多尺度岩石力学层对断层和裂缝发育的控制作用
曹东升 , 曾联波 , 黄诚 , 韩俊 , 巩磊 , 宋逸辰 , 姚迎涛 , 董少群
地球科学 ›› 2023, Vol. 48 ›› Issue (07) : 2535 -2556.
多尺度岩石力学层对断层和裂缝发育的控制作用
Control of Multi-Scale Mechanical Stratigraphy on Development of Faults and Fractures
,
,
岩石力学层是控制断层裂缝系统的重要因素,岩石力学层级次和分布特征影响油气富集和高产.岩石力学层界面类型、特征及其对裂缝限制能力的差异决定了界面之间的岩石力学层存在多尺度特征,并影响不同尺度裂缝的垂向延伸.多尺度岩石力学层划分方法包括裂缝层和构造层等构造变形方法、岩石学方法、层序地层学方法、测井数据反演力学参数法、实测岩石力学参数法、叠前地震数据反演等.岩性是岩石力学性质演化和裂缝发育的物质基础,岩性组合控制了多尺度岩石力学层的纵向分布规律.岩石力学层界面对裂缝的限制能力决定了对应岩石力学层的尺度.岩石力学层厚控制了层内裂缝密度,主要有裂缝间距指数线性模型和幂函数模型两种定量关系.大尺度岩石力学层控制了大尺度断层裂缝的倾角、密度及构造样式等特征,进一步控制了流体运移、富集和成藏,决定了含油层系的垂向分布以及有利储层的发育.中小尺度力学层及微尺度力学层控制了断溶体储层垂向非均质性.研究深化了对多尺度断层裂缝主控因素的理解,为油气渗流富集研究以及裂缝性储层建模提供了依据.
多尺度岩石力学层 / 岩石力学层划分 / 断层裂缝发育特征 / 流体渗流非均质性 / 塔里木盆地台盆区 / 石油地质学
multi-scale mechanical stratigraphy / mechanical stratigraphy division / development characteristics of fault and fracture / fluid seepage heterogeneity / platform of Tarim Basin / petroleum geology
| [1] |
Agosta, F., Wilson, C., Aydin, A., 2015. The Role of Mechanical Stratigraphy on Normal Fault Growth across a Cretaceous Carbonate Multi-Layer, Central Texas (USA). Italian Journal of Geosciences, 134(3): 423-441. https://doi.org/10.3301/ IJG.2014.20 |
| [2] |
Anders, M. H., Laubach, S. E., Scholz, C. H., 2014. Microfractures: A Review. Journal of Structural Geology, 69: 377-394. https://doi.org/10.1016/j.jsg.2014.05.011 |
| [3] |
Azarafza, M., Ghazifard, A., Asasi, F., et al., 2021. An Empirical Classification Method for South Pars Marls by Schmidt Hammer Rebound Index. MethodsX, 8: 101366. https://doi.org/10.1016/j.mex.2021.101366 |
| [4] |
Bai, T. X., Pollard, D. D., 2000a. Fracture Spacing in Layered Rocks: A New Explanation Based on the Stress Transition. Journal of Structural Geology, 22(1): 43-57. https://doi.org/10.1016/S0191-8141(99)00137-6 |
| [5] |
Bai, T. X., Pollard, D. D., 2000b. Closely Spaced Fractures in Layered Rocks: Initiation Mechanism and Propagation Kinematics. Journal of Structural Geology, 22(10): 1409-1425. https://doi.org/10.1016/S0191-8141(00)00062-6 |
| [6] |
Becker, A., Gross, M. R., 1996. Mechanism for Joint Saturation in Mechanically Layered Rocks: An Example from Southern Israel. Tectonophysics, 257(2-4): 223-237. https://doi.org/10.1016/0040-1951(95)00142-5 |
| [7] |
Bertotti, G., Hardebol, N., Taal-van Koppen, J. K., et al., 2007. Toward a Quantitative Definition of Mechanical Units: New Techniques and Results from an Outcropping Deep-Water Turbidite Succession (Tanqua-Karoo Basin, South Africa). AAPG Bulletin, 91(8): 1085-1098. https://doi.org/10.1306/03060706074 |
| [8] |
Bourbiaux, B., Basquet, R., Cacas, M.C., et al., 2002. An Integrated Workflow to Account for Multi-Scale Fractures in Reservoir Simulation Models: Implementation and Benefits. Abu Dhabi International Petroleum Exhibition and Conference, Abu Dhabi. https://doi.org/10.2118/78489-MS |
| [9] |
Burberry, C. M., Peppers, M. H., 2017. Fracture Characterization in Tight Carbonates: An Example from the Ozark Plateau, Arkansas. AAPG Bulletin, 101(10): 1675-1696. https://doi.org/10.1306/01251715242 |
| [10] |
Cao, D.S., Zeng, L.B., Lyu, W.Y., et al., 2021. Progress in Brittleness Evaluation and Prediction Methods in Unconventional Reservoirs. Petroleum Science Bulletin, 6(1): 31-45 (in Chinese with English abstract). |
| [11] |
Chen, J. J., He, D. F., Tian, F. L., et al., 2022. Control of Mechanical Stratigraphy on the Stratified Style of Strike-Slip Faults in the Central Tarim Craton, NW China. Tectonophysics, 830: 229307. https://doi.org/10.1016/j.tecto.2022.229307 |
| [12] |
Chen, J.P., Zhao, T., Xiao, C.Y., et al., 2020. Differential Diagenesis of Lower-Middle Ordovician Strike Slip Faults in Shunbei Area of Tarim Basin. Journal of Northeast Petroleum University, 44(5): 23-34 (in Chinese with English abstract). |
| [13] |
Cooke, M. L., Simo, J. A., Underwood, C. A., et al., 2006. Mechanical Stratigraphic Controls on Fracture Patterns within Carbonates and Implications for Groundwater Flow. Sedimentary Geology, 184(3-4): 225-239. https://doi.org/10.1016/j.sedgeo.2005.11.004 |
| [14] |
Corbett, K., Friedman, M., Spang, J., 1987. Fracture Development and Mechanical Stratigraphy of Austin Chalk, Texas. AAPG Bulletin, 71(1): 17-28. https://doi.org/10.1306/94886D35-1704-11D7-8645000102C1865D |
| [15] |
Corradetti, A., Tavani, S., Parente, M., et al., 2018. Distribution and Arrest of Vertical Through-Going Joints in a Seismic-Scale Carbonate Platform Exposure (Sorrento Peninsula, Italy): Insights from Integrating Field Survey and Digital Outcrop Model. Journal of Structural Geology, 108: 121-136. https://doi.org/10.1016/j.jsg.2017.09.009 |
| [16] |
Dong, S.Q., Lyu, W.Y., Xia, D.L., et al., 2020. An Approach to 3D Geological Modeling of Multi-Scaled Fractures in Tight Sandstone Reservoirs. Oil & Gas Geology, 41(3): 627-637 (in Chinese with English abstract). |
| [17] |
Ferrill, D.A., McGinnis, R.N., Morris, A.P., et al., 2014. Control of Mechanical Stratigraphy on Bed-Restricted Jointing and Normal Faulting: Eagle Ford Formation, South-Central Texas. AAPG Bulletin, 98(11): 2477-2506. https://doi.org/10.1306/08191414053 |
| [18] |
Ferrill, D. A., Morris, A. P., 2003. Dilational Normal Faults. Journal of Structural Geology, 25(2): 183-196. https://doi.org/10.1016/S0191-8141(02)00029-9 |
| [19] |
Ferrill, D. A., Morris, A. P., McGinnis, R. N., et al., 2011. Fault Zone Deformation and Displacement Partitioning in Mechanically Layered Carbonates: The Hidden Valley Fault, Central Texas. AAPG Bulletin, 95(8): 1383-1397. https://doi.org/10.1306/12031010065 |
| [20] |
Ferrill, D. A., Morris, A. P., McGinnis, R. N., et al., 2017. Mechanical Stratigraphy and Normal Faulting. Journal of Structural Geology, 94: 275-302. https://doi.org/10.1016/j.jsg.2016.11.010 |
| [21] |
Gao, H.H., He, D.F., Tong, X.G., et al., 2018. Tectonic-Depositional Environment and Petroleum Exploration of Yingshan Formation in the Tarim Basin. Earth Science, 43(2): 551-565 (in Chinese with English abstract). |
| [22] |
Gong, L., Gao, M.Z., Zeng, L.B., et al., 2017. Controlling Factors on Fracture Development in the Tight Sandstone Reservoirs: A Case Study of Jurassic-Neogene in the Kuqa Foreland Basin. Natural Gas Geoscience, 28(2): 199-208 (in Chinese with English abstract). |
| [23] |
Gong, L., Yao, J.Q., Gao, S., et al., 2018. Controls of Rock Mechanical Stratigraphy on Tectonic Fracture Spacing. Geotectonica et Metallogenia, 42(6): 965-973 (in Chinese with English abstract). |
| [24] |
Gross, M. R., 1993. The Origin and Spacing of Cross Joints: Examples from the Monterey Formation, Santa Barbara Coastline, California. Journal of Structural Geology, 15(6): 737-751. https://doi.org/10.1016/0191-8141(93)90059-J |
| [25] |
Gross, M.R., Eyal, Y., 2007.Throughgoing Fractures in Layered Carbonate Rocks.Geological Society of America Bulletin, 119(11-12): 1387-1404. https://doi.org/10.1130/0016-7606(2007)119[1387:TFILCR]2.0.CO;2 |
| [26] |
Gross, M.R., Fischer, M.P., Engelder, T., et al., 1995. Factors Controlling Joint Spacing in Interbedded Sedimentary Rocks: Integrating Numerical Models with Field Observations from the Monterey Formation, USA. Geological Society, London, Special Publications, 92(1): 215-233. https://doi.org/10.1144/GSL.SP.1995.092.01.12. |
| [27] |
Gudmundsson, A., 2011. Rock Fractures in Geological Processes. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511975684 |
| [28] |
Han, J., Kuang, A.P., Neng, Y., et al., 2021. Vertical Layered Structure of Shunbei No.5 Strike-Slip Fault Zone and Its Significance on Hydrocarbon Accumulation. Xinjiang Petroleum Geology, 42(2): 152-160 (in Chinese with English abstract). |
| [29] |
Hao, J.M., Wang, X.Y., Sun, J.F., et al., 2019. Characteristics and Main Controlling Factors of Natural Fractures in the Lower-to-Middle Ordovician Carbonate Reservoirs in Tahe Area, Northern Tarim Basin. Oil & Gas Geology, 40(5): 1022-1030 (in Chinese with English abstract). |
| [30] |
Hobbs, D. W., 1967. The Formation of Tension Joints in Sedimentary Rocks: An Explanation. Geological Magazine, 104(6): 550-556. https://doi.org/10.1017/s0016756800050226 |
| [31] |
Huang, C., 2019. Multi-Stage Activity Characteristics of Small-Scale Strike-Slip Faults in Superimposed Basin and Its Identification Method: A Case Study of Shunbei Area, Tarim Basin. Petroleum Geology & Experiment, 41(3):379-389 (in Chinese with English abstract). |
| [32] |
Ji, S. C., Li, L., Marcotte, D., 2021. Power-Law Relationship between Joint Spacing and Bed Thickness in Sedimentary Rocks and Implications for Layered Rock Mechanics. Journal of Structural Geology, 150: 104413. https://doi.org/10.1016/j.jsg.2021.104413 |
| [33] |
Jiao, C.L., He, B.Z., Wang, T.Y., et al., 2018. Types and Quantitative Characterization of Reservoir Spaces of the Ultra-Deep Limestone Reservoirs in the Yijianfang Formation during the Middle Ordovician, Shuntuoguole Area, Tarim Basin. Acta Petrologica Sinica, 34(6):1835-1846 (in Chinese with English abstract). |
| [34] |
Jiao, F.Z., 2017. Significance of Oil and Gas Exploration in NE Strike-Slip Fault Belts in Shuntuoguole Area of Tarim Basin. Oil & Gas Geology, 38(5): 831-839 (in Chinese with English abstract). |
| [35] |
Jiao, F.Z., 2018. Significance and Prospect of Ultra-Deep Carbonate Fault-Karst Reservoirs in Shunbei Area, Tarim Basin. Oil & Gas Geology, 39(2): 207-216 (in Chinese with English abstract). |
| [36] |
Jr Mitchum, R. M., Van Wagoner, J. C., 1991. High- Frequency Sequences and Their Stacking Patterns: Sequence-Stratigraphic Evidence of High-Frequency Eustatic Cycles. Sedimentary Geology, 70(2-4): 131-160. https://doi.org/10.1016/0037-0738(91)90139-5 |
| [37] |
Kadkhodaie, A., 2021. The Impact of Geomechanical Units (GMUs) Classification on Reducing the Uncertainty of Wellbore Stability Analysis and Safe Mud Window Design. Journal of Natural Gas Science and Engineering, 91: 103964. https://doi.org/10.1016/j.jngse.2021.103964 |
| [38] |
Katz, O., Reches, Z., Roegiers, J. C., 2000. Evaluation of Mechanical Rock Properties Using a Schmidt Hammer. International Journal of Rock Mechanics and Mining Sciences, 37(4): 723-728. https://doi.org/10.1016/S1365-1609(00)00004-6 |
| [39] |
Larsen, B., Gudmundsson, A., Grunnaleite, I., et al., 2010. Effects of Sedimentary Interfaces on Fracture Pattern, Linkage, and Cluster Formation in Peritidal Carbonate Rocks. Marine and Petroleum Geology, 27(7): 1531-1550. https://doi.org/10.1016/j.marpetgeo.2010.03.011 |
| [40] |
Laubach, S.E., Olson, J.E., Gross, M.R., 2009. Mechanical and Fracture Stratigraphy.AAPG Bulletin, 93(11): 1413-1426. https://doi.org/10.1306/07270909094 |
| [41] |
Lézin, C., Odonne, F., Massonnat, G.J., et al., 2009.Dependence of Joint Spacing on Rock Properties in Carbonate Strata.AAPG Bulletin, 93(2): 271-290. https://doi.org/10.1306/09150808023 |
| [42] |
Li, H.Y., Liu, J., Gong, W., et al., 2020. Identification and Characterization of Strike-Slip Faults and Traps of Fault-Karst Reservoir in Shunbei Area. China Petroleum Exploration, 25(3):107-120 (in Chinese with English abstract). |
| [43] |
Li, L. H., Huang, B. X., Li, Y. Y., et al., 2018. Multi-Scale Modeling of Shale Laminas and Fracture Networks in the Yanchang Formation, Southern Ordos Basin, China. Engineering Geology, 243: 231-240. https://doi.org/10.1016/j.enggeo.2018.07.010 |
| [44] |
Li, P. L., 2010. Tectonic Sedimentation and Reservoir Formation in Tarim Basin. Geological Publishing House, Beijing, 1-7 (in Chinese). |
| [45] |
Lin, B., Zhang, X., Kuang, A.P., et al., 2021. Structural Deformation Characteristics of Strike-Slip Faults in Tarim Basin and Their Hydrocarbon Significance: A Case Study of No.1 Fault and No.5 Fault in Shunbei Area. Acta Petrolei Sinica, 42(7): 906-923 (in Chinese with English abstract). |
| [46] |
Liu, B.Z., 2020. Analysis of Main Controlling Factors of Oil and Gas Differential Accumulation in Shunbei Area, Tarim Basin-Taking Shunbei No.1 and No.5 Strike Slip Fault Zones as Examples. China Petroleum Exploration, 25(3):83-95 (in Chinese with English abstract). |
| [47] |
Lü, W.Y., Zeng, L.B., Chen, S.Q., et al., 2021. Characterization Methods of Multi-Scale Natural Fractures in Tight and Low-Permeability Sandstone Reservoirs. Geological Review, 67(2): 543-556 (in Chinese with English abstract). |
| [48] |
Lyu, W. Y., Zeng, L. B., Liu, Z. Q., et al., 2016. Fracture Responses of Conventional Logs in Tight-Oil Sandstones: A Case Study of the Upper Triassic Yanchang Formation in Southwest Ordos Basin, China. AAPG Bulletin, 100(9): 1399-1417. https://doi.org/10.1306/04041615129 |
| [49] |
Ma, Q.Y., Cao, Z.C., Jiang, H.S., et al., 2020. Source-Connectivity of Strike Slip Fault Zone and Its Relationship with Oil and Gas Accumulation in Tahe-Shunbei Area, Tarim Basin. Marine Origin Petroleum Geology, 25(4):327-334 (in Chinese with English abstract). |
| [50] |
McGinnis, R. N., Ferrill, D. A., Morris, A. P., et al., 2017. Mechanical Stratigraphic Controls on Natural Fracture Spacing and Penetration. Journal of Structural Geology, 95: 160-170. https://doi.org/10.1016/j.jsg.2017.01.001 |
| [51] |
Moore, C.H., Wade, W.J., 2013. Carbonate Reservoirs: Porosity and Diagenesis in a Sequence Stratigraphic Framework.Elsevier, Amsterdam, 285-288. |
| [52] |
Morris, A. P., Ferrill, D. A., McGinnis, R. N., 2009. Mechanical Stratigraphy and Faulting in Cretaceous Carbonates. AAPG Bulletin, 93(11): 1459-1470. https://doi.org/10.1306/04080909011 |
| [53] |
Narr, W., 1991. Fracture Density in the Deep Subsurface: Techniques with Application to Point Arguello Oil Field. AAPG Bulletin, 75(8): 1300-1323. https://doi.org/10.1306/0C9B2939-1710-11D7-8645000102C1865D |
| [54] |
Narr, W., Suppe, J., 1991. Joint Spacing in Sedimentary Rocks. Journal of Structural Geology, 13(9): 1037-1048. https://doi.org/10.1016/0191-8141(91)90055-N |
| [55] |
Nelson, R., 2001. Geologic Analysis of Naturally Fractured Reservoirs. Gulf Professional Company, Houston. |
| [56] |
Nur, A., 1982. The Origin of Tensile Fracture Lineaments. Journal of Structural Geology, 4(1): 31-40. https://doi.org/10.1016/0191-8141(82)90004-9 |
| [57] |
Ogata, K., Storti, F., Balsamo, F., et al., 2017. Sedimentary Facies Control on Mechanical and Fracture Stratigraphy in Turbidites. Geological Society of America Bulletin, 129(1-2): 76-92. https://doi.org/10.1130/B31517.1 |
| [58] |
Olson, J. E., 2004. Predicting Fracture Swarms—The Influence of Subcritical Crack Growth and the Crack-Tip Process Zone on Joint Spacing in Rock. Geological Society, London, Special Publications, 231(1): 73-88. https://doi.org/10.1144/ GSL.SP.2004.231.01.05 |
| [59] |
Panza, E., Agosta, F., Rustichelli, A., et al., 2016. Fracture Stratigraphy and Fluid Flow Properties of Shallow-Water, Tight Carbonates: The Case Study of the Murge Plateau (Southern Italy). Marine and Petroleum Geology, 73: 350-370. https://doi.org/10.1016/j.marpetgeo.2016.03.022 |
| [60] |
Pollard, D.D., Aydin, A., 1988.Progress in Understanding Jointing over the Past Century.Geological Society of America Bulletin, 100(8): 1181-1204. https://doi.org/10.1130/0016-7606(1988)100<1181:PIUJOT>2.3.CO;2 |
| [61] |
Pollard, D.D., Segall, P., 1987. Theoretical Displacements and Stresses near Fractures in Rock: With Applications to Faults, Joints, Veins, Dikes, and Solution Surfaces. Fracture Mechanics of Rock, 277-347. https://doi.org/10.1016/B978-0-12-066266-1.50013-2 |
| [62] |
Qi, L.X., 2016. Oil and Gas Breakthrough in Ultra-Deep Ordovician Carbonate Formations in Shuntuoguole Uplift, Tarim Basin. China Petroleum Exploration, 21(3):38-51 (in Chinese with English abstract). |
| [63] |
Qi, L.X., 2020. Characteristics and Inspiration of Ultra-Deep Fault-Karst Reservoir in the Shunbei Area of the Tarim Basin. China Petroleum Exploration, 25(1):102-111 (in Chinese with English abstract). |
| [64] |
Renshaw, C. E., Pollard, D. D., 1995. An Experimentally Verified Criterion for Propagation across Unbounded Frictional Interfaces in Brittle, Linear Elastic Materials. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 32(3): 237-249. https://doi.org/10.1016/0148-9062(94)00037-4 |
| [65] |
Rijken, P., Cooke, M. L., 2001. Role of Shale Thickness on Vertical Connectivity of Fractures: Application of Crack-Bridging Theory to the Austin Chalk, Texas. Tectonophysics, 337(1-2): 117-133. https://doi.org/10.1016/S0040-1951(01)00107-X |
| [66] |
Rustichelli, A., Agosta, F., Tondi, E., et al., 2013. Spacing and Distribution of Bed-Perpendicular Joints throughout Layered, Shallow-Marine Carbonates (Granada Basin, Southern Spain). Tectonophysics, 582: 188-204. https://doi.org/10.1016/j.tecto.2012.10.007 |
| [67] |
Rustichelli, A., Torrieri, S., Tondi, E., et al., 2016. Fracture Characteristics in Cretaceous Platform and Overlying Ramp Carbonates: An Outcrop Study from Maiella Mountain (Central Italy). Marine and Petroleum Geology, 76: 68-87. https://doi.org/10.1016/j.marpetgeo.2016.05.020 |
| [68] |
Schmidt, E., 1951.A Non-Destructive Concrete Tester. Concrete, 59(8): 34-35. |
| [69] |
Shackleton, J.R., Cooke, M.L., Sussman, A.J., 2005. Evidence for Temporally Changing Mechanical Stratigraphy and Effects on Joint-Network Architecture.Geology, 33(2): 101-104. https://doi.org/10.1130/G20930.1 |
| [70] |
Strijker, G., Bertotti, G., Luthi, S. M., 2012. Multi-Scale Fracture Network Analysis from an Outcrop Analogue: A Case Study from the Cambro-Ordovician Clastic Succession in Petra, Jordan. Marine and Petroleum Geology, 38(1): 104-116. https://doi.org/10.1016/j.marpetgeo.2012.07.003 |
| [71] |
Teufel, L.W., Clark, J.A., 1984. Hydraulic Fracture Propagation in Layered Rock: Experimental Studies of Fracture Containment. Society of Petroleum Engineers Journal, 24(01): 19-32. https://doi.org/10.2118/9878-PA |
| [72] |
Todaro, S., Agosta, F., Parrino, N., et al., 2022. Fracture Stratigraphy and Oil First Migration in Triassic Shales, Favignana Island, Western Sicily, Italy. Marine and Petroleum Geology, 135: 105400. https://doi.org/10.1016/j.marpetgeo.2021.105400 |
| [73] |
Underwood, C.A., Cooke, M.L., Simo, J.A., et al., 2003. Stratigraphic Controls on Vertical Fracture Patterns in Silurian Dolomite, Northeastern Wisconsin. AAPG Bulletin, 87(1): 121-142. https://doi.org/10.1306/072902870121 |
| [74] |
Wang, B., Yang, Y., Cao, Z.C., et al., 2021. U-Pb Dating of Calcite Veins Developed in the Middle-Lower Ordovician Reservoirs in Tahe Oilfield and Its Petroleum Geologic Significance in Tahe Oilfield. Earth Science, 46(9):3203-3216 (in Chinese with English abstract). |
| [75] |
Wang, W., Fu, H., Xing, L.X., et al., 2021. Crack Propagation Behavior of Carbonatite Geothermal Reservoir Rock Mass Based on Extended Finite Element Method. Earth Science, 46(10):3509-3519 (in Chinese with English abstract). |
| [76] |
Wang, W.B., Fu, H., Lü, L.R., et al., 2021. Sequence Model of Ordovician Carbonate Strata in Shunbei Area, Tarim Basin, and Its Significance. Acta Sedimentologica Sinica, 39(6): 1451-1465 (in Chinese with English abstract). |
| [77] |
Wang, Y.W., Chen, H.H., Cao, Z.C., et al., 2019. Forming Mechanism of Ordovician Microbial Carbonate Reservoir in Northern Slope of Tazhong Uplift, Tarim Basin. Earth Science, 44(2): 559-571 (in Chinese with English abstract). |
| [78] |
Willis, B., 1894. The Mechanics of Appalachian Structure.US Government Printing Office, Washington, 222-224. |
| [79] |
Wu, G.H., Ma, B.S., Han, J.F., et al., 2021. Origin and Growth Mechanisms of Strike-Slip Faults in the Central Tarim Cratonic Basin, NW China. Petroleum Exploration and Development, 48(3): 510-520 (in Chinese with English abstract). |
| [80] |
Wu, H. Q., Pollard, D. D., 1995. An Experimental Study of the Relationship between Joint Spacing and Layer Thickness. Journal of Structural Geology, 17(6): 887-905. https://doi.org/10.1016/0191-8141(94)00099-L |
| [81] |
Xu, H., Guo, X.W., Cao, Z.C., et al., 2021. Application of Minimum Homogenization Temperatures of Aqueous Inclusions in Calcite Veins to Determine Time of Hydrocarbon Accumulation in Ordovician of Tahe Oilfield: Evidence from In-Situ Calcite U-Pb Dating by Laser Ablation. Earth Science, 46(10):3535-3548 (in Chinese with English abstract). |
| [82] |
Yang, P.X., Tian, J.C., Zhang, X., 2019. Study of Characteristics of Triassic Sedimentary Facies and Depositional Model in the Northern Shunbei Region, Tarim Basin. Journal of Mineralogy and Petrology, 39(4): 86-96 (in Chinese with English abstract). |
| [83] |
Yang, X., Shen, W.J., 2021. Characteristics and Evolution of the Structural Formations in Hongqi Sag, Hailar Basin. Petroleum Geology & Oilfield Development in Daqing, 40(6): 20-27 (in Chinese with English abstract). |
| [84] |
Yang, Y., Wang, B., Cao, Z.C., et al., 2021. Genesis and Formation Time of Calcite Veins of Middle-Lower Ordovician Reservoirs in Northern Shuntuoguole Low- Uplift, Tarim Basin. Earth Science, 46(6): 2246-2257 (in Chinese with English abstract). |
| [85] |
Yun, L., 2021a. Hydrocarbon Accumulation of Ultra-Deep Ordovician Fault-Karst Reservoirs in Shunbei Area. Xinjiang Petroleum Geology, 42(2):136-142 (in Chinese with English abstract). |
| [86] |
Yun, L., 2021b. Controlling Effect of NE Strike-Slip Fault System on Reservoir Development and Hydrocarbon Accumulation in the Eastern Shunbei Area and Its Geological Significance, Tarim Basin. China Petroleum Exploration, 26(3):41-52 (in Chinese with English abstract). |
| [87] |
Zahm, C. K., Hennings, P. H., 2009. Complex Fracture Development Related to Stratigraphic Architecture: Challenges for Structural Deformation Prediction, Tensleep Sandstone at the Alcova Anticline, Wyoming. AAPG Bulletin, 93(11): 1427-1446. https://doi.org/10.1306/08040909110 |
| [88] |
Zahm, C. K., Zahm, L. C., Bellian, J. A., 2010. Integrated Fracture Prediction Using Sequence Stratigraphy within a Carbonate Fault Damage Zone, Texas, USA. Journal of Structural Geology, 32(9): 1363-1374. https://doi.org/10.1016/j.jsg.2009.05.012 |
| [89] |
Zeng, L.B., 2008. Formation and Distribution of Fractures in Low Permeability Sandstone Reservoir. Science Press, Beijing,101-105 (in Chinese). |
| [90] |
Zeng, L.B., Lyu, P., Qu, X.F., et al., 2020. Multi-Scale Fractures in Tight Sandstone Reservoirs with Low Permeability and Geological Conditions of Their Development. Oil & Gas Geology, 41(3): 449-454 (in Chinese with English abstract). |
| [91] |
Zeng, L. B., Lyu, W. Y., Zhang, Y. Z., et al., 2021. The Effect of Multi-Scale Faults and Fractures on Oil Enrichment and Production in Tight Sandstone Reservoirs: A Case Study in the Southwestern Ordos Basin, China. Frontiers in Earth Science, 9: 664629. https://doi.org/10.3389/feart.2021.664629 |
| [92] |
Zhang, P., Hou, G.T., Pan, W.Q., et al., 2013. Research on the Carbonate Rocks Fractures in the Northern Margin of Tarim Basin. Geological Journal of China Universities, 19(4): 580-587 (in Chinese with English abstract). |
| [93] |
Zhang, X. X., Yu, J. J., Li, N. Y., et al., 2021. Multi-Scale Fracture Prediction and Characterization Method of a Fractured Carbonate Reservoir. Journal of Petroleum Exploration and Production, 11(1): 191-202. https://doi.org/10.1007/s13202-020-01033-w |
| [94] |
Zhao, L.Q., Feng, J.W., 2018. Interrelationship Study between Rock Mechanical Stratigraphy and Structural Fracture Development. Journal of Shandong University of Science and Technology (Natural Science), 37(1): 35-46 (in Chinese with English abstract). |
| [95] |
Zhao, R., Zhao, T., Li, H.L., et al., 2019. Sedimentary Facies and Cyclic Stratigraphy of Yingshan and Yijianfang Formations of Lower-Middle Ordovician in Shuntuoguole Area, Tarim Basin. Journal of Northeast Petroleum University, 43(4):1-16 (in Chinese with English abstract). |
| [96] |
Zhou, D.W., Li, W.H., Zhang, Y.X., et al., 2002. Method and Practice of Comprehensive Study of Regional Geology: Guidance for Geological Field Practice in Qinling Orogenic Belt, Ordos Basin. Science Press, Beijing, 180-182 (in Chinese). |
| [97] |
曹东升, 曾联波, 吕文雅, 等, 2021. 非常规油气储层脆性评价与预测方法研究进展. 石油科学通报, 6(1): 31-45. |
| [98] |
陈菁萍, 赵腾, 肖重阳, 等, 2020. 塔里木盆地顺北地区中下奥陶统走滑断裂差异成岩作用. 东北石油大学学报, 44(5): 23-34. |
| [99] |
董少群, 吕文雅, 夏东领, 等, 2020. 致密砂岩储层多尺度裂缝三维地质建模方法. 石油与天然气地质, 41(3): 627-637. |
| [100] |
高华华, 何登发, 童晓光, 等, 2018. 塔里木盆地鹰山组沉积期构造‒沉积环境与原型盆地特征. 地球科学, 43(2): 551-565. |
| [101] |
巩磊, 高铭泽, 曾联波, 等, 2017. 影响致密砂岩储层裂缝分布的主控因素分析——以库车前陆盆地侏罗系‒新近系为例. 天然气地球科学, 28(2): 199-208. |
| [102] |
巩磊, 姚嘉琪, 高帅, 等, 2018. 岩石力学层对构造裂缝间距的控制作用. 大地构造与成矿学, 42(6): 965-973. |
| [103] |
韩俊, 况安鹏, 能源, 等, 2021. 顺北5号走滑断裂带纵向分层结构及其油气地质意义. 新疆石油地质, 42(2): 152-160. |
| [104] |
赫俊民, 王小垚, 孙建芳, 等, 2019. 塔里木盆地塔河地区 中‒下奥陶统碳酸盐岩储层天然裂缝发育特征及主控因素. 石油与天然气地质, 40(5): 1022-1030. |
| [105] |
黄诚, 2019. 叠合盆地内部小尺度走滑断裂幕式活动特征及期次判别: 以塔里木盆地顺北地区为例. 石油实验地质, 41(3):379-389. |
| [106] |
焦存礼, 何碧竹, 王天宇, 等, 2018. 顺托果勒奥陶系一间房组超深层灰岩储层类型及储集空间定量表征. 岩石学报, 34(6):1835-1846. |
| [107] |
焦方正, 2017. 塔里木盆地顺托果勒地区北东向走滑断裂带的油气勘探意义. 石油与天然气地质, 38(5): 831-839. |
| [108] |
焦方正, 2018. 塔里木盆地顺北特深碳酸盐岩断溶体油气藏发现意义与前景. 石油与天然气地质, 39(2): 207-216. |
| [109] |
李海英, 刘军, 龚伟, 等, 2020. 顺北地区走滑断裂与断溶体圈闭识别描述技术. 中国石油勘探, 25(3):107-120. |
| [110] |
李丕龙,2010. 塔里木盆地构造沉积与成藏. 北京: 地质出版社, 1-7. |
| [111] |
林波, 张旭, 况安鹏, 等, 2021. 塔里木盆地走滑断裂构造变形特征及油气意义: 以顺北地区1号和5号断裂为例. 石油学报, 42(7): 906-923. |
| [112] |
刘宝增, 2020. 塔里木盆地顺北地区油气差异聚集主控因素分析——以顺北1号、顺北5号走滑断裂带为例. 中国石油勘探, 25(3): 83-95. |
| [113] |
吕文雅, 曾联波, 陈双全, 等, 2021. 致密低渗透砂岩储层多尺度天然裂缝表征方法. 地质论评, 67(2): 543-556. |
| [114] |
马庆佑, 曹自成, 蒋华山, 等, 2020. 塔河‒顺北地区走滑断裂带的通源性及其与油气富集的关系. 海相油气地质, 25(4):327-334. |
| [115] |
漆立新, 2016. 塔里木盆地顺托果勒隆起奥陶系碳酸盐岩超深层油气突破及其意义. 中国石油勘探, 21(3):38-51. |
| [116] |
漆立新, 2020. 塔里木盆地顺北超深断溶体油藏特征与启示. 中国石油勘探, 25(1):102-111. |
| [117] |
王斌, 杨毅, 曹自成, 等, 2021. 塔河油田中下奥陶统储层裂缝方解石脉U-Pb同位素年龄及油气地质意义. 地球科学, 46(9):3203-3216. |
| [118] |
王伟, 付豪, 邢林啸, 等, 2021. 基于扩展有限元法的碳酸盐岩地热储层岩体裂缝扩展行为. 地球科学, 46(10):3509-3519. |
| [119] |
王文博, 傅恒, 闾廖然, 等, 2021. 塔里木盆地顺北地区奥陶系碳酸盐岩层序模式及其意义. 沉积学报, 39(6): 1451-1465. |
| [120] |
王玉伟, 陈红汉, 曹自成, 等, 2019. 塔里木盆地塔中北坡奥陶系微生物碳酸盐岩储层形成机制与评价. 地球科学, 44(2): 559-571. |
| [121] |
邬光辉, 马兵山, 韩剑发, 等, 2021. 塔里木克拉通盆地中部走滑断裂形成与发育机制. 石油勘探与开发, 48(3): 510-520. |
| [122] |
徐豪, 郭小文, 曹自成, 等, 2021. 运用方解石中流体包裹体最小均一温度确定塔河油田奥陶系油气成藏时间:来自激光原位方解石U-Pb年龄的证据. 地球科学, 46(10):3535-3548. |
| [123] |
杨培星, 田景春, 张翔, 2019. 塔里木盆地顺北地区三叠系沉积相及沉积模式研究. 矿物岩石, 39(4): 86-96. |
| [124] |
杨旭, 申文静, 2021. 海拉尔盆地红旗凹陷构造层特征及构造演化. 大庆石油地质与开发, 40(6): 20-27. |
| [125] |
杨毅, 王斌, 曹自成, 等, 2021. 塔里木盆地顺托果勒低隆起北部中下奥陶统储层方解石脉成因及形成时间. 地球科学, 46(6): 2246-2257. |
| [126] |
云露, 2021a. 顺北地区奥陶系超深断溶体油气成藏条件. 新疆石油地质, 42(2):136-142. |
| [127] |
云露, 2021b. 顺北东部北东向走滑断裂体系控储控藏作用与突破意义. 中国石油勘探, 26(3):41-52. |
| [128] |
曾联波, 2008. 低渗透砂岩储层裂缝的形成与分布.北京: 科学出版社,101-105. |
| [129] |
曾联波, 吕鹏, 屈雪峰, 等, 2020. 致密低渗透储层多尺度裂缝及其形成地质条件. 石油与天然气地质, 41(3): 449-454. |
| [130] |
张鹏, 侯贵廷, 潘文庆, 等, 2013. 塔里木盆地北缘碳酸盐岩野外构造裂缝发育规律研究. 高校地质学报, 19(4): 580-587. |
| [131] |
赵乐强, 冯建伟, 2018. 岩石力学层与构造裂缝发育关系研究. 山东科技大学学报(自然科学版), 37(1): 35-46. |
| [132] |
赵锐, 赵腾, 李慧莉, 等, 2019. 塔里木盆地顺托果勒地区中下奥陶统鹰山组与一间房组沉积相与旋回地层. 东北石油大学学报, 43(4):1-16. |
| [133] |
周鼎武, 李文厚, 张云翔, 等, 2002.区域地质综合研究的方法与实践: 鄂尔多斯盆地-秦岭造山带地质野外实习指导书.北京: 科学出版社, 180-182. |
国家自然科学基金项目(U21B2062)
/
| 〈 |
|
〉 |