白鹤滩库首区砂岩结构多尺度演变机制
Multi-Scale Evolution Mechanism of Sandstone Structure in Baihetan Reservoir Head Region
,
干湿循环作用下岩石结构多尺度演变机制是工程地质领域热点问题之一,而由于其复杂的结构体系具有随机性和无序性,导致阐述岩石样品同一区域微观结构与宏观力学结构性质之间的关系极具挑战.以白鹤滩水电站近坝址区砂岩为研究对象,采用低场核磁共振(nuclear magnetic resonance,NMR)、亚微米级CT扫描(μCT)、扫描电子显微镜(scanning electron microscope,SEM)等多种精细测试技术探究干湿循环作用下砂岩同一结构位置不同阶段力学性质、孔隙裂隙和矿物结构的演变特征.结果表明:粘土团聚结构中强亲水性矿物吸附水分子后,表面水化膜增厚,溶胀压力导致团聚体破坏;随着干湿循环次数增加,小孔隙数量、孔径增加,而大孔径孔隙并未呈现单调增加趋势;孔-裂隙连通性明显改善,导致砂岩单轴抗压强度呈现指数下降趋势,破裂面裂隙趋于复杂化.最后基于详细的微结构演变证据并结合矿物-水分子模拟揭示了砂岩结构多尺度演变机制.研究成果对由岩石结构劣化诱发的地质灾害研究具有重要意义.
砂岩 / 微结构 / 多尺度演变 / 干湿循环 / 矿物 / 工程地质
sandstone / microstructure / multi-scale structure evolution / cycles of wetting and drying / mineral / engineering geology
| [1] |
Cai,X.,Zhou,Z. L.,Tan,L. H.,et al.,2020. Fracture Behavior and Damage Mechanisms of Sandstone Subjected to Wetting-Drying Cycles. Engineering Fracture Mechanics,234:107109. https://doi.org/10.1016/j.engfracmech.2020.107109 |
| [2] |
Chen,Z.,Lan,H.X.,Liu,S.J.,et al.,2022. Mechanism of Tensile Strength Degradation and Damage Mode of the Shigatse Sandstone under the Action of Dry and Wet Cycles. Earth Science (in Chinese with English abstract)(in press). |
| [3] |
Cygan,R. T.,Liang,J. J.,Kalinichev,A. G.,2004. Molecular Models of Hydroxide,Oxyhydroxide,and Clay Phases and the Development of a General Force Field. The Journal of Physical Chemistry B,108(4):1255-1266. https://doi.org/10.1021/jp0363287 |
| [4] |
Gautam,T. P.,Shakoor,A.,2013. Slaking Behavior of Clay-Bearing Rocks during a One-Year Exposure to Natural Climatic Conditions. Engineering Geology,166:17-25. https://doi.org/10.1016/j.enggeo.2013.08.003 |
| [5] |
GB/T 50266-2013.Standard for Test Methods of Engineering Rock Masses. China Planning Press,Beijing (in Chinese). |
| [6] |
Guo,P. Y.,Gu,J.,Su,Y.,et al.,2021. Effect of Cyclic Wetting-Drying on Tensile Mechanical Behavior and Microstructure of Clay-Bearing Sandstone. International Journal of Coal Science & Technology,8(5):956-968. https://doi.org/10.1007/s40789-020-00403-3 |
| [7] |
Han,G.,Zhou,H.,Chen,J.L.,et al.,2019. Engineering Geological Properties of Interlayer Staggered Zones at Baihetan Hydropower Station. Rock and Soil Mechanics,40(9):3559-3568,3575(in Chinese with English abstract). |
| [8] |
Huang,H.W.,Che,P.,2007. Research on Micro-Mechanism of Softening and Argillitization of Mudstone. Journal of Tongji University (Natural Science),35(7):866-870 (in Chinese with English abstract). |
| [9] |
Jia,C. J.,Xu,W. Y.,Wang,R. B.,et al.,2018. Experimental Investigation on Shear Creep Properties of Undisturbed Rock Discontinuity in Baihetan Hydropower Station. International Journal of Rock Mechanics and Mining Sciences,104:27-33. https://doi.org/10.1016/j.ijrmms.2018.02.011 |
| [10] |
Khanlari,G.,Abdilor,Y.,2015. Influence of Wet-Dry,Freeze-Thaw,and Heat-Cool Cycles on the Physical and Mechanical Properties of Upper Red Sandstones in Central Iran. Bulletin of Engineering Geology and the Environment,74(4):1287-1300. https://doi.org/10.1007/s10064-014-0691-8 |
| [11] |
Lan,H.X.,Lü,H.T.,Bao,H.,et al.,2023.Advances in Degradation and Instability Mechanism of Grotto Temple Rock Mass. Earth Science,48(4):1603-1633 (in Chinese with English abstract). |
| [12] |
Li,C.D.,Long,J.J.,Jiang,X.H.,et al.,2020. Advance and Prospect of Formation Mechanism for Reservoir Landslides. Bulletin of Geological Science and Technology,39(1):67-77 (in Chinese with English abstract). |
| [13] |
Li,X. S.,Peng,K.,Peng,J.,et al.,2021. Experimental Investigation of Cyclic Wetting-Drying Effect on Mechanical Behavior of a Medium-Grained Sandstone. Engineering Geology,293:106335. https://doi.org/10.1016/j.enggeo.2021.106335 |
| [14] |
Li,Z.G.,Ye,H.L.,Dai,Y.Y.,et al., 2022. Deterioration Pattern and Mechanism of Shear Resistance of Mica-Quartz Schist under the Action of Dry and Wet Cycles. Earth Science (in Chinese with English abstract)(in press). |
| [15] |
Ma,C.,Zhan,H. B.,Zhang,T.,et al.,2019. Investigation on Shear Behavior of Soft Interlayers by Ring Shear Tests. Engineering Geology,254:34-42. https://doi.org/10.1016/j.enggeo.2019.04.002 |
| [16] |
Massat,L.,Cuisinier,O.,Bihannic,I.,et al.,2016. Swelling Pressure Development and Inter-Aggregate Porosity Evolution upon Hydration of a Compacted Swelling Clay. Applied Clay Science,124-125:197-210. https://doi.org/10.1016/j.clay.2016.01.002 |
| [17] |
Meng,J.,Li,C.D.,Yan,S.Y.,et al.,2023.3D Imaging Characteristics of Pore and Fracture of Tight Sandstone in Baihetan Reservoir Area Based on μCT Technology. Bulletin of Geological Science and Technology,42(1):20-28 (in Chinese with English abstract). |
| [18] |
Müller-Huber,E.,Schön,J.,Börner,F.,2016. Pore Space Characterization in Carbonate Rocks:Approach to Combine Nuclear Magnetic Resonance and Elastic Wave Velocity Measurements. Journal of Applied Geophysics,127:68-81. https://doi.org/10.1016/j.jappgeo.2016.02.011 |
| [19] |
Rahromostaqim,M.,Sahimi,M.,2018. Molecular Dynamics Simulation of Hydration and Swelling of Mixed-Layer Clays. The Journal of Physical Chemistry C,122(26):14631-14639. https://doi.org/10.1021/acs.jpcc.8b03693 |
| [20] |
Sun,L. L.,Hirvi,J. T.,Schatz,T.,et al.,2015. Estimation of Montmorillonite Swelling Pressure:A Molecular Dynamics Approach. The Journal of Physical Chemistry C,119(34):19863-19868. https://doi.org/10.1021/acs.jpcc.5b04972 |
| [21] |
Tang,H.M., Li,C.D., Gong,W.P., et al., 2022. Fundamental Attribute and Research Approach of Landslide Evolution. Earth Science, 47(12):4596-4608(in Chinese with English abstratct). |
| [22] |
Tang,H. M.,Wasowski,J.,Juang,C. H.,2019. Geohazards in the Three Gorges Reservoir Area,China—Lessons Learned from Decades of Research. Engineering Geology,261:105267. https://doi.org/10.1016/j.enggeo.2019.105267 |
| [23] |
Tang,L.S.,Zhang,P.C.,Wang,S.J.,2002. Testing Study on Macroscopic Mechanics Effect of Chemical Action of Water on Rocks. Chinese Journal of Rock Mechanics and Engineering,21(4):526-531 (in Chinese with English abstract). |
| [24] |
Vogel,H. J.,Roth,K.,2001. Quantitative Morphology and Network Representation of Soil Pore Structure. Advances in Water Resources,24(3/4):233-242. https://doi.org/10.1016/s0309-1708(00)00055-5 |
| [25] |
Wang,C.,Pei,W. S.,Zhang,M. Y.,et al.,2021. Multi-Scale Experimental Investigations on the Deterioration Mechanism of Sandstone under Wetting-Drying Cycles. Rock Mechanics and Rock Engineering,54(1):429-441. https://doi.org/10.1007/s00603-020-02257-2 |
| [26] |
Wei,T. T.,Fan,W.,Yuan,W. N.,et al.,2019. Three-Dimensional Pore Network Characterization of Loess and Paleosol Stratigraphy from South Jingyang Plateau,China. Environmental Earth Sciences,78(11):333. https://doi.org/10.1007/s12665-019-8331-z |
| [27] |
Xie,H.P.,Gao,F.,Ju,Y.,2015. Research and Development of Rock Mechanics in Deep Ground Engineering. Chinese Journal of Rock Mechanics and Engineering,34(11):2161-2178 (in Chinese with English abstract). |
| [28] |
Yao,W. M.,Li,C. D.,Zhan,H. B.,et al.,2020. Multiscale Study of Physical and Mechanical Properties of Sandstone in Three Gorges Reservoir Region Subjected to Cyclic Wetting-Drying of Yangtze River Water. Rock Mechanics and Rock Engineering,53(5):2215-2231. https://doi.org/10.1007/s00603-019-02037-7 |
| [29] |
Yu,Y.,Li,C. D.,Hong,W. B.,et al.,2022. Strength Characteristics and Structural Damage of Red Sandstone in Baihetan Xiaoba Formation under Wetting-Drying Cycles. Safety and Environmental Engineering,29(4):24-32,54(in Chinese with English abstract). |
| [30] |
Zeng,Z. X.,Kong,L. W.,Wang,M.,et al.,2020. Effects of Remoulding and Wetting-Drying-Freezing-Thawing Cycles on the Pore Structures of Yanji Mudstones. Cold Regions Science and Technology,174:103037. https://doi.org/10.1016/j.coldregions.2020.103037 |
| [31] |
Zhao,Y. F.,Ren,S.,Jiang,D. Y.,et al.,2018. Influence of Wetting-Drying Cycles on the Pore Structure and Mechanical Properties of Mudstone from Simian Mountain. Construction and Building Materials,191:923-931. https://doi.org/10.1016/j.conbuildmat.2018.10.069 |
| [32] |
Zhou,Z. L.,Cai,X.,Chen,L.,et al.,2017. Influence of Cyclic Wetting and Drying on Physical and Dynamic Compressive Properties of Sandstone. Engineering Geology,220:1-12. https://doi.org/10.1016/j.enggeo.2017.01.017 |
| [33] |
陈钊,兰恒星,刘世杰,等,2022.干湿循环作用下石窟寺砂岩的抗拉强度劣化机理及破坏模式.地球科学(待刊). |
| [34] |
GB/T 50266-2013,工程岩体试验方法标准,北京:中国计划出版社. |
| [35] |
韩钢,周辉,陈建林,等,2019. 白鹤滩水电站层间错动带工程地质特性. 岩土力学,40(9):3559-3568,3575. |
| [36] |
黄宏伟,车平,2007. 泥岩遇水软化微观机理研究. 同济大学学报(自然科学版),35(7):866-870. |
| [37] |
兰恒星,吕洪涛,包含,等,2023.石窟寺岩体劣化机制与失稳机理研究进展.地球科学,48(4):1603-1633. |
| [38] |
李长冬,龙晶晶,姜茜慧,等,2020. 水库滑坡成因机制研究进展与展望. 地质科技通报,39(1):67-77. |
| [39] |
李志刚,叶宏林,代云云,等,2022. 干湿循环作用下云母石英片岩抗剪性能劣化规律及机理.地球科学(待刊). |
| [40] |
孟杰,李长冬,闫盛熠,等,2023. 基于μCT技术的白鹤滩库区致密砂岩孔-裂隙三维成像特征研究. 地质科技通报,42(1):20-28. |
| [41] |
唐辉明,李长冬,龚文平,等,2022.滑坡演化的基本属性与研究途径.地球科学,47(12):4596-4608. |
| [42] |
汤连生,张鹏程,王思敬,2002.水-岩化学作用的岩石宏观力学效应的试验研究. 岩石力学与工程学报,21(4):526-531. |
| [43] |
谢和平,高峰,鞠杨,2015. 深部岩体力学研究与探索. 岩石力学与工程学报,34(11):2161-2178. |
| [44] |
于越,李长冬,洪望兵,等,2022.干湿循环作用下白鹤滩小坝组红层砂岩强度特性与结构损伤研究.安全与环境工程,29(4):24-32,54. |
国家自然科学基金重大项目课题(42090054)
湖北省自然科学基金创新群体(2022CFA002)
白鹤滩库区红层工程特性研究项目(KY2019HDJS07)
/
| 〈 |
|
〉 |