基于深度卷积神经网络和迁移学习的农村房屋洪涝灾害后受损等级分类
吴禄源 , 仝敬博 , 王自法 , 马丹 , 张建伟 , 廖吉安
地球科学 ›› 2023, Vol. 48 ›› Issue (05) : 1742 -1754.
基于深度卷积神经网络和迁移学习的农村房屋洪涝灾害后受损等级分类
Classification of Damaged Grade on Rural Houses after Flood Disaster Based on Deep Convolutional Neural Network and Transfer Learning
,
洪涝灾害对房屋等建筑物会造成巨大损害,灾后房屋破坏等级鉴定对保障人民生命安全至关重要,而传统的人工鉴定方法,消耗较多的人力、财力及时间等资源.为此,基于河南郑州“7·20”特大暴雨引发的农村房屋破坏数据,采用深度卷积神经网络(CNN)理论,得到灾后房屋危险等级智能分类模型.首先采用AlexNet、VGGNet、GoogleNet和ResNet四种经典的深度CNN架构,对数据集进行训练、验证和测试,得到4种灾后房屋危险等级智能分类模型,然后结合迁移学习方法训练CNN提高模型的泛化能力,并选择效果较优的ResNet-50为分类主模型,最后分析CNN架构中超参数的影响.结果表明:ResNet-50在学习率为0.000 5,epoch为50,batch_size为16时网络训练结果最优,其测试集的预测准确率达到了95.5%;此外,房屋危险等级特征的可视化分析明确了模型分类的机理及准确性.试验表明基于迁移学习的识别模型准确率较高,为农村房屋洪涝灾害后受损等级分类模型提供参考.
洪涝灾害 / 卷积神经网络 / 迁移学习 / 房屋危险等级 / 河南郑州“7·20”特大暴雨 / 工程地质
flood disaster / convolutional neural network / transfer learning / house damage grade / Henan Zhengzhou “7.20” heavy rainstorm / engineering geology
| [1] |
Ayenu-Prah, A., Attoh-Okine, N., 2008. Evaluating Pavement Cracks with Bidimensional Empirical Mode Decomposition. Eurasip Journal on Advances in Signal Processing, 2008:1-7. https://doi.org/10.1155/2008/861701 |
| [2] |
Cha, Y. J., Choi, W., Buyukozturk, O., 2017. Deep Learning-Based Crack Damage Detection Using Convolutional Neural Networks. Computer-Aided Civil and Infrastructure Engineering, 32: 361-378. https://doi.org/10.1111/mice.12263 |
| [3] |
Chen, J.Y., Zhou, M.L., Zhang, D.M., et al., 2021. Quantification of Water Inflow in Rock Tunnel Faces via Convolutional Neural Network Approach. Automation in Construction, 123: 103526. https://doi.org/10.1016/j.autcon.2020.103526 |
| [4] |
Chen, Z. Y., Kong, F., 2022. Study on Fragmentation of Emergency Management during“7·20”Extreme Rainstorm Flood Disaster in Zhengzhou of Henan Province and Relevant Comprehensive Treatment. Water Resources and Hydropower Engineering, 53(8): 1-14 (in Chinese with English abstract). |
| [5] |
Cheng, H.D., Shi, X.J., Glazier, C., 2003. Real-Time Image Thresholding Based on Sample Space Reduction and Interpolation Approach. Journal of Computing in Civil Engineering, 17(4): 264-272. https://doi.org/10.1061/(ASCE)0887-3801(2003)17:4(264) |
| [6] |
Feng, C., Pan, J.G., Li, C., et al., 2022. Fault High-Resolution Recognition Method Based on Deep Neural Network. Earth Science, 1-15 (in Chinese with English abstract). |
| [7] |
Gao, Y., Mosalam, K.M., 2018. Deep Transfer Learning for Image-Based Structural Damage Recognition. Computer-Aided Civil and Infrastructure Engineering, 33(9):748-768. https://doi.org/10.1111/mice.12363 |
| [8] |
He, K., Zhang, X., Ren, S., et al., 2016. Deep Residual Learning for Image Recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016: 770-778. https://doi.org/10.1109/CVPR.2016.90 |
| [9] |
Huang, F. M., Hu, S. Y., Yan, X. Y., et al., 2022a. Landslide Susceptibility Prediction and Identification of Its Main Environmental Factors Based on Machine Learning Models. Bulletin of Geological Science and Technology, 41(2): 79-90 (in Chinese with English abstract). |
| [10] |
Huang, F. M., Li, J. F., Wang, J. Y., et al., 2022b. Modelling Rules of Landslide Susceptibility Prediction Considering the Suitability of Linear Environmental Factors and Different Machine Learning Models. Bulletin of Geological Science and Technology, 41(2): 44-59 (in Chinese with English abstract). |
| [11] |
Huang, Y.X., Xu, B.G., 2006. Automatic Inspection of Pavement Cracking Distress. Journal of Electronic Imaging, 15(1):1-6. https://doi.org/10.1117/1.2177650 |
| [12] |
Jahanshahi, M. R., Jazizadeh, F., Masri, S. F., et al., 2013. Unsupervised Approach for Autonomous Pavement-Defect Detection and Quantification Using an Inexpensive Depth Sensor. Journal of Computing in Civil Engineering, 27(6):743-754. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000245 |
| [13] |
Kirschke, K. R., Velinsky, S. A., 1992. Histogram-Based Approach for Automated Pavement-Crack Sensing. Journal of Transportation Engineering, 118(5): 700-710. https://doi.org/10.1061/(ASCE)0733-947X(1992)118:5(700) |
| [14] |
Kohavi, R.,Provost, F., 1998. Confusion Matrix. Machine Learning, 30(2-3): 271-274. |
| [15] |
Kong, F., 2020. System and Capacity Building of Disaster Prevention, Mitigation and Relief in Rural China: Significance, Current Situation, Challenges and Countermeasures. Disaster Reduction in China, 21:10-13 (in Chinese). |
| [16] |
Krizhevsky, A., Sutskever, I., Hinton, G., 2012. ImageNet Classification with Deep Convolutional Neural Networks. Communications of the ACM, 60: 84-90. https://doi.org/10.1145/3065386 |
| [17] |
Le Cun, Y., Jackel, L. D., Boser, B., et al., 1989. Handwritten Digit Recognition: Applications of Neural Network Chips and Automatic Learning. IEEE Communications Magazine, 27(11): 41-46. https://doi.org/10.1109/35.41400 |
| [18] |
Li, S., Chen, J., Liu, C., et al., 2021. Mineral Prospectivity Prediction via Convolutional Neural Networks Based on Geological Big Data. Journal of Earth Science, 32(2): 327-347. https://doi.org/10.1007/s12583-020-1365-z |
| [19] |
Li, Z. B., Li, M., Zhao, Y. Y., et al., 2021. Iced Pomfret Freshness Evaluation Method Based on Improved VGG-19 Convolutional Neural Networks. Transactions of the Chinese Society of Agricultural Engineering, 37(22): 286-294 (in Chinese with English abstract). |
| [20] |
Liu, B., Xu, H. W., Li, C. Z., et al., 2022. Apple Leaf Disease Identification Method Based on Snapshot Ensemble CNN. Transactions of the Chinese Society for Agricultural Machinery, 53(6): 286-294 (in Chinese with English abstract). |
| [21] |
Liu, H. L., Zhang, R. H., Liu, D. S., et al., 2022. Study on Characteristics of Physical and Mechanical Parameters of Engineering Geology Based on Data Fusion Technique. Journal of Civil and Environmental Engineering, 44(6): 1-11 (in Chinese with English abstract). |
| [22] |
Makantasis, K., Protopapadakis, E., Doulamis, A., et al., 2015. Deep Convolutional Neural Networks for Efficient Vision Based Tunnel Inspection. 2015 IEEE International Conference on Intelligent Computer Communication and Processing (ICCP), Cluj-Napoca, 335-342. |
| [23] |
Nisanth, A., Mathew, A., 2014. Automated Visual Inspection of Pavement Crack Detection and Characterization. International Journal of Technology and Engineering System, 6(1): 14-20. |
| [24] |
Oliveira, H., Correia, P.L., 2009. Automatic Road Crack Segmentation Using Entropy and Image Dynamic Thresholding. 17th European Signal Processing Conference, Glasgow, 622-626. |
| [25] |
Our Correspondent, 2022. The "July 20" Rainstorm Disaster in Zhengzhou, Henan Reshaped the Concept of Urban Construction. Chinese Emergency Management, (2) : 6-7 (in Chinese with English abstract). |
| [26] |
Ouyang, W., Xu, B., 2013. Pavement Cracking Measurements Using 3D Laser-Scan Images. Measurement Science and Technology, 24(10): 105204. https://doi.org/10.1088/0957-0233/24/10/105204 |
| [27] |
Santhi, B., Krishnamurthy, G., Siddharth, S., et al., 2012. Automatic Detection of Cracks in Pavements Using Edge Detection Operator. Journal of Theoretical and Applied Information Technology, 36(2): 199-205. |
| [28] |
Simonyan, K., Zisserman, A., 2014. Very Deep Convolutional Networks for Large-Scale Image Recognition. Computer Science, 14124313. https://doi.org/10.48550/arXiv.1409.1556 |
| [29] |
Süzen, A., Alkan Çakiroğlu, M., 2020. Assessment and Application of Deep Learning Algorithms in Civil Engineering. Journal of Science and Engineering, 7(3): 906-922. https://doi.org/10.31202/ECJSE.679113 |
| [30] |
Szegedy, C., Liu, W., Jia, Y., et al., 2015. Going Deeper with Convolutions. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, 1-9. https://doi.org/10.1109/CVPR.2015.7298594 |
| [31] |
Thenmozhi, K., Reddy, U. S., 2019. Crop Pest Classification Based on Deep Convolutional Neural Network and Transfer Learning. Computers and Electronics in Agriculture, 164(C): 104906. |
| [32] |
Wang, K.C.P., 2011. Elements of Automated Survey of Pavements and a 3D Methodology. Journal of Modern Transportation, 19(1): 51-57. https://doi.org/10.1007/BF03325740 |
| [33] |
Yao, M., Li, X., Yuan, J.D., et al., 2023. Deep Learning Characterization Method of Rock Mass Conditions based on TBM Rock Breaking Data. Earth Science, 48(5):1908-1922 (in Chinese with English abstract). |
| [34] |
Ying, L.,Salari, E., 2010. Beamlet Transform-Based Technique for Pavement Crack Detection and Classification. Computer-Aided Civil and Infrastructure Engineering, 25(8): 572-580. https://doi.org/10.1111/j.1467-8667.2010.00674.x |
| [35] |
Zeiler, M. D., Fergus, R., 2014. Visualizing and Understanding Convolutional Networks. In: Proceedings of the European Conference on Computer Vision. Springer, Cham, 818-833. https://doi.org/10.1007/978-3-319-10590-1_53 |
| [36] |
Zhang, A., Wang, K., Li, B., et al., 2017a. Automated Pixel-Level Pavement Crack Detection on 3D Asphalt Surfaces Using a Deep-Learning Network. Computer-Aided Civil and Infrastructure Engineering, 32(10):805-819. https://doi.org/10.1111/mice.12297 |
| [37] |
Zhang, A.,Wang, K.C.P., Ai, C.F., 2017b. 3D Shadow Modeling for Detection of Descended Patterns on 3D Pavement Surface. Journal of Computing in Civil Engineering, 31(4):1-13. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000661 |
| [38] |
Zhang, A.,Wang, K.C.P., 2017. The Fast Prefix Coding Algorithm (FPCA) for 3D Pavement Surface Data Compression. Computer-Aided Civil and Infrastructure Engineering, 32(3):173-190. https://doi.org/10.1111/mice.12243 |
| [39] |
Zhang, J. Y., Wang, Y. T., He, R. M., et al., 2016. Discussion on the Urban Flood and Waterlogging and Causes Analysis in China. Advances in Water Science, 27(4): 485-491 (in Chinese with English abstract). |
| [40] |
Zhang, W.G., He, Y.W., Wang, L.Q., et al., 2023. Machine Learning Solution for Landslide Susceptibility Based on Hydrographic Division: Case Study of Fengjie County in Chongqing. Earth Science, 48(5):2024-2038 (in Chinese with English abstract). |
| [41] |
Zhang, W. G., Li, H. R., Wu, C. Z., et al., 2021a. Stability Assessment of Underground Entry-Type Excavations Using Data-Driven RF and KNN Methods. Journal of Hunan University (Natural Sciences), 48(3): 164-172 (in Chinese with English abstract). |
| [42] |
Zhang, W. G., Tang, L. B., Chen, F. Y., et al., 2021b. Prediction for TBM Penetration Rate Using Four Hyperparameter Optimization Methods and Random Forest Model. Journal of Basic Science and Engineering, 29(5): 1186-1200 (in Chinese with English abstract). |
| [43] |
本刊记者, 2022. 河南郑州“7·20”特大暴雨灾害重塑城市建设理念 尊重自然 系统谋划 立足当前 着眼长远. 中国应急管理, (2): 6-7. |
| [44] |
谌舟颖, 孔锋, 2022. 河南郑州“7·20”特大暴雨洪涝灾害应急管理碎片化及综合治理研究. 水利水电技术(中英文), 53(8): 1-14. |
| [45] |
丰超, 潘建国, 李闯, 等, 2022. 基于深度神经网络的断层高分辨率识别方法. 地球科学, 1-15. |
| [46] |
黄发明, 胡松雁, 闫学涯, 等, 2022a. 基于机器学习的滑坡易发性预测建模及其主控因子识别. 地质科技通报, 41(2): 79-90. |
| [47] |
黄发明, 李金凤, 王俊宇, 等, 2022b. 考虑线状环境因子适宜性和不同机器学习模型的滑坡易发性预测建模规律. 地质科技通报, 41(2): 44-59. |
| [48] |
孔锋, 2020. 我国农村防灾减灾救灾体系和能力建设:意义、现状、挑战和对策. 中国减灾, 21:10-13. |
| [49] |
李振波, 李萌, 赵远洋, 等, 2021. 基于改进VGG-19卷积神经网络的冰鲜鲳鱼新鲜度评估方法. 农业工程学报, 37(22): 286-294. |
| [50] |
刘斌, 徐皓玮, 李承泽, 等, 2022. 基于快照集成卷积神经网络的苹果叶部病害程度识别. 农业机械学报, 53(6): 286-294. |
| [51] |
刘汉龙, 章润红, 刘东升, 等, 2022. 基于数据融合的工程地质物理力学参数特征研究. 土木与环境工程学报(中英文), 44(6): 1-11. |
| [52] |
姚敏, 李旭, 原继东, 等, 2023. 基于TBM破岩数据的岩体条件深度学习表征方法. 地球科学, 48(5):1908-1922. |
| [53] |
张建云, 王银堂, 贺瑞敏, 等, 2016. 中国城市洪涝问题及成因分析. 水科学进展, 27(4): 485-491. |
| [54] |
仉文岗, 何昱苇, 王鲁琦, 等, 2023. 基于水系分区的滑坡易发性机器学习分析方法——以重庆市奉节县为例. 地球科学, 48(5):2024-2038. |
| [55] |
仉文岗, 李红蕊, 巫崇智, 等, 2021a. 基于RF和KNN的地下采场开挖稳定性评估. 湖南大学学报(自然科学版), 48(3): 164-172. |
| [56] |
仉文岗, 唐理斌, 陈福勇, 等, 2021b. 基于4种超参数优化算法及随机森林模型预测TBM掘进速度. 应用基础与工程科学学报, 29(5): 1186-1200. |
国家自然科学基金项目(41977238;51978634)
河南省博士后科研项目(202103049)
河南省高等学校重点科研项目(23A440005)
/
| 〈 |
|
〉 |