北澜沧江结合带晚白垩世花岗岩成因及其地球动力学意义

李洪梁 ,  杨东旭 ,  田尤 ,  李元灵 ,  王灵 ,  李宝幸

地球科学 ›› 2023, Vol. 48 ›› Issue (04) : 1330 -1350.

PDF (8060KB)
地球科学 ›› 2023, Vol. 48 ›› Issue (04) : 1330 -1350. DOI: 10.3799/dqkx.2022.466

北澜沧江结合带晚白垩世花岗岩成因及其地球动力学意义

作者信息 +

Genesis and Its Geodynamic Significance of Late Cretaceous Granites in North Lancang River Suture

Author information +
文章历史 +
PDF (8252K)

摘要

北澜沧江结合带花岗岩的研究主要集中于印支期,对白垩纪花岗岩却鲜有报道.在野外地质调查基础上,对藏东类乌齐地区新发现的花岗岩进行了岩石地球化学、锆石U-Pb定年和Hf同位素研究.结果显示,2件花岗岩样品成岩年龄分别为75.06±0.82 Ma(MSWD=1.90)、74.89±0.65 Ma(MSWD=1.05),为晚白垩世岩浆活动的产物;花岗岩含白云母(~5%),具高SiO2(69.07%~69.39%)、富K2O(5.31%~5.77%)、低Mg#(0.30~0.33)的特点,A/CNK比值为1.11~1.15,富集大离子亲石元素和LREE,亏损高场强元素和HREE,轻、重稀土元素强烈分馏,负Eu异常显著,属过铝质S型花岗岩,其源岩为变泥质岩和变质杂砂岩.岩石具分布较为分散的锆石ε Hft)值(-4.6~1.1)和古老的Hf同位素二阶段模式年龄(T DM2,1.07~1.43 Ga).综合分析认为,北澜沧江结合带晚白垩世花岗岩是拉萨-南羌塘地体后碰撞伸展构造背景下,由加厚岩石圈拆沉引发软流圈物质上涌和减压熔融形成的幔源镁铁质岩浆底侵于古老地壳,诱发其部分熔融,并与之混合形成的母岩浆,再经历一定程度分离结晶作用而形成,指示晚白垩世藏东类乌齐地区造山演化处于后期造山带破坏阶段.

Abstract

Studies on granites in the North Lancang River suture were mainly focused on the Indosinian period, but little on the Cretaceous. Based on the field geological survey, the petrogeochemistry, zircon U-Pb dating and Hf isotope of the newly discovered granites in Leiwuqi area, East Tibet are carried out. The results show that the diagenetic ages of the two granites are 75.06±0.82 Ma (MSWD=1.90) and 74.89±0.65 Ma (MSWD=1.05), respectively, which are the products of Late Cretaceous magmatic activity. The granites contain muscovite (~5%) and are characterized by high SiO2 (69.07%-69.39%), rich K2O (5.31%-5.77%) and low Mg# (0.30-0.33), with A/CNK ratio of 1.11-1.15, and are enriched in large ion lithophile elements (LILE, e.g., Rb, Th, U and Pb) and LREE, depleted in high field strength elements (HFSE, e.g., Ba, Nb, Sr, P and Ti) and HREE, with strong fractionation of light and heavy rare earth elements and significant negative Eu anomaly. These features suggest that the granites belong to the peraluminaceous S-type granite, and the source rocks are metamorphic argillaceous rocks and greywacke. The zircon ε Hf(t) value of the granite (-4.6 to 1.1) varies widely and are of ancient two-stage Hf isotopic model ages (T DM2, 1.07-1.43 Ga). Comprehensive analysis shows that the Late Cretaceous granites in the North Lancang River suture were generated by a degree of separation crystallization of parent magma, derived from mantle derived mafic magma formed by the upwelling and decompression melting of asthenosphere materials caused by the delamination of the thickened lithosphere, underplating into the ancient crust, inducing the melting of the ancient crust and mixing with it, which indicates that the orogenic evolution of the Leiwuqi area in East Tibet was in the late orogenic destruction stage during Late Cretaceous.

关键词

S型花岗岩 / 晚白垩世 / 后碰撞 / 地球化学 / 锆石U-Pb定年与Hf同位素 / 北澜沧江结合带 / 岩石学

Key words

S-type granite / Late Cretaceous / post-collision / geochemistry / zircon U-Pb dating and Hf isotope / North Lancang River suture / petrology

引用本文

引用格式 ▾
李洪梁,杨东旭,田尤,李元灵,王灵,李宝幸. 北澜沧江结合带晚白垩世花岗岩成因及其地球动力学意义[J]. 地球科学, 2023, 48(04): 1330-1350 DOI:10.3799/dqkx.2022.466

登录浏览全文

4963

注册一个新账户 忘记密码

0 引言

北澜沧江结合带位于青藏高原东缘,经查吾拉-札萨-阿尔下穷向西与龙木错-双湖结合带相连,继续向西被阿尔金走滑断裂左行位移(王立全等, 2013),向南呈北北西-南南东向沿北澜沧江西岸展布,与南澜沧江结合带相接(王保弟等, 2011).龙木错-双湖-澜沧江结合带最早由李才(1987)提出,被认为是石炭纪-二叠纪冈瓦纳与欧亚大陆的界线,但此后较长时间内因未发现代表洋盆残留的典型蛇绿岩套及高压-超高压变质岩等组合而备受质疑(Kapp et al., 2003).随着区域地质调查工作成果的不断积累,李才(2008)通过对比龙木错-双湖-澜沧江结合带两侧地体基底岩性、航磁特征、古生代沉积建造、古生物及火山岩和变质岩系的差异性,证实了这一推论的合理性,但同时指出龙木错-双湖结合带与澜沧江结合带的具体衔接仍有待进一步研究确定(李才等, 2009).最新的研究资料显示,龙木错-双湖结合带与昌宁-孟连结合带在构造属性上具亲缘性,是古生代特提斯洋的残余,即龙木错-双湖-昌宁-孟连结合带共同构成了原-古特提斯洋连续演化消亡的痕迹,代表了青藏高原泛华夏大陆与冈瓦纳大陆的分界线(王保弟等, 2021).

通过对龙木错-双湖-澜沧江结合带中北部及东部岩浆岩及相关变质岩的系统研究发现,该结合带所代表的洋盆在中-晚寒武世开启,发育了505~432 Ma的洋中脊蛇绿岩(Xu et al., 2015Zhai et al., 2016, 2011),并于晚泥盆世-早三叠世向北及北东俯冲,在羌中及藏东形成375~246 Ma的岛弧岩浆岩(Liu et al., 2011Zhai et al., 2011Fan et al., 2016, 2017);中三叠世,大洋板片断离,导致高压-超高压岩石快速折返,形成羌中蓝片岩-榴辉岩带(Peng et al., 2020Zhang et al., 2011).晚三叠世,洋盆闭合,南、北羌塘地体对接碰撞,在带内形成大量碰撞型花岗岩(王保弟等, 2011Hu et al., 2014Tao et al., 2014Wang et al., 2018).众多学者针对北澜沧江结合带二叠纪-三叠纪花岗质岩石的研究进展,进一步丰富和完善了原-古特提斯洋盆的连续演化过程.

近年来的地质调查发现,北澜沧江结合带除大面积展布印支期花岗岩外,还发育白垩纪花岗岩(刘俊, 2020),因紧邻班公湖-怒江结合带,构造演化复杂,使得区域岩浆活动受澜沧江洋和班公湖-怒江洋演化的双重制约(陈言飞等, 2020),蕴含了特提斯洋演化的重要地质信息.花岗岩作为大陆地壳演化和改造的产物,记录了大陆形成的全过程,是反演洋盆闭合后盆缘山脉形成过程的重要岩石探针.洋盆关闭导致陆缘造山带的形成是显生宙大陆增长的基本形式,而新生陆壳形成的标志即是伴随造山过程形成的大量花岗岩(肖庆辉等, 1995翟明国, 2017).因此,厘定北澜沧江结合带白垩纪花岗岩浆作用,有助于建立区域岩浆时空格架,对理解藏东地区大陆再造的地球动力学机制具有重要意义.以往的研究主要集中在北澜沧江结合带二叠纪-三叠纪花岗岩(王保弟等, 2011; Hu et al., 2014; Tao et al., 2014; Wang et al., 2018),对白垩纪岩浆事件鲜有报道,限制了中生代晚期特提斯构造的时空演化研究.笔者最近在藏东类乌齐地区野外地质调查时,首次在北澜沧江结合带内识别出晚白垩世花岗岩.对于该套岩石的成岩时代及构造背景,目前尚无年代学及地球化学数据约束.本文以此为研究对象,开展了LA-ICP-MS锆石U-Pb定年和Hf同位素、主、微量元素地球化学等研究,限定岩浆活动时限,剖析岩石成因及其地球动力学背景,为进一步厘清区域特提斯构造演化提供新证据.

1 地质背景与样品

青藏高原的主体是由南侧冈瓦纳大陆北缘和北侧泛华夏大陆群西南缘不断扩张、裂离,经洋盆削减、弧-弧(陆)碰撞、拼贴形成的复杂构造域,具明显的条带状镶嵌结构(潘桂棠等, 2012吴福元等, 2020; Metcalfe, 2021;Spahić, 2022),由南向北依次划分为中生代冈底斯-喜马拉雅造山系、龙木错-双湖-昌宁-孟连结合带和晚古生代羌塘-三江造山系(图1).研究区位于藏东类乌齐地区,龙木错-双湖-澜沧江结合带呈北西-南东向斜穿而过,南邻班公湖-怒江结合带,两条结合带之间为南羌塘地体.区域地层除零星展布的古生界地体残片外,主要以上三叠统和侏罗系为主(图2a),其中上三叠统地层主体为一套以灰色为主的碎屑岩夹碳酸盐建造.侏罗系地层角度不整合于上三叠统之上,为紫红色的薄-中层砂、泥岩互层.研究区构造线与区域构造线一致,呈北西-南东向展布,主要发育逆冲断裂及相关褶皱.

研究区变质岩分布广泛,沿北澜沧江结合带展布,前人将其命名为吉塘岩群(雍永源等, 1990),主要岩石类型包括片麻岩、斜长角闪岩、变粒岩及少量片岩等,经历了绿片岩-角闪岩相变质,与中生界沉积地层呈断层接触(图2a).近年来的研究显示,吉塘岩群是南羌塘地体结晶基底的重要组成部分,形成于古-中元古代(Pt1-2),随后还经历了泛非期、印支期岩浆活动及印支期变质作用(陈奇等, 2019).区内岩浆岩主要为侵入岩,呈北西-南东向分布于吉塘岩群内部或边部,岩体长轴延伸与片麻理近于一致,两者接触部位可见微弱的混合岩化.岩性以花岗质岩石为主,包括花岗岩、花岗闪长岩和二长花岗岩,形成于晚二叠世-早三叠世,多遭受了不同程度的变质作用影响,可见微弱的片麻状构造.

新近发现的晚白垩世花岗岩体位于藏东类乌齐县城北侧,呈岩脉产于吉塘岩群内部及边部(图2b).本次研究共采集了5个岩石样品,采样位置如图2b所示.岩石呈灰色、灰绿色,中-粗粒粒状结构、似斑状结构,块状构造,无明显变形、变质(图3a).镜下可见花岗岩主要由石英(30%~35%)、钾长石(~30%)、斜长石(~25%)和少量黑云母(5%~10%)、白云母(~5%)组成(图3b).其中,石英呈他形粒状,无色透明,粒径多在0.2~2.5 mm之间;钾长石为板状或他形粒状,多见条纹结构,具微弱粘土化,粒径0.5~3.0 mm;斜长石呈半自形板条状,发育聚片双晶,具绢云母化,粒径多在0.2~4.0 mm之间,最大可达15 mm;黑云母呈片状,褐红色、褐黄色,三级干涉色,可见绿泥石化;白云母为片状、鳞片状,无色.

2 分析测试方法

样品锆石分离及阴极发光(CL)、背散射(BSE)成像在河北省廊坊市诚信地质服务有限公司进行.首先将样品破碎至200目,经淘洗、烘干及筛选,采用磁法和重液法分离重砂,然后在双目镜下挑选晶形良好的锆石制靶.锆石制靶完成后,利用安装有阴极发光仪的扫描电子显微镜进行阴极发光(CL)和背散射(BSE)成像,实验条件为15 kV/120 A,最后选出环带清晰的锆石颗粒进行LA-ICP-MS锆石U-Pb定年和Hf同位素测试.

LA-ICP-MS锆石U-Pb定年和Hf同位素测试均在中国地质调查局西安地质调查中心完成,测试样品为ECGK03和ECGK04.测试仪器为Agilent 7700x型四级杆型等离子体质谱仪、Neptune Plus型多接收等离子体质谱仪及与之配套的GeoLas Pro激光剥蚀系统,实验过程中以He作为载气、Ar为补偿气用以调节灵敏度.样品气溶胶部分被输送到四级杆型等离子体质谱仪进行锆石微量元素和U-Pb同位素年龄测定,另一部分被输送到多接收等离子体质谱仪中进行Hf同位素测试.详细仪器参数和测试过程可参考(李艳广等, 2015李洪梁等,2021).锆石U-Pb测年以91500标准锆石作为外标,GJ-1同时作为锆石测年和Hf同位素监控标样,U、Th含量以NIST610为外标.对锆石U-Pb年龄数据的处理使用Glitter 4.0,年龄数据计算、谐和图使用Isoplot R (Vermeesch, 2018).单点年龄及同位素比值误差均为1σ.Hf同位素校正计算采用实验室计算机程序Hflow来完成,本次测试GJ-1标样176Hf/177Hf同位素测试精度为0.282 030±20(2σ).

全岩主量、微量元素测试在南京大学内生金属矿床成矿机制研究国家重点实验室完成.主量元素测试采用X荧光光谱法,仪器型号为Thermo Scientific ARL 9900,测试电压40 kV,测试电流70 mA,每个元素扫描时间20 s,测试精度优于2%.微量元素测试采用电感耦合等离子体质谱法(ICP-MS),首先采用酸溶法将样品粉末制成溶液,然后在Aurora M90 ICP-MS等离子质谱仪上测试,利用标样对仪器状态和测试数据质量进行实时监测,含量大于1%的元素测试精度优于1%,含量小于1%的元素测试精度优于10%.

3 测试结果

3.1 锆石U-Pb年代学与Lu-Hf同位素

本次研究选取了2件花岗岩样品(ECGK03和ECGK04)进行了锆石年代学研究,锆石阴极发光图像如图4所示.锆石粒径较大,多呈自形长柱状,长宽比多在2∶1~5∶1,发育清晰的韵律环带,无残留核.2件样品LA-ICP-MS锆石U-Pb年龄分析数据见表1.整体上,测点的U、Pb含量变化较小,其中ECGK03样品19个测点和ECGK04样品15个测点的U含量分别介于190.1×10-6~501.6×10-6、167.5×10-6~713.6×10-6,Th含量分别介于1 356.1×10-6~2 324.1×10-6、1 229.9×10-6~2 451.3×10-6,Th/U比值为0.09~0.33、0.12~0.39,除ECGK03样品03号测点的Th/U比值小于0.1外,其余均大于0.1(表1),具典型岩浆锆石特征(Hoskin, 2005吴元保和郑永飞, 2004);在锆石稀土元素球粒陨石标准化配分图(图5a,数据略)上,花岗岩锆石显示出轻稀土亏损、重稀土富集的特征,具岩浆成因锆石的稀土元素分配趋势(Hoskin, 2005);在Ce/Ce*-SmN/LaN图解(图5b)上,所有测点靠近岩浆成因锆石区域,与典型岩浆锆石特征(Hoskin, 2005)相似.

本次研究涉及的34颗锆石年龄分布集中,数据基本均匀地分布于谐和线上或附近(图6),表明锆石U-Pb体系在岩石形成之后处于封闭状态,定年结果可代表花岗岩的结晶年龄.样品ECGK03中19颗锆石206Pb/238U年龄介于72.8~77.9 Ma,加权平均年龄为75.06±0.82 Ma(MSWD=1.90);样品ECGK04中15颗锆石206Pb/238U年龄介于72.6~77.8 Ma,加权平均年龄为74.89±0.65 Ma(MSWD=1.05).2件样品锆石U-Pb年龄在误差范围内一致,约75 Ma,表明花岗岩形成于晚白垩世,属燕山晚期岩浆活动的产物.

锆石Hf同位素测试点位与锆石U-Pb测年点位基本一致(图4),ε Hft)值等相关数据均根据各测试点位单点年龄计算,结果如表2所示.2个样品累计34个测点的176Lu/177Hf和176Yb/177Hf比值分别介于0.000 632~0.001 795、0.282 597~0.282 758,176Lu/177Hf比值变化较小且均小于0.002,表明锆石在花岗岩形成之后的地质演化过程中,由176Lu衰变形成的177Hf极少,所测得的176Hf/177Hf比值代表了成岩时岩浆体系的Hf同位素组成(Kinny et al., 1991).锆石f Lu/Hf值为-0.98~-0.95,平均值为-0.96,小于硅铝质(-0.72)和硅镁质地壳(-0.34),因此二阶段模式年龄(T MD2)可代表花岗岩源区物质在地壳的存留年龄(Amelin et al., 1999Vervoort and Blichert-Toft, 1999吴福元等, 2007).34颗锆石的ε Hft)值为-4.6~1.1,平均值为-1.8,分布较为集中,相应的T MD2介于1.07~1.43 Ga,平均值为1.26 Ga.

3.2 全岩地球化学

样品全岩地球化学测试分析数据如表3所示,烧失量(LOI)介于1.22%~1.73%,平均1.54%,显示样品蚀变程度微弱.样品全岩成分较为均一,SiO2含量为69.07%~69.39%,平均69.25%;Na2O含量为2.95%~3.13%,平均3.02%;K2O含量为5.31%~5.77%,平均5.59%;CaO含量为1.13%~1.21%,平均1.19%;全碱含量(ALK)介于8.33%~8.87%,平均8.61%;K2O/Na2O比值介于1.75~1.96,平均1.85,属于高钾钙碱性-钾玄岩系列(图7a).花岗岩P2O5含量为0.25%~0.31%,TiO2含量为0.35%~0.43%,MgO含量为0.70%~0.85%,TFeO含量2.69%~3.39%,Mg#值介于0.30~0.33,具高硅、富钾、贫MgO、MnO和P2O5的特点.样品A/CNK比值介于1.11~1.15,平均1.14,显示过铝质特征(图7b).总体而言,北澜沧江结合带晚白垩世花岗岩与带内拉荣花岗岩(刘俊, 2020)及滇西昌宁-孟连结合带边部漕涧花岗岩(禹丽等, 2014)等同时期岩石具相似的主量元素特征,同属于高钾钙碱性-钾玄岩系列过铝质花岗岩(图7).

花岗岩样品稀土元素总量介于201×10-6~255×10-6,平均235×10-6.其中,∑LREE含量为188×10-6~239×10-6,平均220×10-6;∑HREE含量为13×10-6~19×10-6,平均16×10-6;∑LREE/∑HREE比值介于14.14~14.97,平均14.85.LaN/YbN比值为18.84~20.05,平均19.36,GdN/YbN比值为6.38~6.71,平均6.53,轻稀土元素分馏明显,重稀土元素分馏较弱.样品δEu值(0.31~0.40,平均0.34)出现明显负异常,表明岩浆源区存在斜长石的残留相.在稀土元素球粒陨石标准化配分图(图8a)上,所有样品出现一致的右倾型曲线,与上地壳曲线相似,显示轻稀土元素富集、重稀土元素亏损,表明岩石的壳源成因.微量元素原始地幔标准化蛛网图(图8b)显示,北澜沧江结合带晚白垩世花岗岩与上地壳曲线接近,富集Rb、Th、U、Pb等大离子亲石元素,亏损Ba、Nb、Sr、P和Ti等高场强元素.其中,Sr、Ba的亏损进一步佐证了斜长石的分离结晶,P和Ti的亏损分别与磷灰石和钛铁矿有关,Nb的负异常暗示岩浆源区的壳源属性(Pearce, 1996).

4 讨论

4.1 成岩时代

北澜沧江结合带吉塘岩群中发育大量二叠纪-三叠纪碰撞型花岗质岩石已得到众多学者的证实(Hu et al., 2014; Tao et al., 2014; Wang et al., 2018王保弟等, 2011),且沿昌宁-孟连结合带向南可延伸至临沧地区,被认为是同期岩浆增生事件的产物(Dong et al., 2013).受限于自然地理条件,目前对北澜沧江结合带白垩纪岩浆岩的研究还相对薄弱,但随着区域地质调查工作的推进,刘俊(2020)报道了藏东拉荣钨(钼)矿区中产于吉塘岩群边部的白垩纪花岗岩,成岩时代为104~92 Ma,相应的锆石ε Hft)值介于-9.3~3.1,但主体集中分布于-4.4~-0.6,二阶段模式年龄(T MD2)为1.24~1.42 Ga;禹丽等(2014)在滇西昌宁-孟连结合带漕涧地区发现了73 Ma的花岗岩浆活动,锆石ε Hft)值集中于-7.3~-3.5,对应的二阶段模式年龄(T MD2)为1.35~1.49 Ga,指示带内存在晚白垩世岩浆活动.本次地质调查发现的花岗岩体位于类乌齐县城北侧,由2个小岩脉组成,分别产于吉塘岩群内部及边部,岩脉长轴与片麻岩片麻理接近,两者之间为侵入接触.花岗岩结晶良好,未遭受变形、变质,锆石矿物学及微量元素特征显示为岩浆结晶作用的产物,各年龄测点数据高度谐和,因此两个样品的LA-ICP-MS锆石U-Pb结果(75 Ma)可以代表花岗岩的成岩时代.同时,花岗岩锆石ε Hft)值为-4.6~1.1,二阶段模式年龄(T MD2)介于1.07~1.43 Ga.由此可见,这些花岗质岩石在成岩时代、锆石Hf同位素组成及相应的二阶段模式年龄(T MD2)具有很好的可对比性,反映晚白垩世北澜沧江结合带及昌宁-孟连结合带内存在一次重要的构造-热事件.

4.2 岩石成因类型与源区

花岗质岩石的成因分类方案较多,但以岩浆源区性质分类的方案被大多数学者接受.该分类方案将花岗质岩石划分为S型、I型,加上较为少见的M型和A型,构成了目前应用最为广泛的花岗岩成因类型(吴福元等, 2007).其中,S型花岗岩源岩多为变沉积岩,I型花岗岩源岩以火成岩为主(Chappell et al., 2001),最近的研究认为受幔源物质混染的变沉积岩部分熔岩亦可形成I型花岗岩(Kemp et al., 2007).M型花岗岩主要来自幔源,而A型花岗岩则在特征性的岩石组合(碱性暗色矿物)和构造背景(伸展环境)方面明显区别于其他3类(Whalen et al., 1987King et al., 1997),为典型的高温(~840 ℃)花岗岩(Miller et al., 2003).

全岩地球化学分析数据显示,北澜沧江结合带晚白垩世花岗岩具有高Si、K,低Mg#,轻、重稀土元素强烈分异,负Eu异常明显,富集Rb、Th、U、Pb等大离子亲石元素,亏损Ba、Nb、Sr、P和Ti等高场强元素等特点,与上地壳具亲缘性.岩石A/CNK比值大于1.1,属过铝质岩石,这也得到了岩矿鉴定发现富铝矿物——白云母的佐证,整体具S型花岗岩的典型特征(Brown et al., 1999Chappell et al., 2001; 李洪梁等; 2019).研究发现,在壳幔演化过程中,Rb/Sr及Sr/Ba比值可以很好地记录岩石源区性质,因S型花岗岩贫Sr,其Rb/Sr比值一般大于0.9,而Sr/Ba比值一般小于0.5,I型花岗岩则反之(King et al., 1997Sylvester, 1998).北澜沧江结合带晚白垩世花岗岩Rb/Sr比值为2.84~3.37,平均3.11,Sr/Ba比值为0.28~0.32,平均0.30,与S型花岗岩一致.在花岗岩ACF图解(图9a)与Zr-SiO2图解(图9b)中,所有样品均位于S型花岗岩区域.此外,研究认为锆石饱和温度(T Zr/℃)可近似代表花岗岩浆液相线的温度(Watsonand Harrison, 1983吴福元等, 2007),由此计算得形成北澜沧江结合带晚白垩世花岗岩的母岩浆温度为731~752 ℃,平均741 ℃,与典型S型花岗岩(764 ℃,King et al., 1997)相似.综上认为,北澜沧江结合带晚白垩世花岗岩属过铝质S型花岗岩.

实验岩石学模拟发现,S型花岗岩多源于壳源物质的部分熔岩(Brown et al., 1999),这在北澜沧江结合带晚白垩世花岗岩微量元素含量特征方面得到了很好的体现,具体表现为花岗岩稀土元素球粒陨石标准化配分图及微量元素原始地幔标准化蛛网图与上地壳、北澜沧江结合带内与古老地壳物质部分熔融相关的花岗岩的曲线接近(图8);在相关地球化学指标上,样品Ni、Cr及MgO含量低,显示幔源物质贡献微弱(Henry et al., 2005);Nb/Ta比值介于6.38~6.85,平均6.65,远低于原始地幔(17.8)和地壳均值(11~12),指示晚白垩世花岗岩来自地壳物质的部分熔融(Sunand McDonough, 1989);对于过铝质花岗岩,其Rb/Sr比值对岩石源区具有指示作用,一般壳源岩石大于0.5,幔源岩石小于0.05,壳幔混源岩石介于两者之间(King et al., 1997; Sylvester, 1998).北澜沧江结合带晚白垩世花岗岩Rb/Sr比值为2.84~3.37,平均3.11,远高于0.5,表明岩石源区为成熟度较高的上地壳;在A/MF-C/MF图解(图10a)上,样品位于变泥质岩与变质杂砂岩叠合区域;在CaO/Na2O-Al2O3/TiO2图解(图10b)上,样品CaO/Na2O比值略高于0.3,分布于杂砂岩源区,表明晚白垩世花岗岩来自上地壳变泥质岩和变质杂砂岩的部分熔融,与典型S型花岗岩源自砂、泥质岩的普遍认识(Sylvester, 1998)一致.

在同位素方面,锆石Hf同位素体系因其封闭性被广泛应用于岩石的源区示踪.一般认为,起源于地幔或幔源分异形成的新生地壳的岩石具较大的正ε Hft)值,负ε Hft)值则通常指示岩石源区为古老地壳(Kinnyand Maas, 2003).北澜沧江结合带晚白垩世花岗岩锆石ε Hft)值总体为低而小的负值,除ECGK04-13测点稍大于0外,其余测点均小于0,介于-4.6~-0.1,平均-1.8,对应的T MD2较老,介于1.07~1.43 Ga,平均1.26 Ga,与吉塘岩群时代相当,远大于花岗岩成岩年龄(75 Ma),对此最直观的解释为岩石起源于中-新元古代古老地壳物质的部分熔融.然而,分析测试数据的连续性分布表明花岗岩中锆石的正ε Hft)值并非实验误差所致.可见,花岗岩锆石ε Hft)值变化范围较大,最大可达5.7个ε单位,暗示岩浆演化过程中有其他端元组分的加入.在ε Hft)-t图解中,样品位于球粒陨石演化线与地壳演化趋势线之间、靠近球粒陨石演化线(图11),略低于受幔源物质混染的北澜沧江结合带早三叠世花岗片麻岩(王保弟等, 2011)和藏东察拉晚三叠世花岗岩(Wang et al., 2018),略高于源自古老地壳物质重熔的藏东吉塘早古生代花岗岩(任飞等, 2021)和滇西昌宁-孟连结合带西侧漕涧晚白垩世花岗(禹丽等, 2014),而近似于与软流圈上涌过程相关的拉荣早白垩世花岗岩(刘俊, 2020),表明北澜沧江结合带晚白垩世花岗岩主要来自中-新元古代(Pt2-3)古老地壳物质的部分熔融,但有少量幔源组分的贡献.需要说明的是,尽管这些花岗岩的锆石ε Hft)值因幔源物质的混染有所差异,但仍具有连续性(图11),且其Hf同位素二阶段模式年龄(T MD2)也表现出惊人的一致性,基本介于1.1~1.5 Ga (王保弟等, 2011禹丽等,2014Wang et al., 2018刘俊, 2020任飞等, 2021),以及相似的主、微量元素地球化学特征(图7图8),暗示虽然这些花岗质岩石是不同时期构造-热事件的产物,但其源区物质应具有相同的古老地壳物质端元.

显然,若古老地壳物质通过部分熔融并与少量幔源物质混合后直接结晶成岩,难以解释其主、微量元素分布特征.晚白垩世花岗岩富Si、K、Rb、Th、U、Pb,严重亏损Ba、Nb、Sr、P、Ti和Eu(图8),指示岩浆经历了分离结晶作用,如Ba主要赋存于钾长石,而Sr和Eu多赋存在斜长石中,Ba、Sr、Eu的亏损表明存在钾长石和斜长石的分离结晶,同理P的亏损与磷灰石密切关联,Nb、Ti的亏损表明了金红石、钛铁矿等的分离结晶.利用实验得到的Rb、Sr和Ba的固-液分配系数(Nashand Crecraft, 1985Icenhower and London, 1995, 1996Nabelekand Bartlett, 1998),以平均大陆地壳作为起始组分,模拟斜长石、钾长石和黑云母等残留相对熔融体中元素变化的影响,结果表明晚白垩世花岗岩的成分变化与源区残留30%~40%的斜长石有关(图12),不过因晚白垩世花岗岩浆溶体中的Rb/Sr比值(2.84~3.37)远高于平均大陆壳(0.15,Rudnickand Gao, 2014),该估算值可能代表了残留相的最大值.

值得注意的是,本研究还对比了北澜沧江结合带晚白垩世花岗岩与印度克拉通基底的微量元素分布特征,发现两者极为相似(图8),而结合印度克拉通是南侧冈瓦纳大陆的重要组成部分这一事实依据(Zhu et al., 2013),认为晚白垩世花岗岩为龙木错-双湖-澜沧江结合带南侧亲冈瓦纳大陆古老地壳物质部分熔融并与少量幔源组分混合形成的母岩浆经一定程度的分离结晶形成.

4.3 构造背景及其地球动力学意义

花岗岩记录了大陆形成与演化的全过程(翟明国, 2017).起初,Liégeois(1998)针对后碰撞岩浆作用的研究,将造山过程划分为活动边缘的大洋板块俯冲、初始的主碰撞和陆内后碰撞等3个阶段.随后,赵振华(2007)宋述光等(2015)进一步深化了其内涵,指出造山带岩浆作用发生在从大洋俯冲、大陆碰撞到造山带垮塌的每一个阶段.碰撞型造山带由于大陆深俯冲和地壳强烈加厚,超高压变质的洋壳和大陆地壳在折返过程中减压熔融,形成同碰撞岩浆作用;在造山旋回晚期去根和垮塌过程中,由于岩石圈伸展和软流圈地幔上涌,形成后碰撞岩浆作用,并标志造山旋回的结束(宋述光等, 2015).长期以来,S型花岗岩被认为形成于同碰撞挤压构造背景(Athertonand Ghani, 2002),但也有学者认为其主要受控于后碰撞伸展构造背景(Healy et al., 2004吴福元等, 2007).Pearce et al. (1984)通过对600多个已知构造环境花岗岩的高质量微量元素数据的分析,创造性地根据岩石的地球化学特征与成岩构造背景的差异性,将花岗岩分为洋脊型(ORG)、火山弧型(VAG)、板内型(WPG)和碰撞型(COLG).以此为基础,众多学者对这一划分方案进行了补充和优化,相继提出了与造山作用相关的岛弧型(IAG)、大陆弧型(CAG)、大陆碰撞型(CCG)、同碰撞型(sync-COLG)、后碰撞型(post-COLG)和与非造山相关的裂谷型(RRG)、与大陆造陆抬升相关的花岗岩(CEUG),及各类花岗岩的地球化学判别依据(Batchelorand Bowden, 1985Maniar et al., 1989Pearce, 1996Liégeois, 1998Sylvester, 1998Atherton and Ghani, 2002Healy et al., 2004),并得到了广泛应用.

在Rb-(Y+Nb)图解(图13a)中,北澜沧江结合带晚白垩世花岗岩基本位于后碰撞花岗岩(post-COLG)与同碰撞花岗岩(sync-COLG)的叠加区域,其形成与陆-陆碰撞花岗岩成岩途径一致;在[TFeO/(TFeO+MgO)]-SiO2图解(图13b)中,样品全部位于后碰撞花岗岩边界区域,但同时与岛弧型(IAG)、大陆弧型(CAG)和大陆碰撞型(CCG)等与造山作用相关的花岗岩重叠,指示陆-陆碰撞型花岗岩,但似乎并不能完全区分花岗岩的成岩构造背景.其实,在建立花岗岩构造背景分类之初,Pearce et al. (1984)就曾指出,后碰撞花岗岩(post-COLG)的构造分类标志较为宽泛,因此Maniar et al. (1989)提出只有样品位于post-COLG内部,且在造山和非造山花岗岩两侧均出现样品投点时,才属于后碰撞花岗岩(post-COLG).尽管如此,一些学者在实际应用过程中仍对此提出了质疑(Barbarin, 1999Li et al., 2007Zhong et al., 2007),认为花岗岩的构造背景研究除岩石地球化学特征外,更应结合岩石源岩组分、熔融时的物理化学条件和区域地质演化等信息综合判断(吴福元等, 2007邓晋福等, 2015宋述光等, 2015).

前已述及,晚白垩世花岗岩主要源自亲冈瓦纳大陆古老地壳物质部分熔融,源岩组分为变泥质岩和变质杂砂岩.陈奇等(2019)对吉塘岩群的研究发现,其岩性为副变质岩,地层经历了强烈的变形、变质与缩短加厚,原岩以长英质粘土岩和砂砾岩为主,成岩时代与本文晚白垩世花岗岩及藏东地区印支期花岗质岩石的Hf同位素二阶段模式年龄(T MD2)(王保弟等, 2011Wang et al., 2018; 刘俊, 2020;任飞等, 2021)一致.同时,吉塘岩群与南羌塘(Dong et al., 2011)、拉萨和高喜马拉雅地体(Zhu et al., 2013)具有相同的碎屑锆石U-Pb年龄特征,显示了亲冈瓦纳大陆的属性,表明吉塘岩群可能是区域印支期和燕山晚期花岗岩形成的物质基础.对于花岗岩浆熔融时的物理化学条件,前人做了一些研究,但目前仍较难获取其准确的成岩温度和压力,不过由于花岗岩的就位多通过绝热式上升,因此岩浆早期结晶温度可近似代表液相岩浆的温度(吴福元等, 2007).应用锆石饱和温度计(Watsonand Harrison, 1983)计算得晚白垩世花岗岩的母岩浆温度为731~752 ℃,平均741 ℃,属冷花岗岩(Miller et al., 2003),表明源区残留物质较多(吴福元等,2007),其形成过程与减压熔融密切相关(Sylvester, 1998).在成岩压力方面,张旗等(2010)认为花岗岩Sr、Yb含量对岩石的成岩压力和产出地区的地壳厚度具有指示意义,将其分为埃达克型(Sr>300×10-6,Yb<2.5×10-6)、喜马拉雅型(Sr<300×10-6,Yb<2×10-6)、浙闽型(Sr=40×10-6~400×10-6,Yb>1.5×10-6)和南岭型(Sr<100×10-6,Yb>1.5×10-6)4类,并指出斜长石和角闪石是埃达克型花岗岩必要且特征的矿物,喜马拉雅型花岗岩与淡色花岗岩类似,贫暗色矿物,而浙闽型和南岭型花岗岩则分别以富角闪石和碱质为典型特征.晚白垩世花岗岩Sr含量为109.75×10-6~125.88×10-6,Yb含量为1.51×10-6~1.91×10-6,贫暗色矿物含量少,属喜马拉雅型,成岩压力0.8~1.5 GPa、深度40~50 km(张旗等,2010),证实区域存在加厚地壳.

研究区位于北澜沧江结合带,紧邻班公湖-怒江结合带,使得区域岩浆活动受澜沧江洋和班公湖-怒江洋演化的叠加控制(陈言飞等, 2020).研究显示,龙木错-双湖-澜沧江原-古特提斯洋在中-晚寒武世开启(Xu et al., 2015; Zhai et al., 2016, 2011),晚泥盆世-中三叠世向北俯冲(Liu et al., 2011; Zhai et al., 2011;Fan et al., 2016, 2017),晚三叠世洋盆闭合,南、北羌塘地体对接碰撞,沿结合带形成带状分布的印支期碰撞型花岗岩(王保弟等, 2011; Hu et al., 2014; Tao et al., 2014; Wang et al., 2018).冈瓦纳大陆北侧被动陆缘在二叠纪-三叠纪裂解形成班公湖-怒江洋(Shi et al., 2012),早侏罗世时洋盆范围趋于最大(宋扬等, 2019),中侏罗世开始向北俯冲,至晚侏罗世叠加新特提斯洋的北向俯冲,加速了班公湖-怒江洋的俯冲削减(刘一鸣等, 2019宋扬等, 2019).早白垩世中晚期,班公湖-怒江洋盆经历由东向西的穿时性闭合(刘一鸣等, 2019),至晚白垩世早期(104~99 Ma)洋盆闭合(Liu et al., 2018),拉萨地体与南羌塘地体拼接,是陆-陆同碰撞造山过程的开始(Xu et al., 2017).进入晚白垩世,伴随碰撞造山作用的持续,地壳缩短、加厚,班公湖-怒江结合带及周缘不断隆升,至90 ~76 Ma出现构造应力松弛,在伸展构造背景下,形成辉绿岩、玄武岩等幔源镁铁质岩浆岩(辛洪波和曲晓明, 2006Li et al., 2013Wang et al., 2014张硕等, 2014).

研究表明,造山带的去根一般指在后碰撞造山阶段,岩石圈加厚的情况下,因其下部矿物相及流变学特征的变化,在重力或软流圈地幔对流作用下与岩石圈上部分离的地质过程 (Dan, 1978Fleitout et al., 1986; Marotta et al., 1998).去根导致局部构造环境由挤压向伸展转换,出现造山带地壳的区域性垮塌,其构造模式主要包括2种:(1)在软流圈地幔的侵蚀下,岩石圈地幔出现部分剥离,称之为热边界层的对流侵蚀(Bird, 1979);(2)岩石圈地幔的整体拆沉,即岩石圈地幔拆沉模式(Houseman and Molnar, 1997).两者所对应的岩浆作用的区别在于前者通常引发其上部的部分熔融形成富钾岩浆岩,而后者通常导致软流圈上涌和减压熔融,形成幔源镁铁质岩浆岩,并可与上地壳相互作用而使其部分熔融(Wang et al., 2014).结合区域构造-岩浆演化,作者认为晚白垩世班公湖-怒江结合带碰撞造山经历了岩石圈地幔拆沉.由上可知,北澜沧江结合带晚白垩世花岗岩成岩年龄为75 Ma,属过铝质S型花岗岩,母岩浆中含少量幔源组分,因此北澜沧江结合带晚白垩世花岗岩可能是在拉萨-南羌塘地体后碰撞伸展构造背景下,由加厚岩石圈拆沉引发软流圈物质上涌和减压熔融形成的幔源镁铁质岩浆底侵于古老地壳,诱发其部分熔融,并与之混合形成母岩浆,再经历一定程度分离结晶作用而形成.

已有研究证实,盆缘山脉构造活动与盆地演化具有对应关系,不同造山演化阶段对应着不同的盆地类型,如伴随洋盆关闭,陆-陆碰撞造山,地壳加厚,在造山带前缘形成前陆盆地;后碰撞伸展时期,造山带演化进入破坏阶段,出现垮塌、卸荷等,多发育裂谷盆地(Allenand Allen, 1990刘少峰和张国伟, 2005).类似地,花岗岩是特定地质背景下的产物,在造山带演化的各个阶段均可发育,记录了洋壳俯冲、闭合和大陆形成及演化的全过程,因此可作为盆山演化阶段的岩石探针(翟明国, 2017),如在大洋向陆俯冲阶段,俯冲带之上幔源岩浆可诱发古老地壳物质重熔,并与之混合形成I型花岗岩;进入同碰撞阶段,因早期俯冲的洋壳折返熔融、大陆壳的加厚熔融等因素,多发育钠质火山岩、埃达克质岩石及I型、S型花岗岩等;后碰撞伸展阶段,造山带去根、垮塌,岩石圈地幔拆沉、剥离,软流圈物质上涌,诱发地幔交代作用,形成富钾的碱性火山岩和镁铁质岩石,或导致上地壳的部分熔融,形成过铝质S型花岗岩(宋述光等, 2015).Wang et al. (2014)研究认为,班公湖-怒江结合带晚白垩世(90 Ma)高镁安山岩是加厚岩石圈的拆沉的产物,同期或稍晚的日土辉绿岩(张硕等, 2014)、日阿双峰式火山岩(辛洪波和曲晓明, 2006)和阿当玄武岩(Wang et al., 2014)等,亦形成于伸展环境;Li et al. (2013)对晚白垩世(80~76 Ma)阿布山组火山岩的研究发现,岩石是在后碰撞伸展构造背景下幔源基性岩浆底侵下地壳诱发部分熔融而形成,表明晚白垩世时青藏高原中东部地壳经历了加厚、隆升和拆沉.北澜沧江结合带晚白垩世花岗岩形成于后碰撞伸展构造背景,与上述中-基性岩浆活动同期,且具有相似的成岩构造环境和机制,进一步证实了晚白垩世藏东类乌齐地区造山演化处于后期造山带破坏阶段.

5 结论

(1)锆石U-Pb定年结果发现,北澜沧江结合带类乌齐地区发育晚白垩世花岗岩,成岩时代为75 Ma.

(2)北澜沧江结合带晚白垩世花岗岩含富铝矿物白云母,岩石具高SiO2(69.07%~69.39%)、富K2O(5.31%~5.77%)、低Mg#(0.30~0.33)的特点,A/CNK比值为1.11~1.15,且负Eu异常显著,富集Rb、Th、U、Pb和LREE,亏损Ba、Nb、Sr、P、Ti和HREE,具不均一的锆石ε Hft)值(-4.6~1.1),属过铝质S型花岗岩,其源岩为变泥质岩和变质杂砂岩.

(3)北澜沧江结合带晚白垩世花岗岩是在拉萨-南羌塘地体后碰撞伸展构造背景下,由加厚岩石圈拆沉引发软流圈物质上涌和减压熔融形成的幔源镁铁质岩浆底侵于古老地壳,诱发其部分熔融,并与之混合形成的母岩浆,再经历一定程度分离结晶作用而形成,同时反映晚白垩世藏东类乌齐地区造山演化处于后期造山带破坏阶段.

参考文献

[1]

Albarède, F., Scherer, E. E., Blichert-Toft, J., et al., 2006. Γ-Ray Irradiation in the Early Solar System and the Conundrum of the 176Lu Decay Constant. Geochimica et Cosmochimica Acta, 70(5): 1261-1270. https://doi.org/10.1016/j.gca.2005.09.027

[2]

Allen, A. P., Allen, R. J., 1990. Basin Analysis: Principles and Applications. Blackwell Scientific Publication, London.

[3]

Amelin, Y., Lee, D. C., Halliday, A. N., et al., 1999. Nature of the Earth’s Earliest Crust from Hafnium Isotopes in Single Detrital Zircons. Nature, 399(6733): 252-255. https://doi.org/10.1038/20426

[4]

Atherton, M. P., Ghani, A. A., 2002. Slab Breakoff: A Model for Caledonian, Late Granite Syn-Collisional Magmatism in the Orthotectonic (Metamorphic) Zone of Scotland and Donegal, Ireland. Lithos, 62(3-4): 65-85. https://doi.org/10.1016/S0024-4937(02)00111-1

[5]

Barbarin, B., 1999. A Review of the Relationships between Granitoid Types, Their Origins and Their Geodynamic Environments. Lithos, 46(3): 605-626. https://doi.org/10.1016/S0024-4937(98)00085-1

[6]

Batchelor, R. A., Bowden, P., 1985. Petrogenetic Interpretation of Granitoid Rock Series Using Multicationic Parameters. Chemical Geology, 48(1-4): 43-55. https://doi.org/10.1016/0009-2541(85)90034-8

[7]

Bird, P., 1979. Continental Delamination and the Colorado Plateau. Journal of Geophysical Research: Solid Earth, 84(B13): 7561-7571. https://doi.org/10.1029/jb084ib13p07561

[8]

Brown, M., Pressley, R. A., 1999. Crustal Melting in Nature: Prosecuting Source Processes. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 24(3): 305-316. https://doi.org/10.1016/S1464-1895(99)00034-4

[9]

Célérier, J., Harrison, T. M., Alexander G.A., et al., 2009. The Kumaun and Garwhal Lesser Himalaya, India: Part 1. Structure and Stratigraphy. Geological Society of America Bulletin, 121(9/10): 1262-1280. https://doi.org/10.1130/b26344.1

[10]

Chappell, B. W., White, A. J. R., 2001. Two Contrasting Granite Types: 25 Years Later. Australian Journal of Earth Sciences, 48(4): 489-499. https://doi.org/10.1046/j.1440-0952.2001.00882.x

[11]

Chen, Q., Wang, C.M., Du, B., et al., 2019. Zircon LA-ICP-MS U-Pb Dating and Geochemistry of the Jitang Metamorphic Complex in Eastern Tibet and Their Geological Implications. Acta Petrologica Sinica, 35(5): 1423-1446 (in Chinese with English abstract).

[12]

Chen, Y.F., Zhang, Z.M., Chen, X.H., et al., 2020. The Late Triassic Basic Magmatism and Tectonic Implication in Leiwuqi Area, Eastern Tibet. Acta Petrologica Sinica, 36(9): 2701-2713 (in Chinese with English abstract).

[13]

Dan, M., 1978. Active Tectonics of the Alpine-Himalayan Belt: The Aegean Sea and Surrounding Regions. Geophysical Journal International, 55(1): 217-254. https://doi.org/10.1111/j.1365-246X.1978.tb04759.x

[14]

Deng, J.F., Liu, C., Feng, Y.F., et al., 2015. On the Correct Application in the Common Igneous Petrological Diagrams: Discussion and Suggestion. Geological Review, 61(4): 717-734 (in Chinese with English abstract).

[15]

Dong, C. Y., Li, C., Wan, Y. S., et al., 2011. Detrital Zircon Age Model of Ordovician Wenquan Quartzite South of Lungmuco-Shuanghu Suture in the Qiangtang Area, Tibet: Constraint on Tectonic Affinity and Source Regions. Science China Earth Sciences, 54(7): 1034-1042. https://doi.org/10.1007/s11430-010-4166-x

[16]

Dong, G. C., Mo, X. X., Zhao, Z. D., et al., 2013. Zircon U-Pb Dating and the Petrological and Geochemical Constraints on Lincang Granite in Western Yunnan, China: Implications for the Closure of the Paleo-Tethys Ocean. Journal of Asian Earth Sciences, 62: 282-294. https://doi.org/10.1016/j.jseaes.2012.10.003

[17]

Fan, J. J., Li, C., Xie, C. M., et al., 2016. Depositional Environment and Provenance of the Upper Permian-Lower Triassic Tianquanshan Formation, Northern Tibet: Implications for the Palaeozoic Evolution of the Southern Qiangtang, Lhasa, and Himalayan Terranes in the Tibetan Plateau. International Geology Review, 58(2): 228-245. https://doi.org/10.1080/00206814.2015.1070108

[18]

Fan, J. J., Li, C., Xie, C. M., et al., 2017. Remnants of Late Permian-Middle Triassic Ocean Islands in Northern Tibet: Implications for the Late-Stage Evolution of the Paleo-Tethys Ocean. Gondwana Research, 44: 7-21. https://doi.org/10.1016/j.gr.2016.10.020

[19]

Fleitout, L., Froidevaux, C., Yuen, D., 1986. Active Lithospheric Thinning. Tectonophysics, 132(1/2/3): 271-278. https://doi.org/10.1016/0040-1951(86)90037-5

[20]

Griffin, W. L., Pearson, N. J., Belousova, E., et al., 2000. The Hf Isotope Composition of Cratonic Mantle: LAM-MC-ICPMS Analysis of Zircon Megacrysts in Kimberlites. Geochimica et Cosmochimica Acta, 64(1): 133-147. https://doi.org/10.1016/S0016-7037(99)00343-9

[21]

Healy, B., Collins, W. J., Richards, S. W., 2004. A Hybrid Origin for Lachlan S-Type Granites: The Murrumbidgee Batholith Example. Lithos, 78(1/2): 197-216. https://doi.org/10.1016/j.lithos.2004.04.047

[22]

Henry, D. J., Guidotti, C. V., Thomson, J., 2005. The Ti-Saturation Surface for Low-to-Medium Pressure Metapelitic Biotites: Implications for Geothermometry and Ti-Substitution Mechanisms. American Mineralogist, 90(2/3): 316-328. https://doi.org/10.2138/am.2005.1498

[23]

Hoskin, P. W. O., 2005. Trace-Element Composition of Hydrothermal Zircon and the Alteration of Hadean Zircon from the Jack Hills, Australia. Geochimica et Cosmochimica Acta, 69(3): 637-648. https://doi.org/10.1016/j.gca.2004.07.006

[24]

Houseman, G. A., Molnar, P., 1997. Gravitational (Rayleigh-Taylor) Instability of a Layer with Non-Linear Viscosity and Convective Thinning of Continental Lithosphere. Geophysical Journal International, 128(1): 125-150. https://doi.org/10.1111/j.1365-246x.1997.tb04075.x

[25]

Hu, P.Y., Li, C., Li, J., et al., 2014. Zircon U-Pb-Hf Isotopes and Whole-Rock Geochemistry of Gneissic Granites from the Jitang Complex in Leiwuqi Area, Eastern Tibet, China: Record of the Closure of the Paleo-Tethys Ocean. Tectonophysics, 623: 83-99. https://doi.org/10.1016/j.tecto.2014.03.018

[26]

Icenhower, J., London, D., 1995. An Experimental Study of Element Partitioning among Biotite, Muscovite, and Coexisting Peraluminous Silicic Melt at 200 MPa (H2O). American Mineralogist, 80(11-12): 1229-1251. https://doi.org/10.2138/am-1995-11-1213

[27]

Icenhower, J., London, D., 1996. Experimental Partitioning of Rb, Cs, Sr, and Ba between Alkali Feldspar and Peraluminous Melt. American Mineralogist, 81(5-6): 719-734. https://doi.org/10.2138/am-1996-5-619

[28]

Kapp, P., Murphy, M. A., Yin, A., et al., 2003. Mesozoic and Cenozoic Tectonic Evolution of the Shiquanhe Area of Western Tibet. Tectonics, 22(4): 1029-1053. https://doi.org/10.1029/2001tc001332

[29]

Kemp, A. I. S., Hawkesworth, C. J., Foster, G. L., et al., 2007. Magmatic and Crustal Differentiation History of Granitic Rocks from Hf-O Isotopes in Zircon. Science, 315(5814): 980-983. https://doi.org/10.1126/science.1136154

[30]

King, P. L., White, A. J. R., Chappell, B. W., et al., 1997. Characterization and Origin of Aluminous A-Type Granites from the Lachlan Fold Belt, Southeastern Australia. Journal of Petrology, 38(3): 371-391. https://doi.org/10.1093/petroj/38.3.371

[31]

Kinny, P. D., Compston, W., Williams, I. S., 1991. A Reconnaissance Ion-Probe Study of Hafnium Isotopes in Zircons. Geochimica et Cosmochimica Acta, 55(3): 849-859. https://doi.org/10.1016/0016-7037(91)90346-7

[32]

Kinny, P. D., Maas, R., 2003. Lu-Hf and Sm-Nd Isotope Systems in Zircon. Reviews in Mineralogy and Geochemistry, 53(1): 327-341. https://doi.org/10.2113/0530327

[33]

Li, C., 1987. The Longmucuo-Shuanghu-Lancangjiang Plate Suture and the North Boundary of Distribution of Gondwana Facies Permo-Carboniferous System in Northern Xizang, China. Journal of Jilin University (Earth Science Edition), 17(2): 155-166 (in Chinese with English abstract).

[34]

Li, C., 2008. A Review on 20 Years’ Study of the Longmu Co-Shuanghu-Lancang River Suture Zone in Qinghai-Xizang (Tibet) Plateau. Geological Review, 54(1): 105-119 (in Chinese with English abstract).

[35]

Li, C., Xie, Y.W., Dong, Y.S., et al., 2009. The North Lancangjiang Suture: The Boundary between Gondwana and Yangtze? Geological Bulletin of China, 28(12): 1711-1719 (in Chinese with English abstract).

[36]

Li, H.L., Li, G.M., Liu, H., et al., 2019. Petrogenesis of Paleocene Granite Porphyry of Daruo Area in Western Lhasa Block, Tibet: Constraints from Geochemistry, Zircon U-Pb Chronology and Sr-Nd-Pb-Hf Isotopes. Earth Science, 44(7): 2275-2297 (in Chinese with English abstract).

[37]

Li, H.L., Li, G.M., Zhang, Z., et al., 2021. Genesis of Jienagepu Gold Deposit in Zhaxikang Ore Concentration Area, Eastern Tethys Himalayas: Constraints from He? Ar and In? Situ S Isotope of Pyrite. Earth Science, 46(12): 4291-4315 (in Chinese with English abstract).

[38]

Li, Y. L., He, J., Wang, C. S., et al., 2013. Late Cretaceous K-Rich Magmatism in Central Tibet: Evidence for Early Elevation of the Tibetan Plateau? Lithos, 160/161: 1-13. https://doi.org/10.1016/j.lithos.2012.11.019

[39]

Li, Y.G., Wang, S.S., Liu, M.W., et al., 2015. U-Pb Dating Study of Baddeleyite by LA-ICP-MS: Technique and Application. Acta Geologica Sinica, 89(12): 2400-2418 (in Chinese with English abstract).

[40]

Li, Z. X., Li, X. H., 2007. Formation of the 1 300-km-Wide Intracontinental Orogen and Postorogenic Magmatic Province in Mesozoic South China: A Flat-Slab Subduction Model. Geology, 35(2): 179-182. https://doi.org/10.1130/g23193a.1

[41]

Liégeois, J. P., 1998. Preface: Some Words on the Post-Collisional Magmatism. Lithos, 45: 15-17.

[42]

Liu, D. L., Shi, R. D., Ding, L., et al., 2018. Late Cretaceous Transition from Subduction to Collision along the Bangong-Nujiang Tethys: New Volcanic Constraints from Central Tibet. Lithos, 296/297/298/299: 452-470. https://doi.org/10.1016/j.lithos.2017.11.012

[43]

Liu, J., 2020. The Larong Giant W-(Mo) Deposit in the Eastern Tibet: Magmatism and Mineralization (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).

[44]

Liu, S.F., Zhang, G.W., 2005. Fundamental Ideas, Contents and Methods in Study of Basin and Mountain Relationships. Earth Science Frontiers, 12(3): 101-111 (in Chinese with English abstract).

[45]

Liu, Y., Santosh, M., Zhao, Z. B., et al., 2011. Evidence for Palaeo-Tethyan Oceanic Subduction within Central Qiangtang, Northern Tibet. Lithos, 127(1-2): 39-53. https://doi.org/10.1016/j.lithos.2011.07.023

[46]

Liu, Y.M., Li, S.Z., Yu, S.Y., et al., 2019. The Mesozoic Collage and Orogeny Process of Micro-Blocks in Bangong-Nujiang Suture Zone, Tibetan Plateau. Geotectonica et Metallogenia, 43(4): 824-838 (in Chinese with English abstract).

[47]

Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5): 635-643. https://doi.org/10.1130/0016-7606(1989)1010635: tdog>2.3.co;2

[48]

Marotta, A. M., Fernàndez, M., Sabadini, R., 1998. Mantle Unrooting in Collisional Settings. Tectonophysics, 296(1-2): 31-46. https://doi.org/10.1016/S0040-1951(98)00134-6

[49]

Metcalfe, I., 2021. Multiple Tethyan Ocean Basins and Orogenic Belts in Asia. Gondwana Research, 100: 87-130. https://doi.org/10.1016/j.gr.2021.01.012

[50]

Middlemost, E. A. K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 37(3-4): 215-224. https://doi.org/10.1016/0012-8252(94)90029-9

[51]

Miller, C. F., McDowell, S. M., Mapes, R. W., 2003. Hot and Cold Granites? Implications of Zircon Saturation Temperatures and Preservation of Inheritance. Geology, 31(6): 529-532. https://doi.org/10.1130/0091-7613(2003)0310529: hacgio>2.0.co;2

[52]

Nabelek, P. I., Bartlett, C. D., 1998. Petrologic and Geochemical Links between the Post-Collisional Proterozoic Harney Peak Leucogranite, South Dakota, USA, and Its Source Rocks. Lithos, 45(1-4): 71-85. https://doi.org/10.1016/S0024-4937(98)00026-7

[53]

Nash, W. P., Crecraft, H. R., 1985. Partition Coefficients for Trace Elements in Silicic Magmas. Geochimica et Cosmochimica Acta, 49(11): 2309-2322. https://doi.org/10.1016/0016-7037(85)90231-5

[54]

Pan, G.T., Wang, L.Q., Li, R.S., et al., 2012. Tectonic Model of Archipelagic Arc-Basin Systems: The Key to the Continental Geology. Sedimentary Geology and Tethyan Geology, 32(3): 1-20 (in Chinese with English abstract).

[55]

Pearce, J. A., Harris, N. B. W., Tindle, A. G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4): 956-983. https://doi.org/10.1093/petrology/25.4.956

[56]

Pearce, J., 1996. Sources and Settings of Granitic Rocks. Episodes, 19(4): 120-125. https://doi.org/10.18814/epiiugs/1996/v19i4/005

[57]

Peng, Y. B., Yu, S. Y., Li, S. Z., et al., 2020. Early Jurassic and Late Cretaceous Granites in the Tongka Micro-Block, Central Tibet: Implications for the Evolution of the Bangong-Nujiang Ocean. Journal of Asian Earth Sciences, 194: 104030. https://doi.org/10.1016/j.jseaes.2019.104030

[58]

Ren, F., Yin, F.G., Xu, B., et al., 2021. Zircon U-Pb Age and Hf Isotope of Early Paleozoic Granite from the Jitang Area in Eastern Tibet and Its Insight into the Evolution of the Proto-Tethys Ocean. Geological Bulletin of China, 40(11):1865-1876 (in Chinese with English abstract).

[59]

Rudnick, R. L., Gao, S., 2014. Composition of the Continental Crust. Treatise on Geochemistry. Elsevier, Amsterdam, 1-51. https://doi.org/10.1016/b978-0-08-095975-7.00301-6

[60]

Shi, R. D., Griffin, W. L., O’Reilly, S. Y., et al., 2012. Melt/Mantle Mixing Produces Podiform Chromite Deposits in Ophiolites: Implications of Re-Os Systematics in the Dongqiao Neo-Tethyan Ophiolite, Northern Tibet. Gondwana Research, 21(1): 194-206. https://doi.org/10.1016/j.gr.2011.05.011

[61]

Song, S.G., Wang, M.J., Wang, C., et al., 2015. Magmatism during Continental Collision, Subduction, Exhumation and Mountain Collapse in Collisional Orogenic Belts and Continental Net Growth: A Perspective. Scientia Sinica (Terrae), 45(7): 916-940 (in Chinese).

[62]

Song, Y., Zeng, Q.G., Liu, H.Y., et al., 2019. An Innovative Perspective for the Evolution of Bangong-Nujiang Ocean: Also Discussing the Paleo- and Neo-Tethys Conversion. Acta Petrologica Sinica, 35(3): 625-641 (in Chinese with English abstract).

[63]

Spahić, D., 2022. Towards the Triassic Configuration of Western Paleotethys. Journal of Earth Science, 33(6): 1494-1512. https://doi.org/10.1007/s12583-021-1578-9

[64]

Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19

[65]

Sylvester, P. J., 1998. Post-Collisional Strongly Peraluminous Granites. Lithos, 45(1-4): 29-44. https://doi.org/10.1016/S0024-4937(98)00024-3

[66]

Tao, Y., Bi, X. W., Li, C. S., et al., 2014. Geochronology, Petrogenesis and Tectonic Significance of the Jitang Granitic Pluton in Eastern Tibet, SW China. Lithos, 184/185/186/187: 314-323. https://doi.org/10.1016/j.lithos.2013.10.031

[67]

Vermeesch, P., 2018. IsoplotR: A Free and Open Toolbox for Geochronology. Geoscience Frontiers, 9(5): 1479-1493. https://doi.org/10.1016/j.gsf.2018.04.001

[68]

Vervoort, J. D., Blichert-Toft, J., 1999. Evolution of the Depleted Mantle: Hf Isotope Evidence from Juvenile Rocks through Time. Geochimica et Cosmochimica Acta, 63(3-4): 533-556. https://doi.org/10.1016/S0016-7037(98)00274-9

[69]

Wang, B. D., Wang, L. Q., Wang, L. Q., et al., 2011. Early Triassic Collision of Northern Lancangjiang Suture: Geochronological, Geochemical and Hf Isotope Evidences from the Granitic Gneiss in Leiwuqi Area, East Tibet. Acta Petrologica Sinica, 27(9): 2752-2762 (in Chinese with English abstract).

[70]

Wang, B.D., Wang, L.Q., Zhou, D.Q., et al., 2021. Longmucuo-Shuanghu-Changning-Menglian Junction Zone: The Boundary between Gondwana Continent and Pan-Cathaysian Continent. Geological Bulletin of China, 40(11): 1783-1798 (in Chinese with English abstract).

[71]

Wang, L. Q., Pan, G. T., Ding, J., et al., 2013. Geological Map and Manual of Qinghai-Tibet Plateau and Adjacent Areas (1∶1 500 000). Geological Publishing House, Beijing (in Chinese).

[72]

Wang, M. J., Song, S. G., Niu, Y. L., et al., 2014. Post-Collisional Magmatism: Consequences of UHPM Terrane Exhumation and Orogen Collapse, N. Qaidam UHPM Belt, NW China. Lithos, 210/211: 181-198. https://doi.org/10.1016/j.lithos.2014.10.006

[73]

Wang, X. Y., Wang, S. F., Wang, C., et al., 2018. Permo-Triassic Arc-Like Granitoids along the Northern Lancangjiang Zone, Eastern Tibet: Age, Geochemistry, Sr-Nd-Hf Isotopes, and Tectonic Implications. Lithos, 308/309: 278-293. https://doi.org/10.1016/j.lithos.2018.03.008

[74]

Watson, E. B., Harrison, T. M., 1983. Zircon Saturation Revisited: Temperature and Composition Effects in a Variety of Crustal Magma Types. Earth and Planetary Science Letters, 64(2): 295-304. https://doi.org/10.1016/0012-821X(83)90211-X

[75]

Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419. https://doi.org/10.1007/BF00402202

[76]

Wu, F. Y., Li, X. H., Yang, J. H., et al., 2007. Discussions on the Petrogenesis of Granites. Acta Petrologica Sinica, 23(6): 1217-1238 (in Chinese with English abstract).

[77]

Wu, F.Y., Wan, B., Zhao, L., et al., 2020. Tethyan Geodynamics. Acta Petrologica Sinica, 36(6): 1627-1674 (in Chinese with English abstract).

[78]

Wu, Y.B., Zheng, Y.F., 2004. Genetic Mineralogy of Zircon and Its Constraints on U-Pb Age Interpretation. Chinese Science Bulletin, 49(16): 1589-1604 (in Chinese).

[79]

Xiao, Q.H., Li, X.B., Jia, Y.M., et al., 1995. Frontiers on Orogenic Belt Researches. Earth Science Frontiers, 2(1): 43-50 (in Chinese with English abstract).

[80]

Xin, H.B., Qu, X.M., 2006. Geological Characteristics and Ore-Forming Epoch of Ri’a Copper Deposit Related to Bimodal Rock Series in Coqen County, Western Tibet. Mineral Deposits, 25(4): 477-482 (in Chinese with English abstract).

[81]

Xu, W., Li, C., Wang, M., et al., 2017. Subduction of a Spreading Ridge within the Bangong Co-Nujiang Tethys Ocean: Evidence from Early Cretaceous Mafic Dykes in the Duolong Porphyry Cu-Au Deposit, Western Tibet. Gondwana Research, 41: 128-141. https://doi.org/10.1016/j.gr.2015.09.010

[82]

Xu, Z. Q., Dilek, Y., Cao, H., et al., 2015. Paleo-Tethyan Evolution of Tibet as Recorded in the East Cimmerides and West Cathaysides. Journal of Asian Earth Sciences, 105: 320-337. https://doi.org/10.1016/j.jseaes.2015.01.021

[83]

Yong, Y. Y., Xiang, T. X., Wang, J. M., 1990. Some New Observations on North Lancangjiang Metamorphic Rocks. Contribution to the Geology of the Qinghai-Xizang (Tibet) Plateau, 20: 67-89 (in Chinese with English abstract).

[84]

Yu, L., Li, G. J., Wang, Q. F., et al., 2014. Petrogenesis and Tectonic Significance of the Late Cretaceous Magmatism in the Northern Part of the Baoshan Block: Constraints from Bulk Geochemistry Zircon U-Pb Geochronology and Hf Isotopic Compositions. Acta Petrologica Sinica, 30(9): 2709-2724 (in Chinese with English abstract).

[85]

Zhai, M.G., 2017. Granites: Leading Study Issue for Continental Evolution. Acta Petrologica Sinica, 33(5): 1369-1380 (in Chinese with English abstract).

[86]

Zhai, Q. G., Jahn, B. M., Wang, J., et al., 2016. Oldest Paleo-Tethyan Ophiolitic Mélange in the Tibetan Plateau. Geological Society of America Bulletin, 128(3-4): 355-373. https://doi.org/10.1130/b31296.1

[87]

Zhai, Q. G., Jahn, B. M., Zhang, R. Y., et al., 2011. Triassic Subduction of the Paleo-Tethys in Northern Tibet, China: Evidence from the Geochemical and Isotopic Characteristics of Eclogites and Blueschists of the Qiangtang Block. Journal of Asian Earth Sciences, 42(6): 1356-1370. https://doi.org/10.1016/j.jseaes.2011.07.023

[88]

Zhang, K. J., Tang, X. C., Wang, Y., et al., 2011. Geochronology, Geochemistry, and Nd Isotopes of Early Mesozoic Bimodal Volcanism in Northern Tibet, Western China: Constraints on the Exhumation of the Central Qiangtang Metamorphic Belt. Lithos, 121(1-4): 167-175. https://doi.org/10.1016/j.lithos.2010.10.015

[89]

Zhang, Q., Jin, W.J., Li, C.D., et al., 2010. On the Classification of Granitic Rocks Based on Whole-Rock Sr and Yb Concentrations Ⅲ: Practice. Acta Petrologica Sinica, 26(12): 3431-3455 (in Chinese with English abstract).

[90]

Zhang, S., Shi, H.F., Hao, H.J., et al., 2014. Geochronology, Geochemistry and Tectonic Significance of Late Cretaceous Adakites in Bangong Lake, Tibet. Earth Science, 39(5): 509-524 (in Chinese with English abstract).

[91]

Zhong, H., Zhu, W. G., Chu, Z. Y., et al., 2007. SHRIMP U-Pb Zircon Geochronology, Geochemistry, and Nd-Sr Isotopic Study of Contrasting Granites in the Emeishan Large Igneous Province, SW China. Chemical Geology, 236(1-2): 112-133. https://doi.org/10.1016/j.chemgeo.2006.09.004

[92]

Zhu, D. C., Zhao, Z. D., Niu, Y. L., et al., 2013. The Origin and Pre-Cenozoic Evolution of the Tibetan Plateau. Gondwana Research, 23(4): 1429-1454. https://doi.org/10.1016/j.gr.2012.02.002

[93]

Zhao, Z.H., 2007. How to Use the Trace Element Diagrams to Discriminate Tectonic Settings. Geotectonica et Metallogenia, 31(1): 92-103 (in Chinese with English abstract).

[94]

陈奇, 王长明, 杜斌, 等, 2019. 藏东吉塘变质杂岩体锆石U-Pb年龄、地球化学特征及其地质意义. 岩石学报, 35(5): 1423-1446.

[95]

陈言飞, 张泽明, 陈宣华, 等, 2020. 藏东类乌齐地区晚三叠世基性岩浆作用与构造意义. 岩石学报, 36(9): 2701-2713.

[96]

邓晋福, 刘翠, 冯艳芳, 等, 2015. 关于火成岩常用图解的正确使用: 讨论与建议. 地质论评, 61(4): 717-734.

[97]

李才, 1987. 龙木错-双湖-澜沧江板块缝合带与石炭二叠纪冈瓦纳北界. 长春地质学院学报, 17(2): 155-166.

[98]

李才, 2008. 青藏高原龙木错-双湖-澜沧江板块缝合带研究二十年. 地质论评, 54(1): 105-119.

[99]

李才, 谢尧武, 董永胜, 等, 2009. 北澜沧江带的性质: 是冈瓦纳板块与扬子板块的界线吗? 地质通报, 28(12): 1711-1719.

[100]

李洪梁, 李光明, 刘洪, 等, 2019. 拉萨地体西段达若地区古新世花岗斑岩成因: 锆石U-Pb年代学、岩石地球化学和Sr-Nd-Pb-Hf同位素的约束. 地球科学, 44(7): 2275-2297.

[101]

李洪梁, 李光明, 张志, 等, 2021. 特提斯喜马拉雅东段扎西康矿集区姐纳各普金矿床成因: 黄铁矿He-Ar及原位S同位素约束. 地球科学, 46(12): 4291-4315.

[102]

李艳广, 汪双双, 刘民武, 等, 2015. 斜锆石LA-ICP-MS U-Pb定年方法及应用. 地质学报, 89(12): 2400-2418.

[103]

刘俊, 2020. 藏东拉荣大型钨(钼)矿床:岩浆作用与矿床成因(博士学位论文). 武汉: 中国地质大学.

[104]

刘少峰, 张国伟, 2005. 盆山关系研究的基本思路、内容和方法. 地学前缘, 12(3): 101-111.

[105]

刘一鸣, 李三忠, 于胜尧, 等, 2019. 青藏高原班公湖-怒江缝合带及周缘燕山期微地块聚合与增生造山过程. 大地构造与成矿学, 43(4): 824-838.

[106]

潘桂棠, 王立全, 李荣社, 等, 2012. 多岛弧盆系构造模式: 认识大陆地质的关键. 沉积与特提斯地质, 32(3): 1-20.

[107]

任飞, 尹福光, 徐波, 等, 2021. 藏东吉塘地区早古生代花岗岩锆石U-Pb年龄、Hf同位素及其对原特提斯洋演化的启示. 地质通报, 40(11): 1865-1876.

[108]

宋述光, 王梦珏, 王潮, 等, 2015. 大陆造山带碰撞-俯冲-折返-垮塌过程的岩浆作用及大陆地壳净生长. 中国科学: 地球科学, 45(7): 916-940.

[109]

宋扬, 曾庆高, 刘海永, 等, 2019. 班公湖-怒江洋形成演化新视角: 兼论西藏中部古-新特提斯转换. 岩石学报, 35(3): 625-641.

[110]

王保弟, 王立全, 强巴扎西, 等, 2011. 早三叠世北澜沧江结合带碰撞作用: 类乌齐花岗质片麻岩年代学、地球化学及Hf同位素证据. 岩石学报, 27(9): 2752-2762.

[111]

王保弟, 王立全, 周道卿, 等, 2021. 龙木错-双湖-昌宁-孟连结合带: 冈瓦纳大陆与泛华夏大陆的界线. 地质通报, 40(11): 1783-1798.

[112]

王立全,潘桂棠,丁俊,等, 2013. 青藏高原及邻区地质图及说明书(1∶1 500 000). 北京: 地质出版社.

[113]

吴福元, 万博, 赵亮, 等, 2020. 特提斯地球动力学. 岩石学报, 36(6): 1627-1674.

[114]

吴福元,李献华,杨进辉,等, 2007. 花岗岩成因研究的若干问题. 岩石学报, 23(6): 1217-1238.

[115]

吴元保, 郑永飞, 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报, 49(16): 1589-1604.

[116]

肖庆辉, 李晓波, 贾跃明, 等, 1995. 当代造山带研究中值得重视的若干前沿问题. 地学前缘, 2(1): 43-50.

[117]

辛洪波, 曲晓明, 2006. 藏西措勤县日阿与斑(玢)岩有关的铜矿床的矿床地质特征与成矿时代. 矿床地质, 25(4): 477-482.

[118]

雍永源,向天秀,王洁民, 1990. 初论北澜沧江变质岩. 青藏高原地质文集, 20: 67-89.

[119]

禹丽, 李龚健, 王庆飞, 等, 2014. 保山地块北部晚白垩世岩浆岩成因及其构造指示: 全岩地球化学、锆石U-Pb年代学和Hf同位素制约. 岩石学报, 30(9): 2709-2724.

[120]

翟明国, 2017. 花岗岩: 大陆地质研究的突破口以及若干关键科学问题: “岩石学报”花岗岩专辑代序. 岩石学报, 33(5): 1369-1380.

[121]

张旗, 金惟俊, 李承东, 等, 2010. 三论花岗岩按照Sr-Yb的分类: 应用. 岩石学报, 26(12): 3431-3455.

[122]

张硕, 史洪峰, 郝海健, 等, 2014. 青藏高原班公湖地区晚白垩世埃达克岩年代学、地球化学及构造意义. 地球科学, 39(5): 509-524.

[123]

赵振华, 2007. 关于岩石微量元素构造环境判别图解使用的有关问题. 大地构造与成矿学, 31(1): 92-103.

基金资助

中国地质调查局项目(DD20230449;DD20221741)

国家自然科学基金项目(91955208)

第二次青藏高原综合科学考察研究(2019QZKK0902)

中国地质科学院探矿工艺研究所科研结余资金项目(2022004)

AI Summary AI Mindmap
PDF (8060KB)

184

访问

0

被引

详细

导航
相关文章

AI思维导图

/