塔里木大火成岩省二叠纪碱性煌斑岩的岩石成因和深部地球动力学过程

曹俊 ,  陈苗苗 ,  万淑敏 ,  王慧丽 ,  易辉 ,  雷恒聪

地球科学 ›› 2024, Vol. 49 ›› Issue (07) : 2448 -2474.

PDF (11335KB)
地球科学 ›› 2024, Vol. 49 ›› Issue (07) : 2448 -2474. DOI: 10.3799/dqkx.2022.490

塔里木大火成岩省二叠纪碱性煌斑岩的岩石成因和深部地球动力学过程

作者信息 +

Petrogenesis and Deep Dynamic Processes of Early Permian Alkaline Lamprophyres in Tarim Large Igneous Province, NW China

Author information +
文章历史 +
PDF (11606K)

摘要

二叠纪塔里木大火成岩省以岩浆活动持续时间长、岩石类型复杂、巨量富铁碱性玄武岩为特征而区别于世界上其他以拉斑玄武岩为主体的大火成岩省,关于其地幔源区组分特征和成因仍然存在争议.选择塔里木大火成岩省西北缘瓦吉里塔格碱性煌斑岩岩脉为研究对象,通过锆石LA-ICP-MS U-Pb定年厘定这些碱性煌斑岩岩浆活动时间,并利用全岩主微量元素和Sr-Nd-Pb-Mg同位素以及单矿物成分分析,揭示其成因和塔里木大火成岩省形成的深部地球动力学过程.锆石LA-ICP-MS U-Pb定年结果限定了瓦吉里塔格碱性煌斑岩侵位年龄为279±1 Ma,属于塔里木大火成岩省第二期岩浆活动的产物.这些煌斑岩呈典型斑状全自形结构,斑晶矿物有橄榄石、单斜辉石、角闪石和黑云母,基质主要由斜长石、单斜辉石、角闪石、黑云母和钛磁铁矿等微晶组成.瓦吉里塔格碱性煌斑岩具有低SiO2(43.5%~49.4%),高Fe2O3t(9.32%~15.50%)、TiO2(2.28%~4.58%),Mg#值在43.6~52.9,富集地幔相容元素(Ni、Cr)的特征,同时高Na2O(2.58%~5.50%)和低K2O/Na2O比值(0.31~0.78)则反映了钠质岩石的属性.在微量元素上富集轻稀土元素、大离子亲石元素和高场强元素,具有弱的Nb-Ta正异常以及K、Sr、Ti、Zr-Hf负异常. 它们的(87Sr/86Sr)i变化于0.704 36~0.705 34之间,ε Ndt)值变化于-1.88~+1.10之间,(206Pb/204Pb)i值为17.19~17.89.其元素和Sr-Nd-Pb同位素地球化学特征与常见的OIB型碱性玄武岩相似,但却具有比正常玄武岩更轻的Mg同位素组成(δ26Mg=-0.78‰~-0.57‰).瓦吉里塔格碱性煌斑岩的原始岩浆应是含碳酸盐化榴辉岩的地幔柱低程度部分熔融的产物,并且部分发生了地幔柱‒岩石圈地幔相互作用.地幔柱‒俯冲蚀变洋壳相互作用是控制塔里木大火成岩省复杂岩石组合的关键因素.

关键词

碱性煌斑岩 / Mg同位素 / 塔里木大火成岩省 / 地幔柱 / 俯冲蚀变洋壳 / 岩石学.

Key words

alkaline lamprophyre / Mg isotope / Tarim Large Igneous Province / mantle plume / subducted altered oceanic slab / petrology

引用本文

引用格式 ▾
曹俊,陈苗苗,万淑敏,王慧丽,易辉,雷恒聪. 塔里木大火成岩省二叠纪碱性煌斑岩的岩石成因和深部地球动力学过程[J]. 地球科学, 2024, 49(07): 2448-2474 DOI:10.3799/dqkx.2022.490

登录浏览全文

4963

注册一个新账户 忘记密码

0 引言

大火成岩省(Large Igneous Porvince,LIP)是指短时间内喷发的大规模岩浆岩建造(主体岩浆活动持续时间为1~5 Ma,分布面积>105 km2,岩浆体积>105 km3),主要由分布广泛的镁铁质岩浆岩以及少量相伴生的碱性长英质和硅不饱和岩浆岩组成(Bryan and Ernst, 2008).在时间上,碱性岩浆活动既可以形成于大火成岩省的早期和晚期,有时也可以形成于主期(Pandey et al., 2018).尽管在大火成岩省中所占比例小,碱性岩浆岩(例如金伯利岩、霞石岩和煌斑岩)由于其深部地幔起源和独特的地球化学特征使得它们成为研究深部地幔熔融过程及岩浆作用的理想对象(Tappe et al., 2013Pandey et al., 2018).作为一类富含挥发分(CO2和H2O)的特殊碱性岩浆岩,煌斑岩通常以岩脉形式产于各种构造环境并且被认为是交代富集地幔源区部分熔融的产物,因此它们在地球深部动力学过程研究中扮演重要的角色(Pandey et al., 2017Giri et al., 2021;刘秉翔等,2021).根据国际地科联(IUGS)推荐的分类方案,煌斑岩可主要划分为三种类型:(1)超镁铁质煌斑岩;(2)钙碱性煌斑岩;(3)碱性煌斑岩(Rock, 1991Tappe et al., 2005).其中,超镁铁质煌斑岩通常产出于岩石圈伸展、裂谷和大陆破裂地区(Pandey et al., 2018),通常与碳酸岩共同构成杂岩体/岩墙群(Tappe et al., 2006;刘秉翔等,2021).钙碱性煌斑岩主要发育在汇聚板块边缘环境并经常与钾玄岩或钙碱性岩浆岩伴生产出,因此此类岩浆是壳‒幔相互作用的重要载体之一,然而碱性煌斑岩多数出露在离散板块边缘(大陆裂谷)和大陆板内(地幔柱相关)环境,被认为与板内碱性玄武质岩浆作用有密切成因联系(Tappe et al., 2016).当前有关碱性煌斑岩的岩石成因主要有两种观点:(1)碱性煌斑岩起源于交代富集岩石圈地幔,但是对于富集组分来源是俯冲板片所释放的流体/熔体(Meshram et al., 2015)抑或是深部软流圈和地幔柱的交代介质(王璐,2014;Aghazadeh et al., 2015)一直处于争论之中;(2)碱性煌斑岩岩浆地幔源区组成不均一,可能是交代富集的岩石圈地幔(富金云母或角闪石脉体)与软流圈/地幔柱混合(Stoppa et al., 2014Tappe et al., 2016;刘秉翔等, 2021).因此,查明地幔交代过程中的富集组分来源和源区特征是解决碱性煌斑岩成因争议的关键.

位于我国西北地区的塔里木大火成岩省是继峨眉山大火成岩省之后又一个被确认的二叠纪大火成岩省(Xu et al., 2014;杨树锋等,2014).与峨眉山大火成岩省相比,塔里木大火成岩省表现出3个重要特征:(1)岩石组合复杂,主要为碱性玄武岩、碱玄玢岩和镁铁‒超镁铁质侵入岩以及少量方解霞黄煌岩、苦橄岩、酸性流纹岩、霞石岩、碳酸岩、碱性煌斑岩和各类中酸性岩体、岩墙,几乎包含了大火成岩省中所有的岩石系列(杨树锋等,2014; Cheng et al., 2018);(2)岩浆活动持续时间长,利用各岩石单元接触关系和同位素定年数据揭示出塔里木大火成岩省主要存在两期岩浆活动,从~290 Ma的玄武岩和流纹岩到~270~280 Ma的超镁铁质‒镁铁质‒中性‒长英质侵入岩和岩墙(Cheng et al., 2018Wang et al., 2022);(3)富铁碱性玄武岩类广泛分布,以玄武岩类为主的岩浆岩均属于碱性系列并且明显富铁(FeO>12.5%),它们的分布面积达2.65×105 km2Cheng et al., 2018Wang et al., 2022).虽然塔里木大火成岩省的形成被广泛认为与地幔柱活动相关,但是对上述岩石学特征的解释也主要存在两种代表性观点:一些学者认为~290 Ma和~270~280 Ma这两期岩浆分别起源于岩石圈地幔和软流圈地幔或地幔柱源区(Xu et al., 2014);其他学者则认为它们均是起源于富集的岩石圈地幔,但随着巨量玄武岩的抽取和时间的推移,源区富集组分逐步消耗殆尽,最晚期的瓦吉里塔格霞石岩和碳酸岩是含再循环地壳物质的地幔柱熔融的产物(Cheng et al., 2017).为了进一步探讨塔里木大火成岩省深部动力学过程及壳源物质地幔再循环的示踪,本文选取了塔里木大火成岩省最晚一期瓦吉里塔格碱性煌斑岩脉,开展年代学、矿物学和全岩主微量及Sr-Nd- Pb-Mg同位素的研究,拟从岩浆体系性质、深部地幔特征等方面为这套独特碱性岩的成因及塔里木地幔柱模型和演化过程提供更多的依据和限定.

1 地质背景

位于我国西北地区的塔里木克拉通呈东西向展布的不规则菱形,总面积约为6.0×105 km2,其北接天山造山带(中亚造山带的南部)、南临昆仑造山带、东南方被阿尔金山所环绕,是中国三大主要的前寒武纪克拉通之一(图1Zhang et al., 2013;王旋等,2021).塔里木克拉通主要由前寒武纪的变质结晶基底和上覆的显生宙沉积盖层两部分组成,具有典型的双层结构特点(Zhang et al., 2013Wang et al., 2022).其中,前寒武纪的变质结晶基底形成于太古宙和元古宙,并被认为是哥伦比亚和罗迪尼亚超大陆的组成部分(Zhang et al., 2013).由于大部分地区被塔克拉玛干沙漠覆盖,目前出露基底岩石主要位于克拉通北缘的阿克苏‒铁克里克和库鲁克塔格地区,岩性主要为片麻状的石英闪长岩‒奥长花岗岩‒花岗闪长岩(TTG,Long et al., 2010Zhang et al., 2012).厚的显生宙浅海和陆地火山沉积地层呈不整合覆盖在上述前寒武纪基底之上,主要包括寒武系、奥陶系、志留系、泥盆系、石炭系、二叠系、白垩系和第三系地层(Guo et al., 2005Tian et al., 2010).其中,寒武系地层主要为碳酸盐岩(白云岩和灰岩)以及少量的页岩和泥岩夹层.奥陶系地层主要以浅海相碳酸盐岩为主,夹少量的砂岩、页岩.志留系地层主要发育有泥岩、细砂岩和粉砂岩.泥盆系地层包括依木岗他乌组和克孜勒塔格组上段,主要为滨海相‒陆相红色厚层粗砂岩、砾岩.石炭系主要发育四石场组、康克林组和卡拉沙依组,为一套砂岩、粉砂质泥岩和砾岩的不等厚互层.二叠系地层自下而上划分为南闸组、库普库兹曼组、开派兹雷克组和沙井子组,主要以陆相沉积为主.其中,南闸组以灰岩和泥岩为主,沙井子组是一套陆源碎屑岩,岩性主要为粉砂质泥岩夹砂岩.库普库兹曼组和开派兹雷克组分别由2个和6个火山岩‒沉积岩旋回组成(Xu et al., 2014).白垩系和古近系地层分布广泛,分别以陆相的砾岩、砂岩、泥岩和红层、砂岩为主.

塔里木克拉通岩浆活动主要集中出现在新元古代、志留‒泥盆纪和早二叠世.在克拉通北缘和南缘产出众多包含镁铁‒超镁铁质岩体、玄武岩、基性岩墙群、双峰式火山岩和各类花岗岩类的新元古代(0.83~0.62 Ga)岩浆岩,被认为是罗迪尼亚大洋向塔里木克拉通下俯冲的产物(Zhu et al., 2011).此外,志留纪‒泥盆纪具有典型弧特征的花岗岩(440~360 Ma)也零星分布在克拉通北部边缘,这些岩浆岩被认为与早中古生代南天山洋的南向俯冲有关(Ge et al., 2012).早二叠纪的岩浆活动在塔里木克拉通分布最为广泛,形成了大规模的碱性玄武岩、超镁铁‒镁铁质岩体和岩脉、A型花岗岩、碱性正长岩和少量方解霞黄煌岩、苦橄岩、安山岩、英安岩、流纹岩、霞石岩、碱玄岩、碳酸岩和碱性煌斑岩,构成一个总覆盖面积约达3.0×105 km2的大火成岩省(即为塔里木大火成岩省;Xu et al., 2014Wang et al., 2022).其中,二叠纪碱性玄武岩和长英质火山岩分布面积分别约为2.65×105 km2和0.48×105 km2Wang et al., 2022).正因为塔里木大火成岩省含有高比例 (>10%)的长英质岩石,Cheng et al. (2020)提出它应属于介于镁铁质和长英质大火成岩省端元之间的过渡型大火成岩省,从而区别于峨眉山大火成岩省.

2 瓦吉里塔格杂岩体地质特征

瓦吉里塔格地区位于塔里木大火成岩省西北缘,距巴楚县城约45 km,区内分布着多种岩石类型,主要包括方解霞黄煌岩筒、镁铁‒超镁铁质层状岩体、碱玄玢岩脉、碱性正长岩体、正长斑岩脉、碱性煌斑岩脉、霞石岩和碳酸岩脉,构成一个杂岩体(图2;Yu, 2020;Wang et al., 2022).该杂岩体呈长轴以近南北向的似椭圆形分布,出露面积约为12 km2,侵位于泥盆系上统依木岗他乌组和克孜勒塔格组地层中.镁铁质‒超镁铁质层状岩体是瓦吉里塔格杂岩体的主体,由上至下岩性主要为辉长岩、单斜辉石岩以及少量橄榄辉石岩,三者之间呈渐变过渡关系(Cao et al., 2014).碱性正长岩产出于该岩体顶部,面积很小(<1 km2).岩体局部和围岩形成少量霞石岩和大量穿插岩脉,如方解霞黄煌岩岩筒和岩脉、碱玄玢岩岩脉、碳酸岩脉、碱性煌斑岩岩脉和一系列中酸性岩脉(闪长玢岩岩脉和正长岩岩脉)出露,总体呈北东向展布.其中,碱性煌斑岩岩脉呈北西西向展布,出露长度约为10 m,宽度为0.5~0.8 m,多数碱性煌斑岩穿插在方解霞黄煌岩岩筒中,也有部分切穿碱玄玢岩岩脉(王璐,2014;程志国,2016),并被正长斑岩岩脉穿切(图3a),局部可见近椭圆状辉长岩、碱玄玢岩和正长岩包体(图3b).基于不同类型岩浆岩野外接触关系和高精度同位素定年数据,瓦吉里塔格杂岩体各组成单元形成的顺序依次为:镁铁‒超镁铁质层状岩体(284~281 Ma)→方解霞黄煌岩(284~268 Ma)→碱玄玢岩岩脉(283~272 Ma)→碱性正长岩(282~277 Ma)→碱性煌斑岩岩脉→正长斑岩岩脉(275~274 Ma)→霞石岩(268 Ma)+碳酸岩(266 Ma) (Li et al., 2011Cheng et al., 2015Song et al., 2017Wei et al., 2019Wang et al., 2021).

3 岩相学特征

瓦吉里塔格杂岩体中出露的碱性煌斑岩在手标本上呈灰黑色至黑色(图3a),并具有明显的煌斑结构.斑晶主要由单斜辉石(10%~25%)、角闪石(10%~20%)以及少量橄榄石(<8%)和黑云母(<5%)组成(图3b).单斜辉石呈自形板状斑晶,粒径变化范围为0.1 mm×0.4 mm ~1 mm× 1.4 mm.一些粗粒(1.4 mm×1.8 mm ~1.6 mm×2.5 mm)单斜辉石颗粒发育明显环带,部分颗粒还具有角闪石和磁铁矿的反应边(图3c3d).角闪石斑晶呈自形‒半自形板状或针状产出,粒径变化在0.3~1.4 mm之间,部分颗粒蚀变强烈,被绿泥石、黑云母和碳酸盐替代.橄榄石通常呈半自形浑圆状颗粒,粒径约为1~2 mm.偶见橄榄石被单斜辉石包裹.黑云母可以呈针状和长条状斑晶产出,粒径变化范围为0.4 mm×1.2 mm~0.5 mm×1.6 mm.

碱性煌斑岩的基质主要由微晶单斜辉石、细针状黑云母和角闪石以及他形斜长石组成.基质辉石呈短柱状,粒度为0.05~0.2 mm,表面有零星的绿泥石化,含量为15%~30%.黑云母呈自形到半自形针状,粒度变化范围较大,多为0.1~0.3 mm,含量为10%~15%.角闪石呈细针状,粒度范围在0.1 mm×0.2 mm~0.1 mm× 0.5 mm,含量为10%~20%.多数斜长石表面发育钠黝帘石化蚀变,可以见到聚片双晶,含量为30%~50%.由磁铁矿和钛铁矿组成的金属氧化物呈粒间他形微晶,含量为 8%~10%.副矿物含有磷灰石,粒度变化范围为0.1~0.5 mm,含量<3%.

4 分析方法

用于U-Pb年龄测定的样品(WJL-14)用常规的重选和磁选技术分选出锆石.锆石制靶、透射、反射和阴极发光(CL)拍照由重庆宇劲科技有限公司完成,然后根据这些锆石照片选择适宜的测试点位.锆石U-Pb定年工作在合肥工业大学资源与环境工程学院采用激光剥蚀等离子体质谱仪(LA-ICP-MS)法完成,使用仪器为GeolasPro激光剥蚀系统和Agilent 7500a型等离子体质谱仪(ICP-MS).分析采用的激光束斑直径为32 μm,脉冲能量为10 J/cm2,频率为5 Hz.锆石分析外标为标样91500,元素含量分析外标为NIST SRM610玻璃,内标为29Si,并且每两组样品测试完成后会加测一次标样Plesovice用于监测年龄数据的准确性和稳定性(Sláma et al., 2008).采用ICPMSDataCal(Liu et al., 2008)计算锆石同位素比值以及微量元素含量.普通Pb采用Andersen (2002)提出的方法进行校正.利用Isoplot v.3.75绘制锆石U-Pb谐和图和计算加权平均年龄.单次锆石U-Th-Pb同位素比值、年龄数据和微量元素分析的标准偏差均为1σ,而U-Pb加权平均年龄误差为2σ.

矿物原位的主量元素成分测定在东华理工大学核资源与环境省部共建国家重点实验室的JEOL JXA-8100型电子探针上完成.定量化学成分分析的工作条件为:加速电压为15 kV,加速电流为20 nA,束斑直径为1 μm.主量元素和背景的计数时间分别为20 s和10 s,微量元素和背景的计数时间分别为40 s和20 s.各元素含量校正标样均为天然矿物.原始数据采用ZAF程序校正,排除测试过程中的噪音和干扰.主量元素的分析误差约为2%,微量元素分析误差为5%.

橄榄石微量元素分析在武汉上谱分析科技有限公司采用LA-ICP-MS法完成,使用仪器为配备有GeolasPro激光剥蚀系统的Agilent 7700e ICP-MS上完成.分析束斑直径为30 μm,波谱频率为 10 Hz,每个脉冲能量约为4 J/cm2,剥蚀时间为40 s,背景分析时间为20 s. 详细的仪器参数和分析流程见Zong et al.(2017).微量元素含量处理中采用玻璃标准物质BHVO-2G、BCR-2G、BIR-1G及NIST SRM 610进行多外标无内标校正(Liu et al., 2008).对分析数据的离线处理(包括对样品和空白信号的选择、仪器灵敏度漂移校正以及元素含量计算)采用软件ICPMSDataCal(Liu et al., 2008)完成.

全岩主量和微量元素分析在中国科学院广州地球化学研究所同位素地球化学国家重点实验室完成.主量元素分析仪器为Rigaku RIX 2000型X射线荧光光谱仪(XRF),分析方法参考Goto and Tatsumi(1996),分析精度优于1%.烧失量(LOI)为样品在900 °C恒温下烘烤1.5 h后的样品重量损失量.微量元素分析采用酸溶法,测试仪器为Perkin-Elmer Sciex ELAN6000型电感耦合等离子体质谱仪(ICP-MS).样品处理步骤如下:称取~40 mg未烧失的样品粉末于清洗干净的溶样弹中,并加入0.8 mL HNO3∶HF和15滴1∶3 HClO4,超声振荡 0.5 h,再将溶样弹置于100 °C电热板上加热48 h,开盖蒸干;再加入0.8 mL 1∶1纯化 HNO3,加盖100 °C保温过夜;再加入HF和15滴1∶3 HClO4,置于高压釜中在190 °C下加热48 h之后再将样品蒸干,加入4 mL 4N HNO3,再次放入高压釜中以170 °C保温 4 h.取出后,趁热将溶液用1% HNO3稀释至2 000倍并加入Rh-Re内标来监控测试过程的仪器漂移.国际标样BHVO-2、AGV-2、W-2和我国火成岩标样GSR-1、GSR-2和GSR-3被用作建立成分曲线以计算含量.微量元素的分析精度基本优于5%.

全岩Sr-Nd-Pb同位素均在中国科学院广州地球化学研究所同位素地球化学国家重点实验室使用Thermo Fisher Neptune Plus型多接收等离子体质谱仪(MC-ICP-MS)完成.将~0.15 g的样品粉末溶解在HF+HNO3中,随后加入1 mL的3N HNO3再次溶解后蒸干备用.Sr和Nd分别在3N HNO3和HCl的环境下被AGW50-X12和HDEHP离子交换树脂(200~400 mesh)纯化.在6N HCl环境中通过AG1-X8离子交换树脂分离Pb.详细的分析方法参见Li et al.(2006)Xie et al.(2016).仪器质量分馏效应分别用86Sr/88Sr=0.119 4(Elburg et al., 2005)和146Nd/144Nd=0.721 9(Vance and Thirlwall, 2002)进行校正.测试过程中,重复测试标样NBS987的87Sr/86Sr测定值为0.710 244±0.000 013(2SD, n=5),JNdi-1的143Nd/144Nd为0.512 115±0.000 014(2SD,n=5),NBS981的206Pb/204Pb、207Pb/204Pb和208Pb/204Pb的平均值分别为16.935 0±0.002 2、15.489 0±0.001 6和36.701 0±0.005 5(2SD,n=5);分别与推荐值87Sr/86Sr=0.710 244(Elburg et al., 2005)、143Nd/144Nd=0.512 115(Tanaka et al., 2000)和206Pb/204Pb=16.935 0、207Pb/204Pb= 15.489 0、208Pb/204Pb= 36.707 0(Todt et al., 1996)在误差范围内一致.

全岩Mg同位素分析在中国海洋大学海底科学与探测技术教育部重点实验室利用Thermo- Finnigan Neptune plus MC-ICP-MS完成,实验方法参考Teng et al. (2007).样品消解前,先用1N纯化HCl溶液浸泡1 d,以减少样品蚀变的影响.根据样品MgO含量特征,准确称取300~700 μg的全岩粉末,盛于Teflon熔样杯内,加入按3∶1混合的HF和HNO3溶液,拧紧盖,将其置于160 °C电热板放置 24 h,直至样品完全溶解无沉淀.随后,开盖置于140 °C电热板加热蒸干.将残留物溶解在3∶1的HCl-HNO3混合酸液,去除可能形成的CaF2沉淀物;加入1N HNO3溶液,置于80 °C电热板,使沉淀完全溶解.待样品完全溶解之后,使用清理好的树脂(BioRad 200~400目AG50W-X8)在离子交换柱中提纯Mg.根据分析结果,标样BHVO-2和JB-2的δ26Mg值分别为-0.26‰±0.03‰和-0.18‰±0.01‰,近似于国际同类实验室测试值(-0.24‰±0.05‰和-0.21‰±0.05‰;Pogge von Strandmann et al., 2011).同时,空白样的Mg含量仅为0.76 ng,明显低于实验室平均值(10 ng).

5 分析结果

5.1 锆石U-Pb定年

锆石U-Pb定年结果列于附表1.代表性锆石CL图像和锆石U-Pb年龄谐和图解见图4.样品WJL-14中锆石粒径约为40~100 μm,长宽比约 1∶1~2∶1,自形‒半自形,没有明显的包裹体.CL图像显示分析的锆石具有典型的岩浆震荡环带和扇形环带,暗示它们为岩浆成因.同时,这些锆石具有变化的Th(94×10-6~1 096×10-6)和U(109×10-6~561×10-6)含量,高的Th/U比值(0.86 ~2.54),也符合岩浆锆石的特征(吴元保和郑永飞,2004).

20个谐和年龄计算的加权平均206Pb/238U年龄为279±1 Ma(2σ,MSWD=0.49;图4),这比王璐(2014)所报道的钠质煌斑岩中锆石LA-ICP-MS U-Pb定年结果(271.8±1.9 Ma)约偏老7 Ma,可能反映瓦吉里塔格碱性煌斑岩岩浆活动持续时间长的特点.另外,由于这些煌斑岩岩脉经常穿切镁铁‒超镁铁质层状岩体(284~281 Ma)和正长岩体(282~277 Ma),并被正长斑岩(275~274 Ma)和碳酸岩(266 Ma)穿插,因此根据野外接触关系也可确定煌斑岩的侵位时间约为274~282 Ma.值得注意的是,这些碱性煌斑岩的形成时间与塔里木第二期岩浆岩的年龄相似(270~280 Ma).

5.2 矿物化学成分

5.2.1 橄榄石

橄榄石颗粒表现出一个较宽的成分变化范围,Fo的变化范围为66.0~72.8(附表2‒1).橄榄石斑晶的核部通常更加富镁(Fo68.6-72.8),而斑晶的边部相对富铁(Fo66.0-67.2).斑晶橄榄石比地幔橄榄石(Ca<700×10-6;Ti<70×10-6)表现出更高的Ca(1 858×10-6~7 147×10-6)和Ti(180×10-6~300×10-6)含量,表明这些橄榄石斑晶是岩浆成因,而不是上升过程中被捕获的 (Foley et al., 2013).此外,斑晶橄榄石中含有许多钛磁铁矿和熔体包裹体,也不同于典型的幔源橄榄石捕掳晶的特征(Kamenetsky et al., 2017).

同时,对瓦吉里塔格碱性煌斑岩中橄榄石斑晶的微量元素进行了精确测定,测试结果一并列于附表2‒1.结果表明橄榄石中Ni含量为587×10-6~673×10-6,Co含量为212×10-6~222×10-6,Zn含量为264×10-6~325×10-6和Li含量为10.6×10-6~23.4×10-6.其他元素含量都较低,特别是稀土元素大多处于检测限以下.

5.2.2 单斜辉石

在碱性煌斑岩中,单斜辉石可呈斑晶和基质微晶出现.单斜辉石斑晶端元组分为Wo42.9-48.0En37.9-44.0Fs11.8-17.6,属于透辉石‒普通辉石(图5a;附表2‒2),其Mg#值变化范围为68.8~80.9.单斜辉石成分落在碱性玄武岩中单斜辉石成分范围内(图5b).TiO2和Al2O3含量较高,变化范围分别为0.78%~2.29%和1.98%~4.64%.Na2O含量变化范围为0.30%~0.65%.与塔西南碱性玄武岩中的单斜辉石斑晶(Mg#=63~68,TiO2=1.17%~2.08%,Al2O3=1.50%~3.36%,Na2O=0.21%~0.45%;厉子龙等,2008)相比,碱性煌斑岩中单斜辉石斑晶具有更高的Mg#、TiO2、Al2O3和Na2O含量.一些斑晶颗粒具有明显正环带,核部成分变化范围为Wo43.9-45.7En39.9-44.0Fs12.2-15.2,边部变化范围为Wo42.9-45.7 En37.9-41.9 Fs12.4-17.6图5).正环带单斜辉石核部通常相较于边部具有更高的Mg#值(72.8~78.6)、Al2O3(2.85%~4.10%)和Cr2O3含量(0.06%~0.29%)以及更低的TiO2含量(1.36%~1.70%).

基质中的单斜辉石微晶的成分变化范围为Wo43.4En41.9-42.0 Fs14.6-14.7.与单斜辉石斑晶相比,它们具有较低的Mg#值(74.4~74.6)和Na2O含量(0.36%~0.39%).

5.2.3 角闪石

瓦吉里塔格碱性煌斑岩中角闪石在斑晶或基质中作为主要矿物产出,均属于碱性角闪石类,全部为钛闪石(图5c).角闪石斑晶具有变化较大的SiO2含量(38.4%~40.7%);TiO2含量范围为4.94%~5.61%;FeOt范围为11.4%~13.6%;Al2O3范围为11.7%~12.9%;MgO范围为12.5%~13.6%;CaO含量在11.4%~11.7%;Na2O含量为2.20%~2.52%;Mg#值为62.2~67.0(附表2‒3).与角闪石斑晶相比,基质中角闪石的MgO(12.5%~12.8%)、CaO含量(11.5%~11.6%)和Mg#值(64.8~65.7)降低,K2O含量(0.66%~0.93%)升高,SiO2(39.6%~40.4%)、TiO2(5.26%~5.56%)、Al2O3(12.0%~12.1%)和Na2O(2.35%~2.47%)含量变化不大.在CaO/Na2O-Al2O3/TiO2图中(图5d),角闪石的矿物化学特征指示瓦吉里塔格煌斑岩可能与南Tuscany碱性煌斑岩类似,同属于碱性岩石系列.

5.2.4 黑云母

黑云母也是瓦吉里塔格碱性煌斑岩中斑晶和基质的主要组成矿物之一.黑云母斑晶SiO2含量变化范围为35.4%~37.8%,TiO2含量为6.84%~8.90%,Na2O含量为0.41%~0.48%,K2O含量为9.27%~9.83%,Mg#为51.4~64.2(附表2‒4).相比较而言,基质中黑云母具有高的SiO2(36.0%~39.2%)、MgO含量(10.7%~15.2%),低的TiO2(3.88%~9.34%)、Al2O3含量(12.5%~14.2%)和相近的Mg#值(53.1~67.5).在云母Mg- Li-Fe+Mn+Ti-AlVI分类图中(图5e),瓦吉里塔格煌斑岩中黑云母全部落在铁云母区域.在Mg#-Al2O3图中(图5f),本区煌斑岩与南Tuscany碱性煌斑岩云母区部分重叠,与碱性煌斑岩特征相近.

5.2.5 斜长石

基质斜长石主要是中‒拉长石,含有2.87%~10.70%的CaO、22.2%~28.5%的Al2O3、2.25%~6.95%的Na2O和0.12%~2.68%的K2O(附表2‒5).部分斜长石具有更低的CaO(大多数在0.64%~6.88%)、Al2O3(21.6%~28.5%)和Na2O含量(0~6.61%)和更高的SiO2含量(54.6%~73.1%).在长石Or-An-Ab分类图解中(图5g),落在钠长石和更长石的范围内.

5.2.6 磷灰石

基质副矿物磷灰石具有相对均一的成分:CaO(53.0%~53.3%)和P2O5(42.3%~42.9%)(附表2‒6).所有的磷灰石是氟磷灰石,F含量变化范围为1.55%~2.08%,Cl含量都<0.22%.同时,磷灰石中含少量FeO(0.30%~0.33%)、MgO(0.31%~0.36%)、MnO(0.04%~0.06%)和Na2O(0.03%~0.07%).

5.3 全岩主量与微量元素

17件碱性煌斑岩全岩主微量元素组成见附表3.瓦吉里塔格碱性煌斑岩为基性到超基性岩,SiO2含量为43.5%~49.4%.它们显示出宽泛的MgO含量(3.57%~7.29%)、Mg#值变化范围(43.6~52.9)和高的Fe2O3t(9.32%~15.5%)、TiO2(2.28%~4.58%)、全碱(Na2O+K2O)含量(4.37%~7.97%).同时,这些样品具有低的K2O/Na2O比值(0.31~0.78),表明它们是钠质系列岩石(Stoppa et al., 2014).同时利用煌斑岩判别图(Rock, 1991),瓦吉里塔格煌斑岩完全落在碱性煌斑岩区域(图6).因此,根据IUGS岩石分类方法(Le Maitre, 1989),这些样品属于钠质碱性煌斑岩.如图7所示,碱性煌斑岩的SiO2、Al2O3和Na2O+K2O与MgO含量呈负相关关系,而CaO/Al2O3、Ni、Cr均与MgO含量呈正相关关系.TiO2、Fe2O3t含量随着MgO含量的降低先升高再降低.

与世界上其他碱性岩相类似,瓦吉里塔格碱性煌斑岩以强烈富集不相容元素和高的稀土元素总含量为特征(∑REE=280×10-6~422×10-6).所有碱性煌斑岩均表现出近平行的稀土元素配分模式,富集轻稀土元素(LREE),(La/Yb)N和(Gd/Yb)N比值分别为15.5~22.6和3.76~4.91,弱Eu异常(Eu/Eu*=0.94~1.01)(图8a).在微量元素原始地幔标准化蛛网图中(图8b),这些碱性岩呈现富集大离子亲石元素(LILE;比如Rb、Ba、Th等)和弱的Nb-Ta正异常以及K、Sr、Ti、Zr-Hf负异常.此外,瓦吉里塔格碱性煌斑岩表现出与洋岛玄武岩(OIB)相似的配分型式(图8).

5.4 全岩Sr-Nd-Pb-Mg同位素

瓦吉里塔格碱性煌斑岩Sr-Nd-Pb同位素组成列于附表4.碱性煌斑岩的 (87Sr/86Sr)i比值和ε Ndt=280 Ma)值变化范围分别为0.704 36~0.705 34和-1.88~+1.10,落在OIB成分范围内(图9a).与塔里木碱性玄武岩相比,瓦吉里塔格碱性煌斑岩表现出更低的(87Sr/86Sr)i和更高的 ε Ndt)值,但整体与区域方解霞黄煌岩、霞石岩、响岩和碱玄玢岩相似.此外,这些样品有着变化的(206Pb/204Pb)i(17.19~17.89)、(207Pb/204Pb)i(15.42~15.58)和(208Pb/204Pb)i(37.56~38.63)比值(附表4).在Pb-Pb相关图解中(图9b~9d),多数样品的投点落在FOZO和峨眉山玄武岩区域附近,部分样品点趋向靠近EMI端元,与碱玄玢岩投点区域相似但Pb同位素变化范围更大.

本文分析的样品以及标样的Mg同位素组成落在一条斜率为0.51的直线上,表明获得的Mg同位素数据符合质量分馏且在质谱测量过程中没有受到基体元素的干扰(图10).标样(BHVO-2、JB-2)测量值与推荐值在误差范围内一致,表明获得的Mg同位素数据是可靠的.瓦吉里塔格碱性煌斑岩的Mg同位素组成均一,δ26Mg值为-0.78‰~-0.57‰(附表5),低于MORB 和地幔的δ26Mg值(-0.25±0.07‰;Teng et al., 2010),但与同地区方解霞黄煌岩(δ26Mg=-0.75‰~-0.36‰;Cheng et al., 2018)和响岩(δ26Mg=-0.91‰~-0.30‰;Wei et al., 2021)的Mg同位素组成相似.

6 讨论

6.1 碱性煌斑岩的成因

6.1.1 岩石蚀变

矿物(尤其是基质)后期蚀变是煌斑岩侵位后常见现象,并且可能影响其大离子亲石元素(LILE)和同位素含量(Rock, 1991).本研究选取的岩石样品在手标本和镜下观察均显示仅部分样品存在少量低温蚀变矿物,且样品的烧失量较低(LOI=0~4.92%;附表2),表明后期岩石蚀变作用对瓦吉里塔格碱性煌斑岩的影响很小.LILE(如 K、Rb、Th、U等)一般为流体活动性元素,而Zr则是流体不活动性元素(Kessel et al., 2005Wang et al., 2008).因此,LILE和Zr之间的相关关系可以用来反映这些元素在蚀变过程中的活动性.图11表明Zr和LILE之间具有良好的正相关性,暗示后期低温蚀变作用对全岩的化学成分的影响不显著.瓦吉里塔格碱性煌斑岩中变化的烧失量可能是含水矿物(角闪石和黑云母)不均匀分布的结果.

6.1.2 地壳混染

幔源玄武质岩浆在上升侵位至地表过程中不可避免地发生地壳混染作用从而掩盖掉岩浆的原始不相容元素和同位素组成特征(DePaolo,1981Heinonen et al., 2022).瓦吉里塔格碱性煌斑岩具有变化范围较大的(87Sr/86Sr)i、(206Pb/204Pb)i比值和ε Ndt)值(图9),暗示它们可能经历了地壳混染作用(Rudnick and Gao, 2014).由于地球化学性质的差异,地壳相对地幔更富集大离子亲石元素,而亏损高场强元素.Th/Ta比值在原始地幔(Th/Ta≈2)和地壳(上地壳Th/Ta=6.9、下地壳Th/Ta=7.9)中截然不同,因此该比值可以作为岩浆是否发生地壳混染的重要指标(Weaver, 1991).瓦吉里塔格碱性煌斑岩Th/Ta比值范围为1.44~3.23,显著低于上地壳和下地壳的值.同样地,瓦吉里塔格碱性煌斑岩Nb/Ta比值为16.9~21.4,高于大陆地壳(Nb/Ta=11.4;Rudnick and Gao, 2003)但接近原始地幔值(Nb/Ta=17.6),并且Nb/Ta与La/Yb之间不存在明显相关性,也暗示它们未遭受明显的地壳混染(Münker, 1998).此外,瓦吉里塔格碱性煌斑岩的微量元素特征如Zr/Nb(5.11~6.78)、La/Nb(0.81~1.07)和Ba/Nb(8.80~15.8)比值明显低于大陆地壳的值(Zr/Nb=16.5、La/Nb=2.50、Ba/Nb=57.0;Rudnick and Gao, 2003),但与EMI型OIB类似(Zr/Nb=4.2~11.5、La/Nb=0.86~1.19、Ba/Nb=11.4~17.8;Weaver, 1991).在微量元素原始地幔标准化蛛网图中(图8),瓦吉里塔格碱性煌斑岩也表现出类似于OIB的特征,包括Nb-Ta正异常和Rb、K、 Zr-Hf负异常,表明地壳混染影响极其微弱.同时,其(87Sr/86Sr)i和SiO2含量之间没有明显的变化趋势,表明地壳混染的影响非常有限.

已有地球主要储库的Mg同位素组成表明大陆地壳具有比正常地幔(δ26Mg=-0.25‰±0.04‰;Teng, 2017)偏重的Mg同位素组成(大陆上地壳δ26Mg=-0.22‰、大陆中地壳δ26Mg=-0.21‰±0.07‰、大陆下地壳δ26Mg=-0.26‰±0.06‰;Li et al., 2010Yang et al., 2016).因此,如果受到地壳混染,瓦吉里塔格碱性煌斑岩应该具有比正常地幔更重的Mg同位素组成,但是这些碱性煌斑岩具有比正常地幔显著偏轻的Mg同位素组成(-0.78‰~-0.57‰).值得注意的是,大陆地壳Mg同位素组成具有较大的变化范围,其中富硅酸盐沉积物富集重Mg同位素(-0.52‰~+0.92‰;Teng, 2017),但富碳酸盐岩沉积物富集轻Mg同位素(-3.65‰~-0.32‰;Teng, 2017).因此,瓦吉里塔格碱性煌斑岩的低δ26Mg可能是岩浆在上升过程中混染了沉积碳酸盐岩(如白云岩)的结果.然而,其δ26Mg和(87Sr/86Sr)i值没有明显相关性(图12),这与低δ26Mg和高(87Sr/86Sr)i的沉积型碳酸盐岩的混染趋势不一致,因此可以排除陆壳混染对瓦吉里塔格碱性煌斑岩Mg同位素变化的影响.

6.1.3 分离结晶

通常来说,地幔部分熔融形成的初始熔体具有高的Ni(>400 ×10-6)和Cr (>1 000×10-6)含量,并且Mg#为73~81(Wilson, 1989).瓦吉里塔格碱性煌斑岩中低的Mg#(43.6~52.9)、Ni(14.0×10-6~109×10-6)和Cr(14.5×10-6~179×10-6)含量,暗示它们可能是发生了一定程度分离结晶、演化岩浆的产物.此外,这些碱性煌斑岩的La/Sm与La之间无明显相关性(附表3),表明它们可能是同一母岩浆发生不同程度分离结晶的产物.瓦吉里塔格碱性煌斑岩中常见单斜辉石、橄榄石斑晶,同时样品中Ni、Cr和CaO/Al2O3与MgO呈正相关性,表明碱性煌斑岩经历了橄榄石和单斜辉石的分离结晶.样品中TiO2、Fe2O3t含量随着MgO含量的降低先升高再降低,暗示在岩浆演化晚期阶段Fe-Ti氧化物结晶才起到重要作用.在单斜辉石、橄榄石以及斜长石分离结晶的过程中,多数微量元素都是极度不相容的,但Eu在斜长石中是相容元素(McKenzie and O’Nions, 1991).瓦吉里塔格碱性煌斑岩样品没有出现明显的Eu异常(Eu/Eu*=0.94~1.01)以及Al2O3与MgO呈负相关性,表明斜长石的分离结晶作用不明显.因此,全岩的地球化学成分表明瓦吉里塔格碱性煌斑岩主要经历了橄榄石+单斜辉石+Fe-Ti氧化物的分离结晶.

单斜辉石是镁铁‒超镁铁质岩的主要组成矿物之一,其成分特征记录了岩浆演化的相关信息(薛胜超等,2015;Pang et al., 2016),因此本文尝试使用瓦吉里塔格碱性煌斑岩中单斜辉石的地球化学数据来进一步讨论其结晶序列.当单斜辉石的Mg#>~76时,TiO2与Mg#负相关(图13a),与橄榄石和单斜辉石的分离结晶趋势一致,表明没有明显的Fe-Ti氧化物的分离结晶;当Mg#< ~76时,随着Mg#的降低,TiO2含量逐渐降低(图13a),可能是Fe-Ti氧化物的分离结晶导致残余熔体TiO2降低.当Mg#>~76时,Al2O3与Mg#负相关(图13b);而在Mg#<~76时,Al2O3与Mg#显示正相关性(图13b),并且单斜辉石的CaO含量随着Mg#降低而降低(图13c),暗示斜长石的分离结晶发生在单斜辉石Mg#<~76.同时,单斜辉石中Cr2O3含量在Mg#=69~75急剧降低到检测限以下(图13d),暗示Fe-Ti氧化物结晶主要发生在单斜辉石Mg#=69~75.

已有研究表明,单斜辉石、角闪石和黑云母成分对岩浆过程中的温压环境较为敏感,因而可以较好地限定其形成时寄主岩浆的温压条件(Ridolfi, 2021Wang et al., 2021Li and Zhang, 2022).本文选择Wang et al. (2021)建立的新型单斜辉石单矿物温压计进行结晶条件估算,结果表明正环带单斜辉石核部的结晶温度为1 109~1 197 °C,平均为115 6 °C,压力为0.5~12.8 kbar,平均为4.3 kbar;正环带单斜辉石边部和基质单斜辉石的结晶温度为109 6~114 4 °C,平均为111 9 °C,结晶压力为0~1.3 kbar,平均为0.4 kbar,由此看出正环带单斜辉石边部和基质单斜辉石的结晶温度和压力低于正环带单斜辉石核部.此外,瓦吉里塔格碱性煌斑岩中角闪石的AlVI/(AlVI+AlIV)比值范围为0~0.21,Mg#[Mg2+/(Mg2++Fe2+)]值的范围主要为55~67,表明其适用于Ridolfi(2021)提出的基于角闪石成分温压计.计算结果显示,结晶温度为931~1 071 °C,平均温度1 000 °C;压力范围为2.48~6.08 kbar,平均压力4.63 kbar.同时,通过运用机器学习的黑云母温压计(Li and Zhang, 2022)计算,其形成温度是758~1 006 °C,平均温度为896 °C,压力介于3.24~10.0 kbar,平均压力为5.86 kbar.综合以上分析,推测瓦吉里塔格碱性煌斑岩中矿物结晶顺序为:橄榄石→单斜辉石→角闪石→黑云母→斜长石+Fe-Ti氧化物.

6.1.4 地幔源区特征

地幔来源的碱性岩被普遍认为是交代富集地幔源区低程度部分熔融的产物(Tainton and McKenzie, 1994).由于煌斑岩中角闪石、金云母和磷灰石等含水矿物相的出现,说明煌斑岩岩浆富水甚至达到水饱和(Rock, 1991),这暗示其地幔源区发生了交代富集作用(Foley, 1992Batki et al., 2014).HFSE/LREE是指示地幔源区的重要指标(Smith et al., 1999).瓦吉里塔格碱性煌斑岩Nb/La比值(0.94~1.24)与OIB型软流圈相似(Nb/La>1),但不同于岩石圈地幔(Nb/La<0.5)(图14a).同时,这些碱性煌斑岩具有高La/Ba(0.05~0.11)和低La/Nb比值(0.81~1.07),也类似于OIB(图14b).此外,Nb/U比值被认为不受岩浆分异的影响,能够代表未受混染岩浆的相应地幔储库值(Pandey et al., 2017).瓦吉里塔格碱性煌斑岩的Nb/U比值(30.8~81.0)位于巴楚碱玄玢岩和OIB成分范围,明显偏离大陆地壳和俯冲相关远洋沉积物的范围(图12c).在Th/Yb-Ta/Yb图解中(图14d),它们局限地分布在地幔阵列内并显示富集地幔特征,该特征同样相似于巴楚碱玄玢岩.这些特征可能暗示瓦吉里塔格碱性煌斑岩可能主要来源于富集软流圈地幔源区,与塔里木地幔柱提供物源有关(Xu et al., 2014).在Sr-Nd-Pb同位素图解中(图9),瓦吉里塔格碱性煌斑岩主要投影在FOZO和EMI端元之间,说明其岩浆源区可能为FOZO型地幔柱,但在地幔柱上升演化过程中混入一定量的EMI型OIB组分.EMI型OIB一般被认为是起源于再循环的洋壳+古老沉积物(Ma et al., 2022),进一步支持其地幔源区存在陆下岩石圈地幔物质和再循环洋壳组分.值得注意的是,瓦吉里塔格碱性煌斑岩在新的大火成岩省构造和岩石成因判别图解(图14e)中符合IIIa型成分变化趋势,代表了其为地幔柱‒岩石圈之间不同程度的相互作用的岩浆(Pearce et al., 2021).因此,瓦吉里塔格碱性煌斑岩的源区可能为地幔柱和岩石圈地幔的混合源区.

源区岩石学特征是决定地幔来源熔体的地球化学组成的主要因素(Yang et al., 2016).前已述及,瓦吉里塔格碱性煌斑岩富含单斜辉石、角闪石和黑云母这类含水矿物以及富集LILE、LREE和HFSE,可能与交代富集的地幔源区密切相关(王璐,2014;Pandey et al., 2017).按照交代介质的成分特征,地幔交代作用通常划分为富水流体交代作用、硅酸盐熔体交代作用和碳酸盐熔体交代作用(邓黎旭等,2019).图14f指示煌斑岩的地幔源区受到俯冲熔体交代作用,地幔交代富集作用通常不仅会改变地幔的地球化学性质,而且可能明显改变地幔中的矿物组合类型,包括产生新的矿物相(角闪石和金云母).瓦吉里塔格煌斑岩表现出K负异常和富Na的特征以及较低的Rb/Sr(0.02~0.07)、较高的Ba/Rb比值(12.7~32.7),指示地幔源区可能含有角闪石而不是金云母(Furman and Graham, 1999;刘秉翔,2021),同时也是俯冲改造的地幔楔中常见含水矿物相(Luhr, 1997).另外,在同一地区~284~268 Ma方解霞黄煌斑岩中约含有6%角闪岩等阿拉斯加型捕掳体,也表明塔里木岩石圈地幔曾经受俯冲板片交代影响(Liu et al., 2021).由此推测角闪石可能是俯冲板片释放富挥发分的熔体与岩石圈地幔橄榄岩反应产生的.

单斜辉石是地幔中主要富Ca矿物,地幔源区残留单斜辉石可以明显降低熔体中CaO含量(Herzberg, 2011).瓦吉里塔格碱性煌斑岩低的CaO含量(5.98%~10.80%)与典型的来自于辉石岩熔体的相似,而较橄榄岩部分熔融熔体的偏低(MORB;8%~14%)(Herzberg, 2006, 2011).同时,利用判别地幔橄榄岩源区‒非地幔橄榄岩源区的指标Fe/Mn、Zn/Fe和FC3MS(Sobolev et al., 2005Herzberg, 2006Le Roux et al., 2010Yang et al., 2016),瓦吉里塔格碱性煌斑岩均落于辉石岩源区熔体范围(图15).此外,碱性煌斑岩高的Dy/Yb比值(图12f)以及低的HREE含量特征指示了源区存在石榴子石.榴辉岩中石榴子石的DNb/Ta=1.2~2.0(Stalder et al., 1998Van Westrenen et al., 2000Klemme et al., 2002Pertermann et al., 2004),DNb/La=1.3~7.5(Van Westrenen et al., 2000Pertermann et al., 2004).瓦吉里塔格碱性煌斑岩中的Th与Nb/Ta和Nb/La 具有负相关性,表明源区总体DNb/Ta>1和DNb/La>1(John et al., 2011),这也支持其源区是榴辉岩.此外,单斜辉石和碳酸盐中DZr<DHf而石榴子石中DZr>DHfKlemme et al., 2002Pertermann et al., 2004Dasgupta et al., 2009).因此,碳酸盐化榴辉岩低程度部分熔融可以解释瓦吉里塔格碱性煌斑岩中Zr-Hf负异常和高的Zr/Hf比值(37.9~42.4).再者,在瓦吉里塔格碱性煌斑岩中发现原始碳酸盐球粒(图3),再加上与其共生的火成碳酸岩,这些证据进一步暗示其地幔源区可能受到再循环碳酸盐的交代.研究表明地幔部分熔融和早期结晶分异过程中不存在明显的Mg同位素分馏,只有在岩浆分异的晚期由于磁铁矿或钛磁铁矿等矿物的结晶分异才会导致Mg同位素的分馏(陈洁等,2021;Wang et al., 2021).需要指出的是,本次的研究发现瓦吉里塔格碱性煌斑岩基质中确实含有钛磁铁矿,所以钛磁铁矿的分离结晶有可能造成碱性煌斑岩岩浆低的δ26Mg同位素组成.但考虑到瓦吉里塔格碱性煌斑岩Mg同位素组成与MgO和TiO2之间没有相关性(图16),排除了钛磁铁矿分离结晶对其Mg同位素组成的影响.瓦吉里塔格碱性煌斑岩显示出低于正常地幔的δ26Mg值(-0.78‰~-0.57‰),也可以指示其源区有俯冲沉积型碳酸盐的加入(Li et al., 2016).同时,由于Ti和Eu在地幔硅酸盐矿物中的不相容性相似,但在地幔硅酸盐矿物与碳酸盐熔体之间Ti表现出更强的相容性(Dasgupta et al., 2009),瓦吉里塔格碱性煌斑岩中Ti负异常以及与碳酸盐化榴辉岩源区的南海玄武岩(1 435~8 880;Zhang et al., 2017)和汉诺坝碱性玄武岩(3 380~ 6 640;Zou et al., 2022)相近的Ti/Eu比值(2 814~7 378)特征,也支持其源区存在碳酸盐化榴辉岩.瓦吉里塔格碱性煌斑岩中橄榄石斑晶核部具有高Ca(1 867×10-6~2 852×10-6)、Li(10.6×10-6~23.4×10-6)和低Ni含量(587×10-6~673×10-6)以及低的Mn/Zn比值(11.9~14.3)特征,同样表明它们可能来源于碳酸盐化硅酸盐熔体交代形成的辉石岩/榴辉岩源区(Foley et al., 2013Ammannati et al., 2016Howarth and Harris, 2017).考虑到角闪石不能在软流圈稳定存在 (>90 km;Tatsumi, 1989),因此瓦吉里塔格碱性煌斑岩可能是塔里木地幔柱中碳酸盐化榴辉岩熔体交代富集的含角闪石的岩石圈地幔熔融形成.

6.2 深部地球动力学过程

尽管大火成岩省通常以拉斑质玄武岩为主导地位,但在其边缘带和构造薄弱带仍会产生少量碱性岩浆,包括碱性玄武岩、火成碳酸岩、金伯利岩和煌斑岩等(Ernst, 2014).其中,碱性岩的形成可以早于、晚于或者近同时于拉斑质玄武岩主体的侵位(Ernst, 2014).这些碱性硅酸盐岩‒火成碳酸岩与拉斑质玄武岩被普遍认为来自于不同的地幔源区低程度(<10%)部分熔融形成(Natali et al., 2018)并且俯冲板片再循环进入地幔可能引起了这种源区的不均一性(Cheng et al., 2018Wei et al., 2021).与世界上典型大火成岩省相比,塔里木大火成岩省呈现出岩浆活动持续时间长、岩石类型复杂、巨量富铁碱性玄武岩的特征(Cheng et al., 2018;Wei et al., 2021).究其成因,多数学者认为其与地幔柱作用有关,相关的证据主要包括地壳的隆升(高达 887 m)、大规模岩墙群以及存在苦橄质熔岩(Li et al., 2014;杨树锋等,2014).但是前人研究认为幔源碱性岩是无挥发分橄榄岩地幔低程度部分熔融的产物(<10%;Spera, 1980),这与通常大火成岩省形成所对应的异常高的地幔熔体产生速率 (>1 km3/a;Xu et al., 2014)相悖,因此塔里木大火成岩省岩浆地幔源区中可能存在富集易熔组分(比如再循环大洋地壳组分;Cheng et al., 2018).Ge et al. (2012)在塔里木克拉通北缘识别出若干个蛇绿岩套(600~418 Ma)和弧特征的岩浆活动(422~363 Ma),表明克拉通北缘在早中古生代存在南向俯冲的古老洋壳.洋壳自身受海水和热液蚀变含有2%~3 %的CO2Alt and Teagle, 1999Dasgupta et al., 2004Plank and Manning, 2019).因此,蚀变洋壳的深俯冲作用被认为是深部地幔形成碳酸盐化榴辉岩的一种有效方式(Hammouda, 2003Dasgupta et al., 2004),并且为一些富铁碱性玄武岩的源区提供了关键的组分(Kiseeva et al., 2013Yaxley et al., 2019Zou et al., 2022).本文的研究结果也支持这一基于高温高压实验得出的模型,为富铁碱性玄武岩类的地幔源区可以是碳酸盐化榴辉岩/辉石岩提供了直接的天然样品.

如前所述,塔里木大火成岩省主要存在着~290 Ma富集的玄武岩和~270~280 Ma亏损的超镁铁质‒镁铁质层状侵入体和岩脉以及霞石岩(Cheng et al., 2018;Wang et al., 2022).同时,在ε Ndt)-(87Sr/86Sr)i图和(206Pb/204Pb)i与(207Pb/204Pb)i和(208Pb/204Pb)i图中(图9),超镁铁质‒镁铁质层状侵入体和岩脉、霞石岩相对于早期玄武岩更靠近FOZO端元一侧,显示出更亏损的特征.针对这两期岩浆的成因,多数学者认为两期岩浆起源于不同的源区.虽然对于具体的源区尚有不同的认识,但是不论何种观点,均涉及到再循环的榴辉岩/辉石岩和碳酸盐岩(Cheng et al., 2018Cao et al., 2019).前人基于实验岩石学的结果表明富铁玄武岩的形成可能主要与源区中存在榴辉岩/辉石岩组分密切相关(Tuff et al., 2005).Cheng et al. (2018)进一步通过系统的Mg同位素研究认为塔里木大火成岩省存在着两个明显不同的源区:一种是受俯冲板片熔/流体及其携带的方解石/白云石交代的岩石圈地幔,代表性产物为碱性玄武岩、镁铁‒超镁铁质岩体和碱玄玢岩脉;第二种是含榴辉岩和方镁石+钙钛矿的地幔柱源区,形成了碳酸岩、霞石岩和碱性煌斑岩为代表的碱性岩石.因此,俯冲蚀变洋壳加入造成的地幔源区不均一性,可能是导致塔里木大火成岩省复杂岩石类型的重要原因之一.此外,除塔里木大火成岩省之外,两期或者三期岩浆活动也在很多的其他大陆大火成岩省中被识别出来(例如North Atlantic, Parana-Etendeka, Kerguelen and Ontong Java)(Bryan and Ernst, 2008).Lin and Keken (2005)基于地震层析成像资料与数值模拟结果提出,地幔柱中存在高密度的榴辉岩时可导致大火成岩省多期次长时间的岩浆活动现象.同样地,Serrano et al.(2011)也认为Caribbean大火成岩省岩浆作用持续时间长的原因是源区有俯冲板片.由此认为地幔柱‒俯冲蚀变洋壳相互作用是控制塔里木大火成岩省复杂岩石组合的关键因素.

结合上述研究成果和区域地质演化特征,本文提出如下地幔柱动力学演化模型(图17):(1)在早中古生代,南天山洋板片向南俯冲于塔里木克拉通之下(Ge et al., 2012),俯冲蚀变洋壳脱流体交代了上覆的大陆岩石圈地幔,导致地幔富含挥发份(如金云母、角闪石等);同时,蚀变洋壳在受到海水及热液蚀变过程中形成部分碳酸盐(Alt and Teagle, 1999Plank and Manning, 2019),并随着蚀变洋壳一起俯冲进入深部地幔,逐渐转换成碳酸盐化榴辉岩(Dasgupta et al., 2004).Gerbode and Dasgupta (2010)根据现代洋壳的俯冲速率估算,再循环的洋壳的总量相当于8%~10%的地幔.俯冲的蚀变洋壳形成的碳酸盐化榴辉岩相对于地幔橄榄岩具有更低的熔融温度和更高的密度(Kogiso et al., 2003Pertermann and Hirschmann, 2003),因此其可能长期滞留在软流圈底部乃至地幔过渡带,与周围橄榄岩形成三明治结构(Blichert-Toft et al., 1999);(2)在~290 Ma,地幔柱到达岩石圈的底部,并引发了岩石圈地幔中富集组分(比如角闪岩脉和再循环碳酸盐)大规模熔融形成Group 1玄武岩,随后滞留的洋壳组分被地幔柱捕获上升到岩石圈地幔底部时发生熔融形成Group 2玄武岩(王振朝,2019);(3)在~270~280 Ma,随着地幔柱‒岩石圈相互作用的进行上覆的岩石圈发生显著减薄,更深的大陆下岩石圈地幔持续熔融产生了280 Ma的侵入体(Zhang et al., 2016),且含碳酸盐化榴辉岩组分的地幔柱自身也在不同深部开始发生减压熔融,产生的熔体在向上迁移至岩石圈时可能加热并交代岩石圈地幔,最终产生碱性煌斑岩、霞石岩和碳酸岩.

7 结论

(1)瓦吉里塔格煌斑岩属于钠质碱性煌斑岩,其微量元素特征与OIB相似,富集大离子亲石元素和高场强元素,显示弱的Nb-Ta正异常以及K、Sr、Ti、Zr-Hf负异常,同时具有与OIB地幔源区相似的Sr-Nd-Pb同位素组成和轻Mg同位素特征(δ26M=-0.78‰~-0.57‰).

(2)瓦吉里塔格碱性煌斑岩的母岩浆可能来自于含碳酸盐化榴辉岩的地幔柱与含角闪石的岩石圈地幔混合源区的低程度部分熔融,并随后经历橄榄石+单斜辉石+Fe-Ti氧化物的分离结晶.

(3)地幔柱‒俯冲蚀变洋壳相互作用是控制塔里木大火成岩省复杂岩石组合的关键因素.

参考文献

[1]

Aghazadeh, M., Prelević, D., Badrzadeh, Z., et al., 2015. Geochemistry, Sr-Nd-Pb Isotopes and Geochronology of Amphibole- and Mica-bearing Lamprophyres in Northwestern Iran: Implications for Mantle Wedge Heterogeneity in a Palaeo-Subduction Zone. Lithos, 216-217: 352-369. https://doi.org/10.1016/j.lithos.2015.01.001

[2]

Alt, J. C., Teagle, D. A. H., 1999. The Uptake of Carbon during Alteration of Ocean Crust. Geochimica et Cosmochimica Acta, 63(10): 1527-1535. https://doi.org/10.1016/S0016-7037(99)00123-4

[3]

Ammannati, E., Jacob, D. E., Avanzinelli, R., et al., 2016. Low Ni Olivine in Silica-Undersaturated Ultrapotassic Igneous Rocks as Evidence for Carbonate Metasomatism in the Mantle. Earth and Planetary Science Letters, 444: 64-74. https://doi.org/10.1016/j.epsl.2016.03.039

[4]

Andersen, T., 2002. Correction of Common Lead in U-Pb Analyses That do not Report 204Pb. Chemical Geology, 192(1-2): 59-79. https://doi.org/10.1016/S0009-2541(02)00195-X

[5]

Batki, A., Pál-Molnár, E., Dobosi, G., et al., 2014. Petrogenetic Significance of Ocellar Camptonite Dykes in the Ditrău Alkaline Massif, Romania. Lithos, 200-201: 181-196. https://doi.org/10.1016/j.lithos.2014.04.022

[6]

Blichert-Toft, J., Albarède, F., Kornprobst, J., 1999. Lu-Hf Isotope Systematics of Garnet Pyroxenites from Beni Bousera, Morocco: Implications for Basalt Origin. Science, 283(5406): 1303-1306. https://doi.org/10.1126/science.283.5406.1303

[7]

Bryan, S. E., Ernst, R. E., 2008. Revised Definition of Large Igneous Provinces (LIPs). Earth-Science Reviews, 86(1-4): 175-202. https://doi.org/10.1016/j.earscirev.2007.08.008

[8]

Cao, J., Wang, C. Y., Xing, C. M., et al., 2014. Origin of the Early Permian Wajilitag Igneous Complex and Associated Fe-Ti Oxide Mineralization in the Tarim Large Igneous Province, NW China. Journal of Asian Earth Sciences, 84: 51-68. https://doi.org/10.1016/j.jseaes.2013.09.014

[9]

Cao, J., Wang, X., Tao, J. H., 2019. Petrogenesis of the Piqiang Mafic-Ultramafic Layered Intrusion and Associated Fe-Ti-V Oxide Deposit in Tarim Large Igneous Province, NW China. International Geology Review, 61(18): 2249-2275. https://doi.org/10.1080/00206814.2019.1584867

[10]

Chen, J., Gong, Y.L., Chen, L., et al., 2021. New Advances in Magnesium Isotope Geochemistry and Its Application to Carbonatite Rocks. Earth Science, 46(12): 4366-4389 (in Chinese with English abstract).

[11]

Cheng, Z.G., 2016. Study on the Kimberlitic Rocks, Nephelinites, and Carbonatites within Tarim Large Igneous Province (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).

[12]

Cheng, Z. G., Zhang, Z. C., Hou, T., et al., 2015. Petrogenesis of Nephelinites from the Tarim Large Igneous Province, NW China: Implications for Mantle Source Characteristics and Plume-Lithosphere Interaction. Lithos, 220-223: 164-178. https://doi.org/10.1016/j.lithos.2015.02.002

[13]

Cheng, Z. G., Zhang, Z. C., Hou, T., et al., 2017. Decoupling of Mg-C and Sr-Nd-O Isotopes Traces the Role of Recycled Carbon in Magnesiocarbonatites from the Tarim Large Igneous Province. Geochimica et Cosmochimica Acta, 202: 159-178. https://doi.org/10.1016/j.gca.2016.12.036

[14]

Cheng, Z. G., Zhang, Z. C., Wang, Z. C., et al., 2020. Petrogenesis of Transitional Large Igneous Province: Insights from Bimodal Volcanic Suite in the Tarim Large Igneous Province. Journal of Geophysical Research : Solid Earth, 125(5): e2019JB018382. https://doi.org/10.1029/2019JB018382

[15]

Cheng, Z. G., Zhang, Z. C., Xie, Q. H., et al., 2018. Subducted Slab-Plume Interaction Traced by Magnesium Isotopes in the Northern Margin of the Tarim Large Igneous Province. Earth and Planetary Science Letters, 489: 100-110. https://doi.org/10.1016/j.epsl.2018.02.039

[16]

Dasgupta, R., Hirschmann, M. M., McDonough, W. F., et al., 2009. Trace Element Partitioning between Garnet Lherzolite and Carbonatite at 6.6 and 8.6 GPa with Applications to the Geochemistry of the Mantle and of Mantle-Derived Melts. Chemical Geology, 262(1-2): 57-77. https://doi.org/10.1016/j.chemgeo.2009.02.004

[17]

Dasgupta, R., Hirschmann, M. M., Withers, A. C., 2004. Deep Global Cycling of Carbon Constrained by the Solidus of Anhydrous, Carbonated Eclogite under Upper Mantle Conditions. Earth and Planetary Science Letters, 227(1-2): 73-85. https://doi.org/10.1016/j.epsl.2004.08.004

[18]

Davidson, J., Turner, S., Plank, T., 2013. Dy/Dy*: Variations Arising from Mantle Sources and Petrogenetic Processes. Journal of Petrology, 54(3): 525-537. https://doi.org/10.1093/petrology/egs076

[19]

Deng, L.X., Liu, Y.S., Zong, K.Q., et al., 2019. Carbonate Metasomatism and Its Identification Characteristics in Mantle Peridotite. Earth Science, 44(4): 1113-1127 (in Chinese with English abstract).

[20]

DePaolo, D. J., 1981. Trace Element and Isotopic Effects of Combined Wallrock Assimilation and Fractional Crystallization. Earth and Planetary Science Letters, 53(2): 189-202. https://doi.org/10.1016/0012-821X(81)90153-9

[21]

Elburg, M., Vroon, P., van der Wagt, B., et al., 2005. Sr and Pb Isotopic Composition of Five USGS Glasses (BHVO-2G, BIR-1G, BCR-2G, TB-1G, NKT-1G). Chemical Geology, 223(4): 196-207. https://doi.org/10.1016/j.chemgeo.2005.07.001

[22]

Ernst, R. E., 2014. Large Igneous Provinces. Cambridge University Press, Cambridge. https://doi.org/10.1017/cbo9781139025300

[23]

Foley, S. F., Prelević, D., Rehfeldt, T., et al., 2013. Minor and Trace Elements in Olivines as Probes into Early Igneous and Mantle Melting Processes. Earth and Planetary Science Letters, 363: 181-191. https://doi.org/10.1016/j.epsl.2012.11.025

[24]

Foley, S., 1992. Petrological Characterization of the Source Components of Potassic Magmas: Geochemical and Experimental Constraints. Lithos, 28(3): 187-204. https://doi.org/10.1016/0024-4937(92)90006-K

[25]

Furman, T., Graham, D., 1999. Erosion of Lithospheric Mantle beneath the East African Rift System: Geochemical Evidence from the Kivu Volcanic Province. Lithos, 48(1): 237-262. https://doi.org/10.1016/S0024-4937(99)00031-6

[26]

Ge, R. F., Zhu, W. B., Wu, H. L., et al., 2012. The Paleozoic Northern Margin of the Tarim Craton: Passive or Active? Lithos, 142-143: 1-15. https://doi.org/10.1016/j.lithos.2012.02.010

[27]

Gerbode, C., Dasgupta, R., 2010. Carbonate-Fluxed Melting of MORB-Like Pyroxenite at 2.9 GPa and Genesis of HIMU Ocean Island Basalts. Journal of Petrology, 51(10): 2067-2088. https://doi.org/10.1093/petrology/egq049

[28]

Giri, R.K., Chalapathi Rao, N. V., Rahaman, W., et al., 2021. Paleoproterozoic Calc-Alkaline Lamprophyres from the Sidhi Gneissic Complex, India: Implications for Plate Tectonic Evolution of the Central Indian Tectonic Zone. Precambrian Research, 362: 106316. https://doi.org/10.1016/j.precamres.2021.106316

[29]

Goto, A., Tatsumi, Y., 1996. Quantitative Analysis of Rock Samples by an X-Ray Fluorescence Spectrometer (II). The Rigaku Journal, 13: 20-39.

[30]

Guo, Z. J., Yin, A., Robinson, A., et al., 2005. Geochronology and Geochemistry of Deep-Drill-Core Samples from the Basement of the Central Tarim Basin. Journal of Asian Earth Sciences, 25(1): 45-56. https://doi.org/10.1016/j.jseaes.2004.01.016

[31]

Hammouda, T., 2003. High-Pressure Melting of Carbonated Eclogite and Experimental Constraints on Carbon Recycling and Storage in the Mantle. Earth and Planetary Science Letters, 214(1-2): 357-368. https://doi.org/10.1016/S0012-821X(03)00361-3

[32]

Heinonen, J. S., Spera, F. J., Bohrson, W. A., 2022. Thermodynamic Limits for Assimilation of Silicate Crust in Primitive Magmas. Geology, 50(1): 81-85. https://doi.org/10.1130/g49139.1

[33]

Herzberg, C., 2011. Identification of Source Lithology in the Hawaiian and Canary Islands: Implications for Origins. Journal of Petrology, 52(1): 113-146. https://doi.org/10.1093/petrology/egq075

[34]

Herzberg, C., 2006. Petrology and Thermal Structure of the Hawaiian Plume from Mauna Kea Volcano. Nature, 444(7119): 605-609. https://doi.org/10.1038/nature05254

[35]

Howarth, G. H., Harris, C., 2017. Discriminating between Pyroxenite and Peridotite Sources for Continental Flood Basalts (CFB) in Southern Africa Using Olivine Chemistry. Earth and Planetary Science Letters, 475: 143-151. https://doi.org/10.1016/j.epsl.2017.07.043

[36]

John, T., Klemd, R., Klemme, S., et al., 2011. Nb-Ta Fractionation by Partial Melting at the Titanite-Rutile Transition. Contributions to Mineralogy and Petrology, 161(1): 35-45. https://doi.org/10.1007/s00410-010-0520-4

[37]

Kamenetsky, V. S., Maas, R., Kamenetsky, M. B., et al., 2017. Multiple Mantle Sources of Continental Magmatism: Insights from “High-Ti” Picrites of Karoo and Other Large Igneous Provinces. Chemical Geology, 455: 22-31. https://doi.org/10.1016/j.chemgeo.2016.08.034

[38]

Kessel, R., Schmidt, M. W., Ulmer, P., et al., 2005. Trace Element Signature of Subduction-Zone Fluids, Melts and Supercritical Liquids at 120-180 km Depth. Nature, 437(7059): 724-727. https://doi.org/10.1038/nature03971

[39]

Kiseeva, E. S., Litasov, K. D., Yaxley, G. M., et al., 2013. Melting and Phase Relations of Carbonated Eclogite at 9-21 GPa and the Petrogenesis of Alkali-Rich Melts in the Deep Mantle. Journal of Petrology, 54(8): 1555-1583. https://doi.org/10.1093/petrology/egt023

[40]

Klemme, S., Blundy, J. D., Wood, B. J., 2002. Experimental Constraints on Major and Trace Element Partitioning during Partial Melting of Eclogite. Geochimica et Cosmochimica Acta, 66(17): 3109-3123. https://doi.org/10.1016/S0016-7037(02)00859-1

[41]

Kogiso, T., Hirschmann, M. M., Frost, D. J., 2003. High-Pressure Partial Melting of Garnet Pyroxenite: Possible Mafic Lithologies in the Source of Ocean Island Basalts. Earth and Planetary Science Letters, 216(4): 603-617. https://doi.org/10.1016/S0012-821X(03)00538-7

[42]

Kong, W. L., Zhang, Z. C., Cheng, Z. G., et al., 2022. Mantle Source of Tephritic Porphyry in the Tarim Large Igneous Province Constrained from Mg, Zn, Sr, and Nd Isotope Systematics: Implications for Deep Carbon Cycling. Geological Society of America Bulletin, 134(1-2): 487-500. https://doi.org/10.1130/B35902.1

[43]

Le Maitre, R.W., Bateman, P., Dudek, A., 1989. A Classification of Igneous Rocks and Glossary of Terms: Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks. Blackwell Scientific Publications, Oxford, 193.

[44]

Le Roux, V., Lee, C. T. A., Turner, S. J., 2010. Zn/Fe Systematics in Mafic and Ultramafic Systems: Implications for Detecting Major Element Heterogeneities in the Earth’s Mantle. Geochimica et Cosmochimica Acta, 74(9): 2779-2796. https://doi.org/10.1016/j.gca.2010.02.004

[45]

Leake, B. E., Woolley, A. R., Arps, C. E. S., et al., 1997. Nomenclature of Amphiboles Report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names. European Journal of Mineralogy, 9(3): 623-651. https://doi.org/10.1127/ejm/9/3/0623

[46]

Leterrier, J., Maury, R. C., Thonon, P., et al., 1982. Clinopyroxene Composition as a Method of Identification of the Magmatic Affinities of Paleo-Volcanic Series. Earth and Planetary Science Letters, 59(1): 139-154. https://doi.org/10.1016/0012-821X(82)90122-4

[47]

Li, D. X., Yang, S. F., Chen, H. L., et al., 2014. Late Carboniferous Crustal Uplift of the Tarim Plate and Its Constraints on the Evolution of the Early Permian Tarim Large Igneous Province. Lithos, 204: 36-46. https://doi.org/10.1016/j.lithos.2014.05.023

[48]

Li, W. Y., Teng, F.Z., Halama, R., et al., 2016. Magnesium Isotope Fractionation during Carbonatite Magmatism at Oldoinyo Lengai, Tanzania. Earth and Planetary Science Letters, 444: 26-33. https://doi.org/10.1016/j.epsl.2016.03. 034

[49]

Li, W. Y., Teng, F. Z., Ke, S., et al., 2010. Heterogeneous Magnesium Isotopic Composition of the Upper Continental Crust. Geochimica et Cosmochimica Acta, 74(23): 6867-6884. https://doi.org/10.1016/j.gca.2010.08.030

[50]

Li, X. H., Li, Z. X., Wingate, M. T. D., et al., 2006. Geochemistry of the 755 Ma Mundine Well Dyke Swarm, Northwestern Australia: Part of a Neoproterozoic Mantle Superplume beneath Rodinia? Precambrian Research, 146(1-2): 1-15. https://doi.org/10.1016/j.precamres.2005.12.007

[51]

Li, X.Y., Zhang, C., 2022. Machine Learning Thermobarometry for Biotite-Bearing Magmas. Journal of Geophysical Research: Solid Earth, 127: e2022JB024137. https://doi. org/10.1029/2022JB024137

[52]

Li, Z. L., Chen, H. L., Song, B., et al., 2011. Temporal Evolution of the Permian Large Igneous Province in Tarim Basin in Northwestern China. Journal of Asian Earth Sciences, 42(5): 917-927. https://doi.org/10.1016/j.jseaes.2011.05.009

[53]

Li, Z.L., Yang, S.F., Chen, H.L., et al., 2008. Chronology and Geochemistry of Taxinan Basalts from the Tarim Basin: Evidence for Permian Plume Magmatism. Acta Petrologica Sinica, 24(5): 959-970 (in Chinese with English abstract).

[54]

Lin, S. C., van Keken, P. E., 2005. Multiple Volcanic Episodes of Flood Basalts Caused by Thermochemical Mantle Plumes. Nature, 436(7048): 250-252. https://doi.org/10.1038/nature03697

[55]

Liu, B.X., 2018. Geologic Characteristics and Petrogenesis of the Lamprophyres in the Tarim Large Igneous Province (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).

[56]

Liu, B.X., Zhang, Z.C., Cheng, Z.G., 2021. Classification, Characteristics and Petrogenesis of Lamprophyres: an Overview. Acta Geologica Sinica, 95(2): 292-316 (in Chinese with English abstract).

[57]

Liu, L. H., Zhang, Z. C., Cheng, Z. G., et al., 2021. Ultramafic Xenoliths from Aillikites in the Tarim Large Igneous Province: Implications for Alaskan-Type Affinity and Role of Subduction. Lithos, 380-381: 105902. https://doi.org/10.1016/j.lithos.2020.105902

[58]

Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1-2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004

[59]

Long, X. P., Yuan, C., Sun, M., et al., 2010. Archean Crustal Evolution of the Northern Tarim Craton, NW China: Zircon U-Pb and Hf Isotopic Constraints. Precambrian Research, 180(3-4): 272-284. https://doi.org/10.1016/j.precamres.2010.05.001

[60]

Luhr, J.F., 1997. Extensional Tectonics and the Diverse Primitive Volcanic Rocks in the Western Mexican Volcanic Belt. The Canadian Mineralogist, 35: 473-500.

[61]

Ma, L., Xu, Y. G., Li, J., et al., 2022. Molybdenum Isotopic Constraints on the Origin of EM1-Type Continental Intraplate Basalts. Geochimica et Cosmochimica Acta, 317: 255-268. https://doi.org/10.1016/j.gca.2021.11.013

[62]

McKenzie, D., O’Nions, R. K., 1991. Partial Melt Distributions from Inversion of Rare Earth Element Concentrations. Journal of Petrology, 32(5): 1021-1091. https://doi.org/10.1093/petrology/32.5.1021

[63]

Meshram, T.M., Shukla, D., Behera K.K., 2015. Alkaline Lamprophyre (Camptonite) from Bayyaram Area, NE Margin of the Eastern Dharwar Craton, Southern India. Current Science, 109: 1931-1934.

[64]

Morimoto, N., 1988. Nomenclature of Pyroxenes. Mineralogy and Petrology, 39(1): 55-76. https://doi.org/10.1007/BF01226262

[65]

Münker, C., 1998. Nb/Ta Fractionation in a Cambrian Arc/back Arc System, New Zealand: Source Constraints and Application of Refined ICPMS Techniques. Chemical Geology, 144(1-2): 23-45. https://doi.org/10.1016/S0009-2541(97)00105-8

[66]

Nakamura, Y., Tatsumoto, M., 1988. Pb, Nd, and Sr Isotopic Evidence for a Multicomponent Source for Rocks of Cook-Austral Islands and Heterogeneities of Mantle Plumes. Geochimica et Cosmochimica Acta, 52(12): 2909-2924. https://doi.org/10.1016/0016-7037(88)90157-3

[67]

Natali, C., Beccaluva, L., Bianchini, G., et al., 2018. Coexistence of Alkaline-Carbonatite Complexes and High-MgO CFB in the Paranà-Etendeka Province: Insights on Plume-Lithosphere Interactions in the Gondwana Realm. Lithos, 296-299: 54-66. https://doi.org/10.1016/j.lithos.2017.11.001

[68]

Pandey, R., Rao, N.V.C., Dhote, P., et al., 2018. Rift- Associated Ultramafic Lamprophyre (Damtjernite) from the Middle Part of the Lower Cretaceous (125 Ma) Succession of Kutch, Northwestern India: Tectonomagmatic Implications. Geoscience Frontiers, 9(6): 1883-1902. https://doi.org/10.1016/j.gsf.2017.10.013

[69]

Pandey, A., Rao, N.C., Chakrabarti, R., et al., 2017. Petrogenesis of a Mesoproterozoic Shoshonitic Lamprophyre Dyke from the Wajrakarur Kimberlite Field, Eastern Dharwar Craton, Southern India: Geochemical and Sr-Nd Isotopic Evidence for a Modified Sub-Continental Lithospheric Mantle Source. Lithos, 292-293: 218-233. https://doi.org/10.1016/j.lithos.2017.09.001

[70]

Pang, C.J., Wang, X.C., Xu, B., et al., 2016. Geochemical and Sr-Nd-Hf Isotopic Analysis of Late Carboniferous N-MORB-Type Basalts in Central Inner Mongolia, China: Evidence for an Intraplate Origin. Lithos, 261: 55‒71. https://doi.org/10.1016/j.lithos.2016.05.005

[71]

Pearce, J. A., Ernst, R. E., Peate, D. W., et al., 2021. LIP Printing: Use of Immobile Element Proxies to Characterize Large Igneous Provinces in the Geologic Record. Lithos, 392-393: 106068. https://doi.org/10.1016/j.lithos.2021.106068

[72]

Pertermann, M., Hirschmann, M.M., Hametner, K., et al., 2004. Experimental Determination of Trace Element Partitioning between Garnet and Silica-Rich Liquid during Anhydrous Partial Melting of MORB-like Eclogite. Geochemistry, Geophysics, Geosystems, 5: Q05A01. https://doi.org/10.1029/2003GC000638

[73]

Pertermann, M., Hirschmann, M. M., 2003. Partial Melting Experiments on a MORB-like Pyroxenite between 2 and 3 GPa: Constraints on the Presence of Pyroxenite in Basalt Source Regions from Solidus Location and Melting Rate. Journal of Geophysical Research: Solid Earth, 108(B2): 2125. https://doi.org/10.1029/2000JB000118

[74]

Plank, T., Manning, C. E., 2019. Subducting Carbon. Nature, 574(7778): 343-352. https://doi.org/10.1038/s41586-019-1643-z

[75]

Pogge von Strandmann, P. A. E., Elliott, T., Marschall, H. R., et al., 2011. Variations of Li and Mg Isotope Ratios in Bulk Chondrites and Mantle Xenoliths. Geochimica et Cosmochimica Acta, 75(18): 5247-5268. https://doi.org/10.1016/j.gca.2011.06.026

[76]

Ridolfi, F., 2021. Amp-TB2: An Updated Model for Calcic Amphibole Thermobarometry. Minerals, 11(3): 324. https://doi.org/10.3390/min11030324

[77]

Rock, N. M. S., 1987. The Nature and Origin of Lamprophyres: An Overview. Geological Society, London, Special Publications, 30(1): 191-226. https://doi.org/10.1144/gsl.sp.1987.030.01.09

[78]

Rock, N.M.S., 1991. Lamprophyres. Blackie, Glasgow.

[79]

Rudnick, R.L., Gao, S., 2003. Composition of the Continental Crust. In: Rudnick, R.L. ed., Treatise on Geochemistry. Elsevier, Amsterdam, 1-64. https://doi.org/10.1016/B0-08- 043751-6/03016-4

[80]

Rudnick, R. L., Gao, S., 2014. Composition of the Continental Crust. In: Holland, H.D., Turekian, K.K., eds., Treatise on Geochemistry. Elsevier, Amsterdam, 1-51. https://doi.org/10.1016/b978-0-08-095975-7.00301-6

[81]

Serrano, L., Ferrari, L., Martínez, M. L., et al., 2011. An Integrative Geologic, Geochronologic and Geochemical Study of Gorgona Island, Colombia: Implications for the Formation of the Caribbean Large Igneous Province. Earth and Planetary Science Letters, 309(3-4): 324-336. https://doi.org/10.1016/j.epsl.2011.07.011

[82]

Sláma, J., Košler, J., Condon, D. J., et al., 2008. Plešovice Zircon—A New Natural Reference Material for U-Pb and Hf Isotopic Microanalysis. Chemical Geology, 249(1-2): 1-35. https://doi.org/10.1016/j.chemgeo.2007.11.005

[83]

Smith, E. I., Sánchez, A., Walker, J. D., et al., 1999. Geochemistry of Mafic Magmas in the Hurricane Volcanic Field, Utah: Implications for Small- and Large-Scale Chemical Variability of the Lithospheric Mantle. The Journal of Geology, 107(4): 433-448. https://doi.org/10.1086/314355

[84]

Sobolev, A. V., Hofmann, A. W., Sobolev, S. V., et al., 2005. An Olivine-Free Mantle Source of Hawaiian Shield Basalts. Nature, 434: 590-597. https://doi.org/10.1038/nature03411

[85]

Song, W. L., Xu, C., Chakhmouradian, A. R., et al., 2017. Carbonatites of Tarim (NW China): First Evidence of Crustal Contribution in Carbonatites from a Large Igneous Province. Lithos, 282-283: 1-9. https://doi.org/10.1016/j.lithos.2017.02.018

[86]

Spera, F. J., 1980. Aspects of Magma Transport. In: Hargraves, R.B., ed., Physics of Magmatic Processes. Princeton University Press, Princeton, 265-324. https://doi.org/10.1515/9781400854493.265

[87]

Stalder, R., Foley, S. F., Brey, G. P., et al., 1998. Mineral-Aqueous Fluid Partitioning of Trace Elements at 900- 1 200 ℃ and 3.0-5.7 GPa: New Experimental Data for Garnet, Clinopyroxene, and Rutile, and Implications for Mantle Metasomatism. Geochimica et Cosmochimica Acta, 62(10): 1781-1801. https://doi.org/10.1016/S0016-7037(98)00101-X

[88]

Stoppa, F., Rukhlov, A. S., Bell, K., et al., 2014. Lamprophyres of Italy: Early Cretaceous Alkaline Lamprophyres of Southern Tuscany, Italy. Lithos, 188: 97-112. https://doi.org/10.1016/j.lithos.2013.10.010

[89]

Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/GSL.SP.1989.042.01.19

[90]

Tainton, K. M., McKenzie, D., 1994. The Generation of Kimberlites, Lamproites, and Their Source Rocks. Journal of Petrology, 35(3): 787-817. https://doi.org/10.1093/petrology/35.3.787

[91]

Tanaka, T., Togashi, S., Kamioka, H., et al., 2000. JNdi-1: A Neodymium Isotopic Reference in Consistency with LaJolla Neodymium. Chemical Geology, 168(3-4): 279-281. https://doi.org/10.1016/S0009-2541(00)00198-4

[92]

Tappe, S., Foley, S. F., Jenner, G. A., et al., 2005. Integrating Ultramafic Lamprophyres into the IUGS Classification of Igneous Rocks: Rationale and Implications. Journal of Petrology, 46(9): 1893-1900. https://doi.org/10.1093/petrology/egi039

[93]

Tappe, S., Foley, S. F., Jenner, G. A., et al., 2006. Genesis of Ultramafic Lamprophyres and Carbonatites at Aillik Bay, Labrador: A Consequence of Incipient Lithospheric Thinning beneath the North Atlantic Craton. Journal of Petrology, 47(7): 1261-1315. https://doi.org/10.1093/petrology/egl008

[94]

Tappe, S., Pearson, D. G., Prelevic, D., 2013. Kimberlite, Carbonatite, and Potassic Magmatism as Part of the Geochemical Cycle. Chemical Geology, 353: 1-3. https://doi.org/10.1016/j.chemgeo.2013.04.004

[95]

Tappe, S., Smart, K. A., Stracke, A., et al., 2016. Melt Evolution beneath a Rifted Craton Edge: 40Ar/39Ar Geochronology and Sr-Nd-Hf-Pb Isotope Systematics of Primitive Alkaline Basalts and Lamprophyres from the SW Baltic Shield. Geochimica et Cosmochimica Acta, 173: 1-36. https://doi.org/10.1016/j.gca.2015.10.006

[96]

Tatsumi, Y., 1989. Migration of Fluid Phases and Genesis of Basalt Magmas in Subduction Zones. Journal of Geophysical Research: Solid Earth, 94(B4): 4697-4707. https://doi.org/10.1029/jb094ib04p04697

[97]

Teng, F. Z., 2017. Magnesium Isotope Geochemistry. Reviews in Mineralogy and Geochemistry, 82(1): 219-287. https://doi.org/10.2138/rmg.2017.82.7

[98]

Teng, F.Z., Li, W.Y., Ke, S., et al., 2010. Magnesium Isotopic Composition of the Earth and Chondrites. Geochimica et Cosmochimica Acta, 74: 4150-4166. https://doi.org/10.1016/j.gca.2010.04.019

[99]

Teng, F. Z., Wadhwa, M., Helz, R. T., 2007. Investigation of Magnesium Isotope Fractionation during Basalt Differentiation: Implications for a Chondritic Composition of the Terrestrial Mantle. Earth and Planetary Science Letters, 261(1-2): 84-92. https://doi.org/10.1016/j.epsl.2007.06.004

[100]

Tian, W., Campbell, I. H., Allen, C. M., et al., 2010. The Tarim Picrite-Basalt-Rhyolite Suite, a Permian Flood Basalt from Northwest China with Contrasting Rhyolites Produced by Fractional Crystallization and Anatexis. Contributions to Mineralogy and Petrology, 160(3): 407-425. https://doi.org/10.1007/s00410-009-0485-3

[101]

Todt, W., Cliff, R.A., Hanser, A., et al., 1996. Evaluation of a 202Pb-205Pb Double Spike for High-Precision Lead Isotope Analysis. In: Hart, S.R., Basu, A., eds., Earth Processes: Reading the Isotopic Code. American Geophysical Union, 95: 429-437. https://doi.org/10.1029/GM095p0429

[102]

Tuff, J., Takahashi, E., Gibson, S. A., 2005. Experimental Constraints on the Role of Garnet Pyroxenite in the Genesis of High-Fe Mantle Plume Derived Melts. Journal of Petrology, 46(10): 2023-2058. https://doi.org/10.1093/petrology/egi046

[103]

Van Westrenen, W., Blundy, J. D., Wood, B. J., 2000. Effect of Fe2+ on Garnet-Melt Trace Element Partitioning: Experiments in FCMAS and Quantification of Crystal-Chemical Controls in Natural Systems. Lithos, 53(3-4): 189-201. https://doi.org/10.1016/S0024-4937(00)00024-4

[104]

Vance, D., Thirlwall, M., 2002. An Assessment of Mass Discrimination in MC-ICPMS Using Nd Isotopes. Chemical Geology, 185(3-4): 227-240. https://doi.org/10.1016/S0009-2541(01)00402-8

[105]

Wang, C. H., Zhang, Z. C., Giuliani, A., et al., 2022. New Insights into the Mantle Source of a Large Igneous Province from Highly Siderophile Element and Sr-Nd-Os Isotope Compositions of Carbonate-Rich Ultramafic Lamprophyres. Geochimica et Cosmochimica Acta, 326: 77-96. https://doi.org/10.1016/j.gca.2022.04.004

[106]

Wang, L., 2014. The Mineralogy, Geochemistry and Source Region of Agpaitic Lamprophyre in Wajilitage, Xinjiang (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).

[107]

Wang, X., Cao, J., Zhang, G.Z., 2021. Origin of Ore-Forming Magmas Associated with Ni-Cu Sulfide Deposits in Orogenic Belts: Case Study of Permian Huangshannan Magmatic Ni-Cu Sulfide Deposit, East Tianshan, NW China. Earth Science, 46(11): 3829-3849 (in Chinese with English abstract).

[108]

Wang, X. C., Li, X. H., Li, W. X., et al., 2008. The Bikou Basalts in the Northwestern Yangtze Block, South China: Remnants of 820-810 Ma Continental Flood Basalts? Geological Society of America Bulletin, 120(11-12): 1478-1492. https://doi.org/10.1130/B26310.1

[109]

Wang, X. D., Hou, T., Wang, M., et al., 2021. A New Clinopyroxene Thermobarometer for Mafic to Intermediate Magmatic Systems. European Journal of Mineralogy, 33(5): 621-637. https://doi.org/10.5194/ejm- 33-621-2021

[110]

Wang, X. J., Chen, L. H., Hanyu, T., et al., 2021. Magnesium Isotopic Fractionation during Basalt Differentiation as Recorded by Evolved Magmas. Earth and Planetary Science Letters, 565: 116954. https://doi.org/10.1016/j.epsl.2021.116954

[111]

Wang, Z.C., 2019. Study of the Petrogenesis of Tarim Permian Flood Basalts, NW China (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).

[112]

Weaver, B. L., 1991. The Origin of Ocean Island Basalt End-Member Compositions: Trace Element and Isotopic Constraints. Earth and Planetary Science Letters, 104(2-4): 381-397. https://doi.org/10.1016/0012-821X(91)90217-6

[113]

Wei, B. W., Zhang, Z. C., Cheng, Z. G., et al., 2021. Phonotephrite and Phonolite in the Tarim Large Igneous Province, Northwestern China: Petrological, Geochemical and Isotopic Evidence for Contrasting Mantle Sources and Deep Carbon Recycling. Journal of Asian Earth Sciences, 217: 104842. https://doi.org/10.1016/j.jseaes.2021.104842

[114]

Wei, X., Xu, Y. G., Feng, Y. X., et al., 2014. Plume- Lithosphere Interaction in the Generation of the Tarim Large Igneous Province, NW China: Geochronological and Geochemical Constraints. American Journal of Science, 314(1): 314-356. https://doi.org/10.2475/01.2014.09

[115]

Wei, X., Xu, Y. G., He, B., et al., 2019. Zircon U-Pb Age and Hf-O Isotope Insights into Genesis of Permian Tarim Felsic Rocks, NW China: Implications for Crustal Melting in Response to a Mantle Plume. Gondwana Research, 76: 290-302. https://doi.org/10.1016/j.gr.2019.06.015

[116]

Wilson, M., 1989. Igneous Petrogenesis. Springer, London.

[117]

Wu, Y.B., Zheng, Y.F., 2004.Genetic Mineralogy of Zircon and Its Constraints on U-Pb Age Interpretation. Chinese Science Bulletin, 49(16): 1589-1604 (in Chinese).

[118]

Xie, W., Xu, Y. G., Chen, Y. B., et al., 2016. High- Alumina Basalts from the Bogda Mountains Suggest an Arc Setting for Chinese Northern Tianshan during the Late Carboniferous. Lithos, 256-257: 165-181. https://doi.org/10.1016/j.lithos.2016.04.005

[119]

Xu, Y. G., Wei, X., Luo, Z. Y., et al., 2014. The Early Permian Tarim Large Igneous Province: Main Characteristics and a Plume Incubation Model. Lithos, 204: 20-35. https://doi.org/10.1016/j.lithos.2014.02.015

[120]

Xue, S.C., Qin, K.Z., Tang, D.M., et al., 2015. Compositional Characteristics of Pyroxenes from Permian Mafic-Ultramafic Complexes in Eastern Xinjiang, and Their Implications for Petrogenesis and Ni-Cu Mineralization. Acta Petrologica Sinica, 31(8): 2175-2192 (in Chinese with English abstract).

[121]

Yang, S.F., Chen, H.L., Li, Z.L., et al., 2014.Early Permian Tarim Large Igneous Province in Northwest China. Scientia Sinica Terrae, 44(2): 187-199 (in Chinese).

[122]

Yang, W., Teng, F. Z., Li, W. Y., et al., 2016. Magnesium Isotopic Composition of the Deep Continental Crust. American Mineralogist, 101(2): 243-252. https://doi.org/10.2138/am-2016-5275

[123]

Yang, Z. F., Li, J., Liang, W. F., et al., 2016. On the Chemical Markers of Pyroxenite Contributions in Continental Basalts in Eastern China: Implications for Source Lithology and the Origin of Basalts. Earth Science Reviews, 157: 18-31. https://doi.org/10.1016/j.earscirev.2016.04.001

[124]

Yang, Z. F., Zhou, J. H., 2013. Can We Identify Source Lithology of Basalt? Scientific Reports, 3: 1856. https://doi.org/10.1038/srep01856

[125]

Yaxley, G. M., Ghosh, S., Kiseeva, E. S., et al., 2019. CO2-Rich Melts in Earth. In: Orcutt, B. N., Daniel, I., Dasgupta, R., eds., Deep Carbon: Past to Present. Cambridge University Press, Cambridge, 129-162. https://doi.org/10.1017/9781108677950.006

[126]

Yu, X., 2020. The Petrogenetic Interrelationship of Wajilitag Complex Components in the Early Permian Tarim Large Igneous Province, NW China. International Geology Review, 62(10): 1343-1357. https://doi.org/10.1080/00206814.2019.1647466

[127]

Zhang, C. L., Li, H. K., Santosh, M., et al., 2012. Precambrian Evolution and Cratonization of the Tarim Block, NW China: Petrology, Geochemistry, Nd-Isotopes and U-Pb Zircon Geochronology from Archaean Gabbro-TTG-Potassic Granite Suite and Paleoproterozoic Metamorphic Belt. Journal of Asian Earth Sciences, 47: 5-20. https://doi.org/10.1016/j.jseaes.2011.05.018

[128]

Zhang, D. Y., Zhang, Z. C., Mao, J. W., et al., 2016. Zircon U-Pb Ages and Hf-O Isotopic Signatures of the Wajilitag and Puchang Fe-Ti Oxide-bearing Intrusive Complexes: Constraints on Their Source Characteristics and Temporal-Spatial Evolution of the Tarim Large Igneous Province. Gondwana Research, 37: 71-85. https://doi.org/10.1016/j.gr.2016.05.011

[129]

Zhang, D. Y., Zhang, Z. C., Santosh, M., et al., 2013. Perovskite and Baddeleyite from Kimberlitic Intrusions in the Tarim Large Igneous Province Signal the Onset of an End-Carboniferous Mantle Plume. Earth and Planetary Science Letters, 361: 238-248. https://doi.org/10.1016/j.epsl.2012.10.034

[130]

Zhang, G. L., Chen, L. H., Jackson, M. G., et al., 2017. Evolution of Carbonated Melt to Alkali Basalt in the South China Sea. Nature Geoscience, 10(3): 229-235. https://doi.org/10.1038/ngeo2877

[131]

Zhu, W. B., Zheng, B. H., Shu, L. S., et al., 2011. Geochemistry and SHRIMP U-Pb Zircon Geochronology of the Korla Mafic Dykes: Constrains on the Neoproterozoic Continental Breakup in the Tarim Block, Northwest China. Journal of Asian Earth Sciences, 42(5): 791-804. https://doi.org/10.1016/j.jseaes.2010.11.018

[132]

Zindler, A., Hart, S., 1986. Chemical Geodynamics. Annual Review of Earth and Planetary Sciences, 14: 493-571. https://doi.org/10.1146/annurev.ea.14.050186.002425

[133]

Zong, K. Q., Klemd, R., Yuan, Y., et al., 2017. The Assembly of Rodinia: The Correlation of Early Neoproterozoic (ca. 900 Ma) High-Grade Metamorphism and Continental Arc Formation in the Southern Beishan Orogen, Southern Central Asian Orogenic Belt (CAOB). Precambrian Research, 290: 32-48. https://doi.org/10.1016/j.precamres.2016.12.010

[134]

Zou, Z. Q., Wang, Z. C., Foley, S., et al., 2022. Origin of Low-MgO Primitive Intraplate Alkaline Basalts from Partial Melting of Carbonate-bearing Eclogite Sources. Geochimica et Cosmochimica Acta, 324: 240-261. https://doi.org/10.1016/j.gca.2022.02.022

基金资助

国家自然科学基金项目(42063005)

有色金属成矿预测与地质环境监测教育部重点实验室(中南大学)开放基金项目(2021YSJS19)

南京聚谱检测科技有限公司2021年度开放基金项目(2021-10010)

江西省自然科学基金项目(20202BABL213031)

AI Summary AI Mindmap
PDF (11335KB)

208

访问

0

被引

详细

导航
相关文章

AI思维导图

/