: 125688. https://doi.org/10.1016/j.chemosphere.2019.125688 |
| [133] |
Lors, C., Tiffreau, C., Laboudigue, A., 2004. Effects of Bacterial Activities on the Release of Heavy Metals from Contaminated Dredged Sediments. Chemosphere, 56(6): 619-630. https://doi.org/10.1016/j.chemosphere.2004.04.009 |
| [134] |
Lu, X.Z., Shen, J., Guo, W., et al., 2021. Influence of Mercury Geochemistry and Volcanism on the Enrichment of Organic Matter near the Ordovician Silurian Transition in the Middle and Upper Yangtze. Earth Science, 46(7): 2329-2340 (in Chinese with English abstract). |
| [135] |
Madenjian, C.P., Janssen, S.E., Lepak, R.F., et al., 2019. Mercury Isotopes Reveal an Ontogenetic Shift in Habitat Use by Walleye in Lower Green Bay of Lake Michigan. Environmental Science & Technology Letters, 6(1): 8-13. https://doi.org/10.1021/acs.estlett.8b00592 |
| [136] |
Madigan, D.J., Li, M.L., Yin, R.S., et al., 2018. Mercury Stable Isotopes Reveal Influence of Foraging Depth on Mercury Concentrations and Growth in Pacific Bluefin Tuna. Environmental Science & Technology, 52(11): 6256-6264. https://doi.org/10.1021/acs.est.7b06429 |
| [137] |
Malinovsky, D., Latruwe, K., Moens, L., et al., 2010. Experimental Study of Mass-Independence of Hg Isotope Fractionation during Photodecomposition of Dissolved Methylmercury. Journal of Analytical Atomic Spectrometry, 25(7): 950-956. https://doi.org/10.1039/B926650J |
| [138] |
Malinovsky, D., Vanhaecke, F., 2011. Mercury Isotope Fractionation during Abiotic Transmethylation Reactions. International Journal of Mass Spectrometry, 307(1-3): 214-224. https://doi.org/10.1016/j.ijms.2011.01.020 |
| [139] |
Marvin-Dipasquale, M., Agee, J., McGowan, C., et al., 2000. Methyl-Mercury Degradation Pathways: A Comparison among Three Mercury-Impacted Ecosystems. Environmental Science & Technology, 34(23): 4908-4916. https://doi.org/10.1021/es0013125 |
| [140] |
Masbou, J., Point, D., Sonke, J.E., et al., 2015. Hg Stable Isotope Time Trend in Ringed Seals Registers Decreasing Sea Ice Cover in the Alaskan Arctic. Environmental Science & Technology, 49(15): 8977-8985. https://doi.org/10.1021/es5048446 |
| [141] |
Masbou, J., Sonke, J.E., Amouroux, D., et al., 2018. Hg-Stable Isotope Variations in Marine Top Predators of the Western Arctic Ocean. ACS Earth and Space Chemistry, 2(5): 479-490. https://doi.org/10.1021/acsearthspacechem.8b00017 |
| [142] |
Mason, R.P., Choi, A.L., Fitzgerald, W.F., et al., 2012. Mercury Biogeochemical Cycling in the Ocean and Policy Implications. Environmental Research, 119: 101-117. https://doi.org/10.1016/j.envres.2012.03.013 |
| [143] |
Mason, R.P., Fitzgerald, W.F., 1990. Alkylmercury Species in the Equatorial Pacific. Nature, 347(6292): 457-459. https://doi.org/10.1038/347457a0 |
| [144] |
Mason, R.P., Fitzgerald, W.F., 1993. The Distribution and Biogeochemical Cycling of Mercury in the Equatorial Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers, 40(9): 1897-1924. https://doi.org/10.1016/0967-0637(93)90037-4 |
| [145] |
Mason, R.P., Lawson, N.M., Sheu, G.R., 2001. Mercury in the Atlantic Ocean: Factors Controlling Air-Sea Exchange of Mercury and Its Distribution in the Upper Waters. Deep Sea Research Part II: Topical Studies in Oceanography, 48(13): 2829-2853. https://doi.org/10.1016/S0967-0645(01)00020-0 |
| [146] |
Mason, R.P., Reinfelder, J.R., Morel, F.M.M., 1996. Uptake, Toxicity, and Trophic Transfer of Mercury in a Coastal Diatom. Environmental Science & Technology, 30(6): 1835-1845. https://doi.org/10.1021/es950373d |
| [147] |
Mason, R.P., Rolfhus, K.R., Fitzgerald, W.F., 1998. Mercury in the North Atlantic. Marine Chemistry, 61(1-2): 37-53. https://doi.org/10.1016/S0304-4203(98)00006-1 |
| [148] |
Mason, R.P., Sheu, G.R., 2002. Role of the Ocean in the Global Mercury Cycle. Global Biogeochemical Cycles, 16(4): 40-1-40-14. https://doi.org/10.1029/2001GB001440 |
| [149] |
McMeans, B.C., Arts, M.T., Fisk, A.T., 2015. Impacts of Food Web Structure and Feeding Behavior on Mercury Exposure in Greenland Sharks (Somniosus Microcephalus). Science of the Total Environment, 509-510: 216-225. https://doi.org/10.1016/j.scitotenv.2014.01.128 |
| [150] |
Meador, J.P., Ernest, D.W., Kagley, A.N., 2005. A Comparison of the Non-Essential Elements Cadmium, Mercury, and Lead Found in Fish and Sediment from Alaska and California. Science of the Total Environment, 339(1-3): 189-205. https://doi.org/10.1016/j.scitotenv.2004.07.028 |
| [151] |
Meng, M., Liu, H.W., Yu, B., et al., 2021. Mercury Inputs into Eastern China Seas Revealed by Mercury Isotope Variations in Sediment Cores. Journal of Geophysical Research: Oceans, 126(8): e2020JC016891. https://doi.org/10.1029/2020JC016891 |
| [152] |
Meng, M., Shi, J.B., Yun, Z.J., et al., 2014. Distribution of Mercury in Coastal Marine Sediments of China: Sources and Transport. Marine Pollution Bulletin, 88(1-2): 347-353. https://doi.org/10.1016/j.marpolbul.2014.08.028 |
| [153] |
Meng, M., Sun, R.Y., Liu, H.W., et al., 2019. An Integrated Model for Input and Migration of Mercury in Chinese Coastal Sediments. Environmental Science & Technology, 53(5): 2460-2471. https://doi.org/10.1021/acs.est.8b06329 |
| [154] |
Meng, M., Sun, R.Y., Liu, H.W., et al., 2020. Mercury Isotope Variations within the Marine Food Web of Chinese Bohai Sea: Implications for Mercury Sources and Biogeochemical Cycling. Journal of Hazardous Materials, 384: 121379. https://doi.org/10.1016/j.jhazmat.2019.121379 |
| [155] |
Mil-Homens, M., Blum, J.D., Canario, J., et al., 2013. Tracing Anthropogenic Hg and Pb Input Using Stable Hg and Pb Isotope Ratios in Sediments of the Central Portuguese Margin. Chemical Geology, 336: 62-71. https://doi.org/10.1016/j.chemgeo.2012.02.018 |
| [156] |
Morel, F.M.M., Kraepiel, A.M.L., Amyot, M., 1998. The Chemical Cycle and Bioaccumulation of Mercury. Annual Review of Ecology and Systematics, 29(1): 543-566. https://doi.org/10.1146/annurev.ecolsys.29.1.543 |
| [157] |
Motta, L.C., Blum, J.D., Johnson, M.W., et al., 2019. Mercury Cycling in the North Pacific Subtropical Gyre as Revealed by Mercury Stable Isotope Ratios. Global Biogeochemical Cycles, 33(6): 777-794. https://doi.org/10.1029/2018GB006057 |
| [158] |
Motta, L.C., Blum, J.D., Popp, B.N., et al., 2020. Mercury Stable Isotopes in Flying Fish as a Monitor of Photochemical Degradation of Methylmercury in the Atlantic and Pacific Oceans. Marine Chemistry, 223: 103790. https://doi.org/10.1016/j.marchem.2020.103790 |
| [159] |
Munson, K.M., Lamborg, C.H., Boiteau, R.M., et al., 2018. Dynamic Mercury Methylation and Demethylation in Oligotrophic Marine Water. Biogeosciences, 15(21): 6451-6460. https://doi.org/10.5194/bg-15-6451-2018 |
| [160] |
Munson, K.M., Lamborg, C.H., Swarr, G.J., et al., 2015. Mercury Species Concentrations and Fluxes in the Central Tropical Pacific Ocean. Global Biogeochemical Cycles, 29(5): 656-676. https://doi.org/10.1002/2015gb005120 |
| [161] |
Nigro, M., Campana, A., Lanzillotta, E., et al., 2002. Mercury Exposure and Elimination Rates in Captive Bottlenose Dolphins. Marine Pollution Bulletin, 44(10): 1071-1075. https://doi.org/10.1016/S0025-326X(02)00159-5 |
| [162] |
Ogrinc, N., Hintelmann, H., Kotnik, J., et al., 2019. Sources of Mercury in Deep-Sea Sediments of the Mediterranean Sea as Revealed by Mercury Stable Isotopes. Scientific Reports, 9(1): 11626. https://doi.org/10.1038/s41598-019-48061-z |
| [163] |
Ogrinc, N., Monperrus, M., Kotnik, J., et al., 2007. Distribution of Mercury and Methylmercury in Deep-Sea Surficial Sediments of the Mediterranean Sea. Marine Chemistry, 107(1): 31-48. https://doi.org/10.1016/j.marchem.2007.01.019 |
| [164] |
Olson, B.H., Cooper, R.C., 1974. In Situ Methylation of Mercury in Estuarine Sediment. Nature, 252(5485): 682-683. https://doi.org/10.1038/252682b0 |
| [165] |
Orani, A.M., Vassileva, E., Azemard, S., et al., 2020. Comparative Study on Hg Bioaccumulation and Biotransformation in Mediterranean and Atlantic Sponge Species. Chemosphere, 260: 127515. https://doi.org/10.1016/j.chemosphere.2020.127515 |
| [166] |
Ortiz, V.L., Mason, R.P., Ward, J.E., 2015. An Examination of the Factors Influencing Mercury and Methylmercury Particulate Distributions, Methylation and Demethylation Rates in Laboratory-Generated Marine Snow. Marine Chemistry, 177: 753-762. https://doi.org/10.1016/j.marchem.2015.07.006 |
| [167] |
Outridge, P.M., Mason, R.P., Wang, F., et al., 2018. Updated Global and Oceanic Mercury Budgets for the United Nations Global Mercury Assessment 2018. Environmental Science & Technology, 52(20): 11466-11477. https://doi.org/10.1021/acs.est.8b01246 |
| [168] |
Perrot, V., Epov, V.N., Pastukhov, M.V., et al., 2010. Tracing Sources and Bioaccumulation of Mercury in Fish of Lake Baikal-Angara River Using Hg Isotopic Composition. Environmental Science & Technology, 44(21): 8030-8037. https://doi.org/10.1021/es101898e |
| [169] |
Perrot, V., Pastukhov, M.V., Epov, V.N., et al., 2012. Higher Mass-Independent Isotope Fractionation of Methylmercury in the Pelagic Food Web of Lake Baikal (Russia). Environmental Science & Technology, 46(11): 5902-5911. https://doi.org/10.1021/es204572g |
| [170] |
Perrot, V., Bridou, R., Pedrero, Z., et al., 2015. Identical Hg Isotope Mass Dependent Fractionation Signature during Methylation by Sulfate-Reducing Bacteria in Sulfate and Sulfate-Free Environment. Environmental Science & Technology, 49(3): 1365-1373. https://doi.org/10.1021/es5033376 |
| [171] |
Point, D., Sonke, J.E., Day, R.D., et al., 2011. Methylmercury Photodegradation Influenced by Sea-Ice Cover in Arctic Marine Ecosystems. Nature Geoscience, 4(3): 188-194. https://doi.org/10.1038/ngeo1049 |
| [172] |
Qiu, Y., Gai, P.X., Yue, F.G., et al., 2021. Stable Mercury Isotopes Revealing Photochemical Processes in the Marine Boundary Layer. Journal of Geophysical Research: Atmospheres, 126(16): e2021JD034630. https://doi.org/10.1029/2021JD034630 |
| [173] |
Qu, P., Pang, M., Wang, P.G., et al., 2022. Bioaccumulation of Mercury along Continuous Fauna Trophic Levels in the Yellow River Estuary and Adjacent Sea Indicated by Nitrogen Stable Isotopes. Journal of Hazardous Materials, 432(9): 128631. https://doi.org/10.1016/j.jhazmat.2022.128631 |
| [174] |
Queirós, J.P., Hill, S.L., Pinkerton, M., et al., 2020. High Mercury Levels in Antarctic Toothfish Dissostichus Mawsoni from the Southwest Pacific Sector of the Southern Ocean. Environmental Research, 187: 109680. https://doi.org/10.1016/j.envres.2020.109680 |
| [175] |
Ravichandran, M., Aiken, G. R., Reddy, M. M., et al., 1998. Enhanced Dissolution of Cinnabar (Mercuric Sulfide) by Dissolved Organic Matter Isolated from the Florida Everglades. Environmental Science & Technology, 32(21): 3305-3311. https://doi.org/10.1021/es9804058 |
| [176] |
Renedo, M., Point, D., Sonke, J. E., et al., 2021. ENSO Climate Forcing of the Marine Mercury Cycle in the Peruvian Upwelling Zone does not Affect Methylmercury Levels of Marine Avian Top Predators. Environmental Science & Technology, 55(23): 15754-15765. https://doi.org/10.1021/acs.est.1c03861 |
| [177] |
Renedo, M., Bustamante, P., Cherel, Y., et al., 2020. A “Seabird-Eye” on Mercury Stable Isotopes and Cycling in the Southern Ocean. Science of the Total Environment, 742(6): 140499. https://doi.org/10.1016/j.scitotenv.2020.140499 |
| [178] |
Rodríguez-González, P., Epov, V. N., Bridou, R., et al., 2009. Species-Specific Stable Isotope Fractionation of Mercury during Hg(II) Methylation by an Anaerobic Bacteria (Desulfobulbus Propionicus) under Dark Conditions. Environmental Science & Technology, 43(24): 9183-9188. https://doi.org/10.1021/es902206j |
| [179] |
Romero, M.B., Polizzi, P., Chiodi, L., et al., 2016. The Role of Metallothioneins, Selenium and Transfer to Offspring in Mercury Detoxification in Franciscana Dolphins (Pontoporia Blainvillei). Marine Pollution Bulletin, 109(1): 650-654. https://doi.org/10.1016/j.marpolbul.2016.05.012 |
| [180] |
Romero-Romero, S., García-Ordiales, E., Roqueñí, N., et al., 2022. Increase in Mercury and Methylmercury Levels with Depth in a Fish Assemblage. Chemosphere, 292(301): 133445. https://doi.org/10.1016/j.chemosphere.2021.133445 |
| [181] |
Rose, C.H., Ghosh, S., Blum, J.D., et al., 2015. Effects of Ultraviolet Radiation on Mercury Isotope Fractionation during Photo-Reduction for Inorganic and Organic Mercury Species. Chemical Geology, 405: 102-111. https://doi.org/10.1016/j.chemgeo.2015.02.025 |
| [182] |
Rosera, T.J., Janssen, S.E., Tate, M.T., et al., 2020. Isolation of Methylmercury Using Distillation and Anion-Exchange Chromatography for Isotopic Analyses in Natural Matrices. Analytical and Bioanalytical Chemistry, 412(3): 681-690. https://doi.org/10.1007/s00216-019-02277-0 |
| [183] |
Sattarova, V.V., Aksentov, K.I., 2018. Geochemistry of Mercury in Surface Sediments of the Kuril Basin of the Sea of Okhotsk, Kuril-Kamchatka Trench and Adjacent Abyssal Plain and Northwest Part of the Bering Sea. Deep Sea Research Part II: Topical Studies in Oceanography, 154: 24-31. https://doi.org/10.1016/j.dsr2.2017.09.002 |
| [184] |
Schartup, A. T., Ndu, U., Balcom, P. H., et al., 2015. Contrasting Effects of Marine and Terrestrially Derived Dissolved Organic Matter on Mercury Speciation and Bioavailability in Seawater. Environmental Science & Technology, 49(10): 5965-5972. https://doi.org/10.1021/es506274x |
| [185] |
Seco, J., Xavier, J.C., Bustamante, P., et al., 2020. Main Drivers of Mercury Levels in Southern Ocean Lantern Fish Myctophidae. Environmental Pollution, 264: 114711. https://doi.org/10.1016/j.envpol.2020.114711 |
| [186] |
Selin, N.E., 2009. Global Biogeochemical Cycling of Mercury: A Review. Annual Review of Environment and Resources, 34(1): 43-63. https://doi.org/10.1146/annurev.environ.051308.084314 |
| [187] |
Seller, P., Kelly, C.A., Rudd, J.W.M., et al., 1996. Photodegradation of Methylmercury in Lakes. Nature, 380(6576): 694-697. https://doi.org/10.1038/380694a0 |
| [188] |
Senn, D.B., Chesney, E.J., Blum, J.D., et al., 2010. Stable Isotope (N, C, Hg) Study of Methylmercury Sources and Trophic Transfer in the Northern Gulf of Mexico. Environmental Science & Technology, 44(5): 1630-1637. https://doi.org/10.1021/es902361j |
| [189] |
Shan, C.Q., Liu, R.H., Shan, H.X., 2006. The Research on Releasing of Mercury from Jiaozhou Bay Offshore Sediment to Seawater. Transactions of Oceanology and Limnology, (4): 44-51 (in Chinese with English abstract). |
| [190] |
Shen, J., Algeo, T.J., Chen, J., et al., 2019. Mercury in Marine Ordovician/Silurian Boundary Sections of South China is Sulfide-Hosted and Non-Volcanic in Origin. Earth and Planetary Science Letters, 511: 130-140. https://doi.org/10.1016/j.epsl.2019.01.028 |
| [191] |
Shen, J., Feng, Q., Algeo, T.J., et al., 2020. Sedimentary Host Phases of Mercury (Hg) and Implications for Use of Hg as a Volcanic Proxy. Earth and Planetary Science Letters, 543: 116333. https://doi.org/10.1016/j.epsl.2020.116333 |
| [192] |
Sherman, L.S., Blum, J.D., Johnson, K.P., et al., 2010. Mass-Independent Fractionation of Mercury Isotopes in Arctic Snow Driven by Sunlight. Nature Geoscience, 3(3): 173-177. https://doi.org/10.1038/ngeo758 |
| [193] |
Sherman, L. S., Blum, J. D., Keeler, G. J., et al., 2012. Investigation of Local Mercury Deposition from a Coal-Fired Power Plant Using Mercury Isotopes. Environmental Science & Technology, 46(1): 382-390. https://doi.org/10.1021/es202793c |
| [194] |
Sherman, L.S., Blum, J.D., Nordstrom, D.K., et al., 2009. Mercury Isotopic Composition of Hydrothermal Systems in the Yellowstone Plateau Volcanic Field and Guaymas Basin Sea-Floor Rift. Earth and Planetary Science Letters, 279(1-2): 86-96. https://doi.org/10.1016/j.epsl.2008.12.032 |
| [195] |
Siedlewicz, G., Korejwo, E., Szubska, M., et al., 2020. Presence of Mercury and Methylmercury in Baltic Sea Sediments, Collected in Ammunition Dumpsites. Marine Environmental Research, 162: 105158. https://doi.org/10.1016/j.marenvres.2020.105158 |
| [196] |
Smith, C.N., Kesler, S.E., Blum, J.D., et al., 2008. Isotope Geochemistry of Mercury in Source Rocks, Mineral Deposits and Spring Deposits of the California Coast Ranges, USA. Earth and Planetary Science Letters, 269(3-4): 399-407. https://doi.org/10.1016/j.epsl.2008.02.029 |
| [197] |
Smith, C.N., Kesler, S.E., Klaue, B., et al., 2005. Mercury Isotope Fractionation in Fossil Hydrothermal Systems. Geology, 33(10): 825-828. https://doi.org/10.1130/G21863.1 |
| [198] |
Smith, R.S., Wiederhold, J.G., Kretzschmar, R., 2015. Mercury Isotope Fractionation during Precipitation of Metacinnabar (β-HgS) and Montroydite (HgO). Environmental Science & Technology, 49(7): 4325-4334. https://doi.org/10.1021/acs.est.5b00409 |
| [199] |
Soerensen, A.L., Mason, R.P., Balcom, P.H., et al., 2013. Drivers of Surface Ocean Mercury Concentrations and Air-Sea Exchange in the West Atlantic Ocean. Environmental Science & Technology, 47(14): 7757-7765. https://doi.org/10.1021/es401354q |
| [200] |
Stetson, S.J., Gray, J.E., Wanty, R.B., et al., 2009. Isotopic Variability of Mercury in Ore, Mine-Waste Calcine, and Leachates of Mine-Waste Calcine from Areas Mined for Mercury. Environmental Science & Technology, 43(19): 7331-7336. https://doi.org/10.1021/es9006993 |
| [201] |
Stoffers, P., Hannington, M., Wright, I., et al., 1999. Elemental Mercury at Submarine Hydrothermal Vents in the Bay of Plenty, Taupo Volcanic Zone, New Zealand. Geology, 27(10): 931-934. https://doi.org/10.1130/0091-7613(1999)027<0931:EMASHV>2.3.CO;2 |
| [202] |
Štrok, M., Baya, P.A., Dietrich, D., et al., 2019. Mercury Speciation and Mercury Stable Isotope Composition in Sediments from the Canadian Arctic Archipelago. Science of the Total Environment, 671(3): 655-665. https://doi.org/10.1016/j.scitotenv.2019.03.424 |
| [203] |
Štrok, M., Baya, P.A., Hintelmann, H., 2015. The Mercury Isotope Composition of Arctic Coastal Seawater. Comptes Rendus Geoscience, 347(7-8): 368-376. https://doi.org/10.1016/j.crte.2015.04.001 |
| [204] |
Štrok, M., Hintelmann, H., Dimock, B., 2014. Development of Pre-Concentration Procedure for the Determination of Hg Isotope Ratios in Seawater Samples. Analytica Chimica Acta, 851: 57-63. https://doi.org/10.1016/j.aca.2014.09.005 |
| [205] |
Sun, G.Y., Sommar, J., Feng, X.B., et al., 2016. Mass-Dependent and -Independent Fractionation of Mercury Isotope during Gas-Phase Oxidation of Elemental Mercury Vapor by Atomic Cl and Br. Environmental Science & Technology, 50(17): 9232-9241. https://doi.org/10.1021/acs.est.6b01668 |
| [206] |
Sun, R.Y., Enrico, M., Heimbürger, L.E., et al., 2013a. A Double-Stage Tube Furnace—Acid-Trapping Protocol for the Pre-Concentration of Mercury from Solid Samples for Isotopic Analysis. Analytical and Bioanalytical Chemistry, 405(21): 6771-6781. https://doi.org/10.1007/s00216-013-7152-2 |
| [207] |
Sun, R.Y., Heimburger, L.E., Sonke, J.E., et al., 2013b. Mercury Stable Isotope Fractionation in Six Utility Boilers of Two Large Coal-Fired Power Plants. Chemical Geology, 336: 103-111. https://doi.org/10.1016/j.chemgeo.2012.10.055 |
| [208] |
Sun, R.Y., Yuan, J.J., Sonke, J.E., et al., 2020a. Methylmercury Produced in Upper Oceans Accumulates in Deep Mariana Trench Fauna. Nature Communications, 11(1): 3389. https://doi.org/10.1038/s41467-020-17045-3 |
| [209] |
Sun, X., Yin, R.S., Hu, L.M., et al., 2020b. Isotopic Tracing of Mercury Sources in Estuarine-Inner Shelf Sediments of the East China Sea. Environmental Pollution, 262: 114356. https://doi.org/10.1016/j.envpol.2020.114356 |
| [210] |
Sunderland, E.M., Krabbenhoft, D.P., Moreau, J.W., et al., 2009. Mercury Sources, Distribution, and Bioavailability in the North Pacific Ocean: Insights from Data and Models. Global Biogeochemical Cycles, 23(2):GB2010. https://doi.org/10.1029/2008GB003425 |
| [211] |
Sunderland, E.M., Mason, R.P., 2007. Human Impacts on Open Ocean Mercury Concentrations. Global Biogeochemical Cycles, 21(4): GB4022. https://doi.org/10.1029/2006GB002876 |
| [212] |
Them, T.R., Jagoe, C.H., Caruthers, A.H., et al., 2019. Terrestrial Sources as the Primary Delivery Mechanism of Mercury to the Oceans across the Toarcian Oceanic Anoxic Event (Early Jurassic). Earth and Planetary Science Letters, 507: 62-72. https://doi.org/10.1016/j.epsl.2018.11.029 |
| [213] |
Tsui, M.T.K., Blum, J.D., Kwon, S.Y., 2020. Review of Stable Mercury Isotopes in Ecology and Biogeochemistry. Science of the Total Environment, 716: 135386. https://doi.org/10.1016/j.scitotenv.2019.135386 |
| [214] |
Ullrich, S.M., Tanton, T.W., Abdrashitova, S.A., 2001. Mercury in the Aquatic Environment: A Review of Factors Affecting Methylation. Critical Reviews in Environmental Science and Technology, 31(3): 241-293. https://doi.org/10.1080/20016491089226 |
| [215] |
Vieira, H.C., Bordalo, M.D., Figueroa, A.G., et al., 2021. Mercury Distribution and Enrichment in Coastal Sediments from Different Geographical Areas in the North Atlantic Ocean. Marine Pollution Bulletin, 165: 112153. https://doi.org/10.1016/j.marpolbul.2021.112153 |
| [216] |
Voegborlo, R.B., Akagi, H., 2007. Determination of Mercury in Fish by Cold Vapour Atomic Absorption Spectrometry Using an Automatic Mercury Analyzer. Food Chemistry, 100(2): 853-858. https://doi.org/10.1016/j.foodchem.2005.09.025 |
| [217] |
Wagemann, R., Trebacz, E., Boila, G., et al., 1998. Methylmercury and Total Mercury in Tissues of Arctic Marine Mammals. Science of the Total Environment, 218(1): 19-31. https://doi.org/10.1016/S0048-9697(98)00192-2 |
| [218] |
Wang, C.J., Ci, Z.J., Wang, Z.W., et al., 2016. Air-Sea Exchange of Gaseous Mercury in the East China Sea. Environmental Pollution, 212: 535-543. https://doi.org/10.1016/j.envpol.2016.03.016 |
| [219] |
Wang, C.J., Wang, Z.W., Zhang, X.S., 2020. Characteristics of Mercury Speciation in Seawater and Emission Flux of Gaseous Mercury in the Bohai Sea and Yellow Sea. Environmental Research, 182(7): 109092. https://doi.org/10.1016/j.envres.2019.109092 |
| [220] |
Wang, R., Wang, W.X., 2010. Importance of Speciation in Understanding Mercury Bioaccumulation in Tilapia Controlled by Salinity and Dissolved Organic Matter. Environmental Science & Technology, 44(20): 7964-7969. https://doi.org/10.1021/es1011274 |
| [221] |
Wang, X.Y., He, C.F., Sun, R.G., et al., 2015. Releases and Methylation of Soil Mercury in Water-Level Fluctuating Zone of the Three Gorges Reservoir Region. Environmental Chemistry, 34(1): 172-177 (in Chinese with English abstract). |
| [222] |
Wang, Z.F., Huang, K.J., Lu, Y.W., et al., 2021. Tracing Earth's Oxygenation Events Using Metal Stable Isotopes. Earth Science, 46(12): 4427-4451 (in Chinese with English abstract). |
| [223] |
Wang, Z.H., Chen, J.B., Feng, X.B., et al., 2012. Progress in the Study of Stable Hg Isotope Geochemistry. Earth and Environment, 40(4): 599-610 (in Chinese with English abstract). |
| [224] |
Watras, C.J., Morrison, K.A., Host, J.S., et al., 1995. Concentration of Mercury Species in Relationship to Other Site-Specific Factors in the Surface Waters of Northern Wisconsin Lakes. Limnology and Oceanography, 40(3): 556-565. https://doi.org/10.4319/lo.1995.40.3.0556 |
| [225] |
Weber, J. H., 1993. Review of Possible Paths for Abiotic Methylation of Mercury(II) in the Aquatic Environment. Chemosphere, 26(11): 2063-2077. https://doi.org/10.1016/0045-6535(93)90032-Z |
| [226] |
Whalin, L., Kim, E.H., Mason, R., 2007. Factors Influencing the Oxidation, Reduction, Methylation and Demethylation of Mercury Species in Coastal Waters. Marine Chemistry, 107(3): 278-294. https://doi.org/10.1016/j.marchem.2007.04.002 |
| [227] |
Whiteside, J.H., Grice, K., 2016. Biomarker Records Associated with Mass Extinction Events. Annual Review of Earth and Planetary Sciences, 44: 581-612. https://doi.org/10.1146/annurev-earth-060115-012501 |
| [228] |
Wiederhold, J.G., Cramer, C.J., Daniel, K., et al., 2010. Equilibrium Mercury Isotope Fractionation between Dissolved Hg(II) Species and Thiol-Bound Hg. Environmental Science & Technology, 44(11): 4191-4197. https://doi.org/10.1029/2006GB00287610.1021/es100205t |
| [229] |
Wiederhold, J.G., Skyllberg, U., Drott, A., et al., 2015. Mercury Isotope Signatures in Contaminated Sediments as a Tracer for Local Industrial Pollution Sources. Environmental Science & Technology, 49(1): 177-185. https://doi.org/10.1021/es5044358 |
| [230] |
Wiederhold, J.G., Smith, R.S., Siebner, H., et al., 2013. Mercury Isotope Signatures as Tracers for Hg Cycling at the New Idria Hg Mine. Environmental Science & Technology, 47(12): 6137-6145. https://doi.org/10.1021/es305245z |
| [231] |
Wintle, N. J. P., Duffield, D. A., Barros (Deceased), N. B., et al., 2011. Total Mercury in Stranded Marine Mammals from the Oregon and Southern Washington Coasts. Marine Mammal Science, 27(4): E268-E278. https://doi.org/10.1111/j.1748-7692.2010.00461.x |
| [232] |
Xu, W.H., Yan, W., Huang, W.X., et al., 2013. Mercury Profiles in Surface Sediments from Ten Bays along the Coast of Southern China. Marine Pollution Bulletin, 76(1-2): 394-399. https://doi.org/10.1016/j.marpolbul.2013.07.047 |
| [233] |
Xun, L. Y., Campbell, N. E. R., Rudd, J. W. M., 1987. Measurements of Specific Rates of Net Methyl Mercury Production in the Water Column and Surface Sediments of Acidified and Circumneutral Lakes. Canadian Journal of Fisheries and Aquatic Sciences, 44(4): 750-757. https://doi.org/10.1139/f87-091 |
| [234] |
Yang, J., Kim, H., Kang, C.K., et al., 2017. Distributions and Fluxes of Methylmercury in the East/Japan Sea. Deep-Sea Research Part I: Oceanographic Research Papers, 130: 47-54. https://doi.org/10.1016/j.dsr.2017.10.009 |
| [235] |
Yang, T.T., Liu, Y., Tan, S., et al., 2021. The Role of Intestinal Microbiota of the Marine Fish (Acanthopagrus Latus) in Mercury Biotransformation. Environmental Pollution, 277: 116768. https://doi.org/10.1016/j.envpol.2021.116768 |
| [236] |
Yang, Y.H., Kwon, S.Y., Tsui, M.T.K., et al., 2022. Ecological Traits of Fish for Mercury Biomonitoring: Insights from Compound-Specific Nitrogen and Stable Mercury Isotopes. Environmental Science & Technology, 56(15): 10808-10817. https://doi.org/10.1021/acs.est.2c02532 |
| [237] |
Yin, R. S., Feng, X. B., Chen, B. W., et al., 2015. Identifying the Sources and Processes of Mercury in Subtropical Estuarine and Ocean Sediments Using Hg Isotopic Composition. Environmental Science & Technology, 49(3): 1347-1355. https://doi.org/10.1021/es504070y |
| [238] |
Yin, R.S., Feng, X.B., Li, X.D., et al., 2014. Trends and Advances in Mercury Stable Isotopes as a Geochemical Tracer. Trends in Environmental Analytical Chemistry, 2: 1-10. https://doi.org/10.1016/j.teac.2014.03.001 |
| [239] |
Yin, R.S., Feng, X.B., Shi, W.F., 2010. Application of the Stable-Isotope System to the Study of Sources and Fate of Hg in the Environment: A Review. Applied Geochemistry, 25(10): 1467-1477. https://doi.org/10.1016/j.apgeochem.2010.07.007 |
| [240] |
Yin, R.S., Feng, X.B., Wang, J.X., et al., 2013. Mercury Isotope Variations between Bioavailable Mercury Fractions and Total Mercury in Mercury Contaminated Soil in Wanshan Mercury Mine, SW China. Chemical Geology, 336: 80-86. https://doi.org/10.1016/j.chemgeo.2012.04.017 |
| [241] |
Yin, R.S., Feng, X.B., Zhang, J.J., et al., 2016. Using Mercury Isotopes to Understand the Bioaccumulation of Hg in the Subtropical Pearl River Estuary, South China. Chemosphere, 147: 173-179. https://doi.org/10.1016/j.chemosphere.2015.12.100 |
| [242] |
Yin, R.S., Guo, Z.G., Hu, L.M., et al., 2018. Mercury Inputs to Chinese Marginal Seas: Impact of Industrialization and Development of China. Journal of Geophysical Research: Oceans, 123(8): 5599-5611. https://doi.org/10.1029/2017jc013691 |
| [243] |
Yu, C.H., Xiao, W.J., Xu, Y.P., et al., 2021. Spatial-Temporal Characteristics of Mercury and Methylmercury in Marine Sediment under the Combined Influences of River Input and Coastal Currents. Chemosphere, 274: 129728. https://doi.org/10.1016/j.chemosphere.2021.129728 |
| [244] |
Zaferani, S., Pérez-Rodríguez, M., Biester, H., 2018. Diatom Ooze—A Large Marine Mercury Sink. Science, 361(6404): 797-800. https://doi.org/10.1126/science.aat2735 |
| [245] |
Zhang, T., Hsu-Kim, H., 2010. Photolytic Degradation of Methylmercury Enhanced by Binding to Natural Organic Ligands. Nature Geoscience, 3(7): 473-476. https://doi.org/10.1038/ngeo892 |
| [246] |
Zhang, W., Sun, G.Y., Yin, R.S., et al., 2021. Separation of Methylmercury from Biological Samples for Stable Isotopic Analysis. Journal of Analytical Atomic Spectrometry, 36(11): 2415-2422. https://doi.org/10.1039/D1JA00236H |
| [247] |
Zhang, Y., Horowitz, H., Wang, J., et al., 2019. A Coupled Global Atmosphere-Ocean Model for Air-Sea Exchange of Mercury: Insights into Wet Deposition and Atmospheric Redox Chemistry. Environmental Science & Technology, 53(9): 5052-5061. https://doi.org/10.1021/acs.est.8b06205 |
| [248] |
Zhang, Y. T., Sun, R. G., Ma, M., et al., 2012. Study of Inhibition Mechanism of NO3 - on Photoreduction of Hg(II) in Artificial Water. Chemosphere, 87(2): 171-176. https://doi.org/10.1016/j.chemosphere.2011.11.077 |
| [249] |
Zhang, Y.X., Jacob, D.J., Dutkiewicz, S., et al., 2015. Biogeochemical Drivers of the Fate of Riverine Mercury Discharged to the Global and Arctic Oceans: River Mercury in the Ocean. Global Biogeochemical Cycles, 29(6): 854-864. https://doi.org/10.1002/2015GB005124 |
| [250] |
Zheng, J., Yamada, M., Yoshida, S., 2011. Sensitive Iodine Speciation in Seawater by Multi-Mode Size- Exclusion Chromatography with Sector-Field ICP-MS. Journal of Analytical Atomic Spectrometry, 26(9): 1790-1795. https://doi.org/10.1039/C0JA00270D |
| [251] |
Zheng, W., Demers, J. D., Lu, X., et al., 2019. Mercury Stable Isotope Fractionation during Abiotic Dark Oxidation in the Presence of Thiols and Natural Organic Matter. Environmental Science & Technology, 53(4): 1853-1862. https://doi.org/10.1021/acs.est.8b05047 |
| [252] |
Zheng, W., Foucher, D., Hintelmann, H., 2007. Mercury Isotope Fractionation during Volatilization of Hg(0) from Solution into the Gas Phase. Journal of Analytical Atomic Spectrometry, 22(9): 1097-1104. https://doi.org/10.1039/B705677J |
| [253] |
Zheng, W., Gilleaudeau, G. J., Kah, L. C., et al., 2018. Mercury Isotope Signatures Record Photic Zone Euxinia in the Mesoproterozoic Ocean. PNAS, 115(42): 10594-10599. https://doi.org/10.1073/pnas.1721733115 |
| [254] |
Zheng, W., Hintelmann, H., 2009. Mercury Isotope Fractionation during Photoreduction in Natural Water is Controlled by Its Hg/Doc Ratio. Geochimica et Cosmochimica Acta, 73(22): 6704-6715. https://doi.org/10.1016/j.gca.2009.08.016 |
| [255] |
Zheng, W., Hintelmann, H., 2010a. Isotope Fractionation of Mercury during Its Photochemical Reduction by Low-Molecular-Weight Organic Compounds. The Journal of Physical Chemistry A, 114(12): 4246-4253. https://doi.org/10.1021/jp9111348 |
| [256] |
Zheng, W., Hintelmann, H., 2010b. Nuclear Field Shift Effect in Isotope Fractionation of Mercury during Abiotic Reduction in the Absence of Light. The Journal of Physical Chemistry A, 114(12): 4238-4245. https://doi.org/10.1021/jp910353y |
| [257] |
Zheng, W., Liang, L.Y., Gu, B.H., 2012. Mercury Reduction and Oxidation by Reduced Natural Organic Matter in Anoxic Environments. Environmental Science & Technology, 46(1): 292-299. https://doi.org/10.1021/es203402p |
| [258] |
Zheng, W., Zhao, Y.Q., Sun, R.Y., et al., 2021. The Mechanism of Mercury Stable Isotope Fractionation: A Review. Bulletin of Mineralogy, Petrology and Geochemistry, 40(5): 1087-1110, 998 (in Chinese with English abstract). |
| [259] |
Zhong, H., Wang, W. X., 2006. Metal-Solid Interactions Controlling the Bioavailability of Mercury from Sediments to Clams and Sipunculans. Environmental Science & Technology, 40(12): 3794-3799. https://doi.org/10.1021/es0523441 |
| [260] |
Zhu, C.W., Tao, C.H., Yin, R.S., et al., 2020. Seawater versus Mantle Sources of Mercury in Sulfide-Rich Seafloor Hydrothermal Systems, Southwest Indian Ridge. Geochimica et Cosmochimica Acta, 281: 91-101. https://doi.org/10.1016/j.gca.2020.05.008 |
| [261] |
冯新斌, 尹润生, 俞奔, 等, 2015. 汞同位素地球化学概述. 地学前缘, 22(5): 124-135. |
| [262] |
李春辉, 汪婷, 梁汉东, 等, 2017. 汞同位素自然库存研究进展. 生态环境学报, 26(9): 1627-1638. |
| [263] |
刘畅, 陈路锋, 高华阳, 等, 2018. 东海沉积物汞形态分布及控制因素. 中国海洋大学学报(自然科学版), 48(S2): 59-66. |
| [264] |
卢贤志, 沈俊, 郭伟, 等, 2021. 中上扬子地区奥陶纪‒志留纪之交火山作用对有机质富集的影响. 地球科学, 46(7): 2329-2340. |
| [265] |
单长青, 刘汝海, 单红仙, 2006. 胶州湾近岸沉积物‒海水汞的释放研究. 海洋湖沼通报, (4): 44-51. |
| [266] |
王欣悦, 贺春凤, 孙荣国, 等, 2015. 三峡库区消落带土壤淹水过程中汞的释放及甲基化特征. 环境化学, 34(1): 172-177. |
| [267] |
王振飞, 黄康俊, 路雅雯, 等, 2021. 金属稳定同位素示踪地球增氧事件. 地球科学, 46(12): 4427-4451. |
| [268] |
王柱红, 陈玖斌, 冯新斌, 等, 2012. Hg稳定同位素地球化学研究进展. 地球与环境, 40(4): 599-610. |
| [269] |
郑旺, 赵亚秋, 孙若愚, 等, 2021. 汞的稳定同位素分馏机理. 矿物岩石地球化学通报, 40(5): 1087-1110, 998. |
国家自然科学基金国际(地区)合作与交流项目(41961144028)
天津市自然科学基金项目(20JCQNJC01650)
/
| 〈 |
|
〉 |