基于信息量和卷积神经网络的黄土高原滑坡易发性评价
孔嘉旭 , 庄建琦 , 彭建兵 , 占洁伟 , 马鹏辉 , 牟家琦 , 王杰 , 王世宝 , 郑佳 , 付玉婷
地球科学 ›› 2023, Vol. 48 ›› Issue (05) : 1711 -1729.
基于信息量和卷积神经网络的黄土高原滑坡易发性评价
Evaluation of Landslide Susceptibility in Chinese Loess Plateau Based on IV-RF and IV-CNN Coupling Models
,
,
黄土高原在地质环境与人类活动的复杂互馈作用下易导致黄土崩滑灾害频发,亟需选择适用性的影响因子和训练模型开展滑坡易发性评价研究.本研究以黄土高原为研究区,基于野外滑坡调查和资料收集,构建涵盖地形地貌、基础地质环境、气象水文、人类活动、土壤物理化学性质以及植被覆盖的评价体系,采用信息量模型(IV)分别联接到随机森林模型(RF)和卷积神经网络模型(CNN)构建耦合模型IV-RF和IV-CNN,开展滑坡易发性评价研究.结果表明,耦合模型(IV-RF、IV-CNN)的精度均高于独立模型(RF、CNN),4种模型的AUC值分别为0.916、0.938、0.878、0.853,IV-CNN具有更强的预测能力和精度.IV-CNN模型的极高、高、中、低、极低易发性区域面积占比分别为8.78%、7.47%、15.34%、19.82%、47.87%,主要分布在黄土高原南部和东部地质环境复杂和人类活动强烈的山地、黄土梁峁地区.坡度、侵蚀类型、地貌类型、粘粒含量、距道路距离在贡献率分析中排在前5位,是影响滑坡发育的主控因子.本研究旨在为黄土高原滑坡灾害的预测和防治工作提供可靠的科学依据,为滑坡易发性评价研究深化建模思路,优化独立模型评价结果不确定性问题.
黄土高原 / 滑坡 / 易发性 / 信息量 / 随机森林 / 卷积神经网络 / 灾害地质
Chinese Loess Plateau / landslides / susceptibility / information volume / random forest / convolutional neural network / hazard geology
| [1] |
Dou, J., Xiang, Z.L., Xu, Q., et al., 2023. Application and Development Trend of Machine Learning in Landslide Intelligent Disaster Prevention and Mitigation. Earth Science, 48(5): 1657-1674 (in Chinese with English abstract). |
| [2] |
Du, B., Zhao, Z.R., Hu, X., et al., 2021. Landslide Susceptibility Prediction Based on Image Semantic Segmentation. Computers & Geosciences, 155: 104860. https://doi.org/10.1016/j.cageo.2021.104860 |
| [3] |
Fan, X. M., Fang, C. Y., Dai, L. X., et al., 2022. Near Real Time Prediction of Spatial Distribution Probability of Earthquake-Induced Landslides: Take the Lushan Earthquake on June 1, 2022 as an Example. Journal of Engineering Geology, 30(3): 729-739 (in Chinese with English abstract). |
| [4] |
Feng, L., Lin, H.S., Zhang, M.S., et al., 2019. Development and Evolution of Loess Vertical Joints on the Chinese Loess Plateau at Different Spatiotemporal Scales. Engineering Geology, 265:105372. https://doi.org/10.1016/j.enggeo.2019.105372 |
| [5] |
Gao, D. H., Chen, Z. H., Guo, N., et al., 2017. The Influence of Dry Density and Matric Suction on the Deformation and the Strength Characteristics of the Remolded Unsaturated Loess Soils. Chinese Journal of Rock Mechanics and Engineering, 36(3): 736-744 (in Chinese with English abstract). |
| [6] |
González-Díez, A., Fernández-Maroto, G., Doughty, M.W., et al., 2014. Development of a Methodological Approach for the Accurate Measurement of Slope Changes Due to Landslides, Using Digital Photogrammetry. Landslides, 11: 615-628. https://doi.org/10.1007/s10346-013-0413-5 |
| [7] |
Guo, F.Y., Meng, X.M., Li, Z.H., et al., 2015. Characteristics and Causes of Assembled Geo-Hazards Induced by the Rainstorm on 25th July 2013 in Tianshui City, Gansu, China. Mountain Research, 33(1):100-107 (in Chinese with English abstract). |
| [8] |
Guo, Z. Z., Yin, K. L., Fu, S., et al., 2019. Evaluation of Landslide Susceptibility Based on GIS and WOE-BP Model. Earth Science, 44(12): 4299-4312 (in Chinese with English abstract). |
| [9] |
Guzzetti, F., Ardizzone, F., Cardinali, M., et al., 2008. Distribution of Landslides in the Upper Tiber River Basin, Central Italy. Geomorphology, 96(1-2): 105-122. https://doi.org/10.1016/j.geomorph.2007.07.015 |
| [10] |
Guzzetti, F., Mondini, A.C., Cardinali, M., et al., 2012: Landslide Inventory Maps: New Tools for an Old Problem. Earth-Science Reviews, 112(1-2): 42-66. https://doi.org/10.1016/j.earscirev.2012.02.001 |
| [11] |
Hengl, T., MacMillan, R.A., 2019. Predictive Soil Mapping with R. Open GeoHub Foundation, Wageningen,1-370. |
| [12] |
Hou, R.N., Li, Z., Chen, N.S., et al., 2023. Modeling of Debris Flow Susceptibility Assessment in Tianshan Based on Watershed Unit and Stacking Ensemble Algorithm. Earth Science, 48(5): 1892-1907 (in Chinese with English abstract). |
| [13] |
Hu, W.L., Cheng, W.C., Wen, S.J., et al., 2021. Effects of Chemical Contamination on Microscale Structural Characteristics of Intact Loess and Resultant Macroscale Mechanical Properties. CATENA, 203:105361. https://doi.org/10.1016/j.catena.2021.105361 |
| [14] |
Huang, F.M., Chen, B., Mao, D.X., et al., 2023. Landslide Susceptibility Prediction Modeling and Interpretability Based on Self-Screening Deep Learning Model. Earth Science, 48(5): 1696-1710 (in Chinese with English abstract). |
| [15] |
Huang, F.M., Li, J.F., Wang, J.Y., et al., 2022a. Modelling Rules of Landslide Susceptibility Prediction Considering the Suitability of Linear Environmental Factors and Different Machine Learning Models. Bulletin of Geological Science and Technology, 41(2):44-59 (in Chinese with English abstract). |
| [16] |
Huang, F.M., Shi, Y., Ouyang, W.P., et al., 2022b. Landslide Susceptibility Prediction Modeling Based on Weight of Evidence and Chi-Square Automatic Interactive Detection. Journal of Civil and Environmental Engineering, 44(5):16-28 (in Chinese with English abstract). |
| [17] |
Huang, F.M., Yin, K.L., Jiang, S.H., et al., 2018. Landslide Susceptibility Assessment Based on Clustering Analysis and Support Vector Machine. Chinese Journal of Rock Mechanics and Engineering, 37(1):156-167 (in Chinese with English abstract). |
| [18] |
Huang, F.M., Zhang, J., Zhou, C.B., et al., 2020. A Deep Learning Algorithm Using a Fully Connected Sparse Autoencoder Neural Network for Landslide Susceptibility Prediction. Landslides, 17(1): 217-229. https://doi.org/10.1007/s10346-019-01274-9 |
| [19] |
Huang, R. Q., 2007. Large-Scale Landslides and Their Sliding Mechanisms in China since the 20th Century. Chinese Journal of Rock Mechanics and Engineering, 26(3): 433-454 (in Chinese with English abstract). |
| [20] |
Huang, X.W., 2019. Hazard and Risk Evaluation of Fatal Landslides in China and the Landslides on the Loess Plateau (Dissertation). Lanzhou University, Lanzhou, 8-9 (in Chinese with English abstract). |
| [21] |
Kong, J.X., Zhuang, J.Q., Peng, J.B., et al., 2021. Spatial and Temporal Distribution Characteristics and Risk Simulation of Loess Micro Geomorphic Disaster Chain in Laolang Gully, Lanzhou. Journal of Engineering Geology, 29(5):1401-1415 (in Chinese with English abstract). |
| [22] |
Kong, J.X., Zhuang, J.Q., Zhan, J.W., et al., 2021. A Landslide in Heifangtai, Northwest of the Chinese Loess Plateau: Triggered Factors, Movement Characteristics, and Failure Mechanism. Landslides, 18: 3407-3419. https://doi.org/10.1007/s10346-021-01752-z |
| [23] |
Leng, Y.Q., Peng, J.B., Wang, S., et al., 2020. Development of Water Sensitivity Index of Loess from Its Mechanical Properties. Engineering Geology, 280: 105918. https://doi.org/10.1016/j.enggeo.2020.105918 |
| [24] |
Li, W.B., Fan, X.M., Huang, F.M., et al., 2021. Uncertainties of Landslide Susceptibility Modeling under Different Environmental Factor Connections and Prediction Models. Earth Science, 46(10):3777-3795 (in Chinese with English abstract). |
| [25] |
Li, Y.R., Shi, W.H., Aydin, A., et al., 2019. Loess Genesis and Worldwide Distribution. Earth-Science Reviews, 201: 102947. https://doi.org/10.1016/j.earscirev.2019.102947 |
| [26] |
Liu, K., Ye, W.J., Jing, H.J., et al., 2021. Microscopic Damage Identification and Macroscopic Mechanical Response of Loess in Seasonal Frozen Areas. Chinese Journal of Geotechnical Engineering, 43(S1):192-197 (in Chinese with English abstract). |
| [27] |
Ma, P.H., Peng, J.B., Zhuang, J.Q., et al., 2022. Initiation Mechanism of Loess Mudflows by Flume Experiments. Journal of Earth Science, 33(5): 1166-1178. https://doi.org/10.1007/s12583-022-1660-y |
| [28] |
Malamud, B.D., Turcotte, D.L., Guzzetti, F., et al., 2004. Landslide Inventories and Their Statistical Properties. Earth Surface Processes and Landforms, 29:687-711. https://doi.org/10.1002/esp.1064 |
| [29] |
Merghadi, A., Yunus, A.P., Dou, J., et al., 2020. Machine Learning Methods for Landslide Susceptibility Studies: A Comparative Overview of Algorithm Performance. Earth-Science Reviews, 207:103255. https://doi.org/10.1016/j.earscirev.2020.103225 |
| [30] |
Peng, J.B., Wang, S.K., Wang, Q.Y., et al., 2019. Distribution and Genetic Types of Loess Landslides in China. Journal of Asian Earth Sciences, 170: 329-350. https://doi.org/10.1016/j.jseaes.2018.11.015 |
| [31] |
Peng, J. B., Wu, D., Duan, Z., et al., 2016. Disaster Characteristics and Destructive Mechanism of Typical Loess Landslide Cases Triggered by Human Engineering Activities. Journal of Southwest Jiaotong University, 51(5): 971-980 (in Chinese with English abstract). |
| [32] |
Qiu, H.J., Regmi, A.D., Cui, P., et al., 2016. Size Distribution of Loess Slides in Relation to Local Slope Height within Different Slope Morphologies. CATENA, 145: 155-163. https://doi.org/10.1016/j.catena.2016.06.005 |
| [33] |
Reichenbach, P., Rossi, M., Malamud, B.D., et al., 2018. A Review of Statistically-Based Landslide Susceptibility Models. Earth-Science Reviews, 180:60-91. https://doi.org/10.1016/j.earscirev.2018.03.001 |
| [34] |
Samia, J., Arnaud, T., Bregt, A., et al., 2017. Do Landslides Follow Landslides? Insights in Path Dependency from a Multi-Temporal Landslide Inventory. Landslides, 4: 547-558. https://doi.org/10.1007/s10346-016-0739-x |
| [35] |
Segoni, S., Pappafico, G., Luti, T., et al., 2020. Landslide Susceptibility Assessment in Complex Geological Settings: Sensitivity to Geological Information and Insights on Its Parameterization. Landslides, 17(10): 2443-2453. |
| [36] |
Tian, S.J., Zhang, S.S., Tang, Q.S., et al., 2019. Comparative Study of Landslide Susceptibility Assessment Based on Different Evaluation Units. Journal of Natural Disasters, 28(6): 137-145 (in Chinese with English abstract). |
| [37] |
Tu, X.B., Kwong, A.K.L., Dai, F.C., et al., 2009. Field Monitoring of Rainfall Infiltration in a Loess Slope and Analysis of Failure Mechanism of Rainfall-Induced Landslides. Engineering Geology, 105(1-2): 134-150. https://doi.org/10.1016/j.enggeo.2008.11.011 |
| [38] |
Wang, J.D., Gu, T.F., Zhang, M.S., et al., 2019a. Experimental Study of Loess Disintegration Characteristics. Earth Surface Processes and Landforms, 44(6):1317-1329. https://doi.org/10.1002/esp.4575 |
| [39] |
Wang, Y., Fang, Z. C., Hong, H. Y., 2019b. Comparison of Convolutional Neural Networks for Landslide Susceptibility Mapping in Yanshan County, China. The Science of the Total Environment, 666: 975-993. https://doi.org/10.1016/j.scitotenv.2019.02.263 |
| [40] |
Wang, S.B., Zhuang, J.Q., Zheng, J., et al., 2021. Landslide Susceptibility Evaluation Based on Deep Learning along Kangding-Litang Section of Sichuan-Tibet Railway. Journal of Engineering Geology, 30(8): 909-918 (in Chinese with English abstract). |
| [41] |
Wang, Y., Fang, Z.C., Niu, R.Q., et al., 2021. Landslide Susceptibility Analysis Based on Deep Learning. Journal of Geo-Information Science, 23(12): 2244-2260 (in Chinese with English abstract). |
| [42] |
Wu, R.Z., Hu, X.D., Mei, H.B., et al., 2021. Spatial Susceptibility Assessment of Landslides Based on Random Forest: A Case Study from Hubei Section in the Three Gorges Reservoir Area. Earth Science, 46(1):321-330 (in Chinese with English abstract). |
| [43] |
Wu, X. L., Yang, J. Y., Niu, R. Q., 2020. A Landslide Susceptibility Assessment Method Using SMOTE and Convolutional Neural Network. Geomatics and Information Science of Wuhan University, 45(8): 1223-1232 (in Chinese with English abstract). |
| [44] |
Xu, C., Dai, F.C., Yao, X., et al., 2010. GIS Platform and Certainty Factor Analysis Method Based Wenchuan Earthquake-Induced Landslide Susceptibility Evaluation. Journal of Engineering Geology, 18(1):15-26 (in Chinese with English abstract). |
| [45] |
Xu, S.H., Liu, J.P., Wang, X.H., et al., 2020. Landslide Susceptibility Assessment Method Incorporating Index of Entropy Based on Support Vector Machine: A Case Study of Shaanxi Province. Geomatics and Information Science of Wuhan University, 45(8):1214-1222 (in Chinese with English abstract). |
| [46] |
Xu, Y.R., Allen, M.B., Zhang, W.H., et al., 2020. Landslide Characteristics in the Loess Plateau, Northern China. Geomorphology, 359: 107150. https://doi.org/10.1016/j.geomorph.2020.107150 |
| [47] |
Yang, Q., Wang, G.F., Ding, W.C., et al., 2021. Susceptibility and Accuracy Evaluation of Regional Landsldie Based on Multiple Hybrid Models. Journal of Natural Disasters, 30(2):36-51 (in Chinese with English abstract). |
| [48] |
Zhang, H.J., Song, Y.X., Xu, S.L., et al., 2021. Combining a Class-Weighted Algorithm and Machine Learning Models in Landslide Susceptibility Mapping: A Case Study of Wanzhou Section of the Three Gorges Reservoir, China. Computers & Geosciences, 158: 104966. https://doi.org/10.1016/j.cageo.2021.104966 |
| [49] |
Zhang, M.S., Li, T.L., 2011. Triggering Factors and Forming Mechanism of Loess Landslides. Journal of Engineering Geology, 19(4): 530-540 (in Chinese with English abstract). |
| [50] |
Zhang, W.G., He, Y.W., Wang, L.Q., et al., 2023. Machine Learning Solution for Landslide Susceptibility Based on Hydrographic Division: A Case Study of Fengjie County in Chongqing. Earth Science, 48(5): 2024-2038 (in Chinese with English abstract). |
| [51] |
Zhang, X.C., Pei, X.J., Zhang, M.S., et al., 2018. Experimental Study on Mechanism of Flow Slide of Loess Landslides Triggered by Strong Earthquake: A Case Study in Dangjiacha, Ningxia Province. Journal of Engineering Geology, 26(5): 1219-1226 (in Chinese with English abstract). |
| [52] |
Zhang, Z.H., 1981. Regional Geological and Morphological Characteristics and Development of Soil Erosion in the Loess Plateau, China. Acta Geologica Sinica, (4): 308-320, 326 (in Chinese with English abstract). |
| [53] |
Zhou, C., Yin, K. L., Cao, Y., et al., 2020. Landslide Susceptibility Assessment by Applying the Coupling Method of Radial Basis Neural Network and Adaboost: A Case Study from the Three Gorges Reservoir Area. Earth Science, 45(6): 1865-1876 (in Chinese with English abstract). |
| [54] |
Zhou, P., Deng, H., Zhang, W.J., et al., 2022. Landslide Susceptibility Evaluation Based on Information Value Model and Machine Learning Method: A Case Study of Lixian County, Sichuan Province. Scientia Geographica Sinica, 42(9):1665-1675 (in Chinese with English abstract). |
| [55] |
Zhuang, J.Q., Cui, P., Ge, Y.G., et al., 2010. Risk Assessment of Collapses and Landslides Caused by 5.12 Wenchuan Earthquake—A Case Study of Dujiangyan-Wenchuan Highway. Chinese Journal of Rock Mechanics and Engineering, 29(S2):3735-3742 (in Chinese with English abstract). |
| [56] |
Zhuang, J.Q., Peng, J.B., Wang, G.H., et al., 2018. Distribution and Characteristics of Landslide in Loess Plateau: A Case Study in Shaanxi Province. Engineering Geology, 236: 89-96. https://doi.org/10.1016/j.enggeo.2017.03.001 |
| [57] |
Zhuang, J.Q., Peng, J.B., Zhu, Y., 2020. Study of the Effects of Clay Content on Loess Slope Failure Mode and Loess Strength. Bulletin of Engineering Geology and the Environment, 80: 1999-2009. https://doi.org/10.1007/s10064-020-02055-8 |
| [58] |
Zou, Q., Jiang, H., Cui, P., et al., 2021. A New Approach to Assess Landslide Susceptibility Based on Slope Failure Mechanisms. CATENA, 204: 105388. https://doi.org/10.1016/j.catena.2021.105388 |
| [59] |
窦杰, 向子林, 许强, 等, 2023. 机器学习在滑坡智能防灾减灾中的应用与发展趋势. 地球科学,48(5): 1657-1674. |
| [60] |
范宣梅, 方成勇, 戴岚欣, 等, 2022. 地震诱发滑坡空间分布概率近实时预测研究: 以2022年6月1日四川芦山地震为例. 工程地质学报, 30(3): 729-739. |
| [61] |
高登辉, 陈正汉, 郭楠, 等, 2017. 干密度和基质吸力对重塑非饱和黄土变形与强度特性的影响. 岩石力学与工程学报, 36(3): 736-744. |
| [62] |
郭富赟, 孟兴民, 黎志恒, 等, 2015. 天水市“7·25”群发性地质灾害特征及成因. 山地学报, 33(1):100-107. |
| [63] |
郭子正, 殷坤龙, 付圣, 等, 2019. 基于GIS与WOE-BP模型的滑坡易发性评价. 地球科学, 44(12): 4299-4312. |
| [64] |
侯儒宁, 李志, 陈宁生, 等, 2023. 基于流域单元和堆叠集成模型的天山地区泥石流易发性评估建模. 地球科学,48(5): 1892-1907. |
| [65] |
黄发明, 陈彬,毛达雄, 等, 2023. 基于自筛选深度学习的滑坡易发性预测建模及其可解释性. 地球科学,48(5): 1696-1710. |
| [66] |
黄发明, 李金凤, 王俊宇, 等, 2022a. 考虑线状环境因子适宜性和不同机器学习模型的滑坡易发性预测建模规律. 地质科技通报, 41(2):44-59. |
| [67] |
黄发明, 石雨, 欧阳慰平, 等, 2022b. 基于证据权和卡方自动交互检测决策树的滑坡易发性预测. 土木与环境工程学报(中英文), 44(5):16-28. |
| [68] |
黄发明, 殷坤龙, 蒋水华, 等, 2018. 基于聚类分析和支持向量机的滑坡易发性评价. 岩石力学与工程学报, 37(1):156-167. |
| [69] |
黄润秋, 2007.20世纪以来中国的大型滑坡及其发生机制. 岩石力学与工程学报, 26(3): 433-454. |
| [70] |
黄晓维, 2019. 中国致命性滑坡和黄土高原滑坡的灾害与风险评价(硕士学位论文). 兰州: 兰州大学, 8-9. |
| [71] |
孔嘉旭, 庄建琦, 彭建兵, 等, 2021. 兰州老狼沟黄土微地貌灾害链时空分布特征与危险性模拟研究. 工程地质学报, 29(5):1401-1415. |
| [72] |
李文彬, 范宣梅, 黄发明, 等, 2021. 不同环境因子联接和预测模型的滑坡易发性建模不确定性. 地球科学, 46(10):3777-3795. |
| [73] |
刘宽, 叶万军, 景宏君, 等, 2021. 季冻区黄土微观损伤识别与宏观力学响应研究. 岩土工程学报, 43(S1):192-197. |
| [74] |
彭建兵, 吴迪, 段钊, 等, 2016. 典型人类工程活动诱发黄土滑坡灾害特征与致灾机理. 西南交通大学学报, 51(5): 971-980. |
| [75] |
田述军, 张珊珊, 唐青松, 等, 2019. 基于不同评价单元的滑坡易发性评价对比研究. 自然灾害学报, 28(6):137-145. |
| [76] |
王世宝, 庄建琦, 郑佳, 等, 2021. 基于深度学习的川藏铁路康定——理塘段滑坡易发性评价. 工程地质学报, 30(8):909-918. |
| [77] |
王毅, 方志策, 牛瑞卿, 等, 2021. 基于深度学习的滑坡灾害易发性分析. 地球信息科学学报, 23(12):2244-2260. |
| [78] |
吴润泽, 胡旭东, 梅红波, 等, 2021. 基于随机森林的滑坡空间易发性评价:以三峡库区湖北段为例. 地球科学, 46(1):321-330. |
| [79] |
武雪玲, 杨经宇, 牛瑞卿, 2020. 一种结合SMOTE和卷积神经网络的滑坡易发性评价方法. 武汉大学学报(信息科学版), 45(8): 1223-1232. |
| [80] |
许冲, 戴福初, 姚鑫, 等, 2010. 基于GIS与确定性系数分析方法的汶川地震滑坡易发性评价.工程地质学报, 18(1):15-26. |
| [81] |
徐胜华, 刘纪平, 王想红, 等, 2020. 熵指数融入支持向量机的滑坡灾害易发性评价方法——以陕西省为例. 武汉大学学报(信息科学版), 45(8):1214-1222. |
| [82] |
杨强, 王高峰, 丁伟翠,等, 2021. 多种组合模型的区域滑坡易发性及精度评价. 自然灾害学报, 30(2):36-51. |
| [83] |
张茂省, 李同录, 2011. 黄土滑坡诱发因素及其形成机理研究. 工程地质学报, 19(4): 530-540. |
| [84] |
仉文岗, 何昱苇, 王鲁琦, 等, 2023. 基于水系分区的滑坡易发性机器学习分析方法——以重庆市奉节县为例. 地球科学,48(5): 2024-2038. |
| [85] |
张晓超, 裴向军, 张茂省, 等, 2018. 强震触发黄土滑坡流滑机理的试验研究——以宁夏党家岔滑坡为例. 工程地质学报, 26(5):1219-1226. |
| [86] |
张宗祜, 1981. 我国黄土高原区域地质地貌特征及现代侵蚀作用. 地质学报, (4):308-320, 326. |
| [87] |
周超, 殷坤龙, 曹颖, 等, 2020. 基于集成学习与径向基神经网络耦合模型的三峡库区滑坡易发性评价. 地球科学, 45(6): 1865-1876. |
| [88] |
周萍, 邓辉, 张文江, 等, 2022. 基于信息量模型和机器学习方法的滑坡易发性评价研究——以四川理县为例. 地理科学, 42(9):1665-1675. |
| [89] |
庄建琦, 崔鹏, 葛永刚, 等, 2010.“5·12”汶川地震崩塌滑坡危险性评价——以都汶公路沿线为例. 岩石力学与工程学报, 29(S2):3735-3742. |
国家自然科学基金项目(42090053;41922054;4217071137)
中央高校基本科研业务费专项资金项目——长安大学优秀博士学位论文培育资助项目(CHD300102262713)
/
| 〈 |
|
〉 |