粤北坪田地区三叠纪A型花岗岩年代学、地球化学及其构造意义

席振 ,  刘清泉 ,  吴德华 ,  陈肇华

地球科学 ›› 2024, Vol. 49 ›› Issue (07) : 2508 -2525.

PDF (8600KB)
地球科学 ›› 2024, Vol. 49 ›› Issue (07) : 2508 -2525. DOI: 10.3799/dqkx.2023.010

粤北坪田地区三叠纪A型花岗岩年代学、地球化学及其构造意义

作者信息 +

Geochronology, Geochemistry and Tectonic Implications of Triassic A-Type Granites in Pingtian Area, Northern Guangdong

Author information +
文章历史 +
PDF (8805K)

摘要

坪田岩体位于华南南岭中部,是认识华南三叠纪岩浆作用及其地球动力背景的理想窗口.以坪田花岗岩类为研究对象,对其开展了系统的全岩地球化学、锆石U-Pb定年和锆石原位Hf同位素研究.结果表明,坪田岩体由粗粒似斑状黑云母花岗岩、粗粒似斑状钾长花岗岩和中粒二长岩组成,成岩年龄为238~239 Ma,形成于中三叠世.地球化学特征显示,岩石轻稀土元素富集,有明显铕负异常(δEu平均为0.42).富集Zr、Hf、Y、Ce,明显亏损Sr、P和Ti,属于准铝质到弱过铝质碱性花岗岩类,为A型花岗岩.锆石ε Hft)值为-37.7~-5.0,t DM2二阶段模式年龄为1 578~3 597 Ma之间,结合全岩地球化学特征,揭示其原始岩浆来源于地壳中长英质物质在低温高压环境下部分熔融,可能混入古老地壳物质,并经历了一定的结晶分异作用,形成于后碰撞伸展背景.综合华南A型花岗岩和碱性正长岩的地球化学特征和空间分布,认为华南内部三叠纪区域构造演化主要受华南地块与印支地块碰撞带和华南地块与华北地块碰撞带共同控制,华夏地块在中三叠世(238 Ma左右)发生构造环境的转变,从早三叠世的碰撞挤压环境,到中晚三叠世过渡到后碰撞伸展环境.

关键词

A型花岗岩 / 中三叠世 / 后碰撞伸展环境 / 坪田 / 华南 / 地球化学.

Key words

A-type granite / Middle Triassic / post-collision extension / Pingtian / South China / geochemistry

引用本文

引用格式 ▾
席振,刘清泉,吴德华,陈肇华. 粤北坪田地区三叠纪A型花岗岩年代学、地球化学及其构造意义[J]. 地球科学, 2024, 49(07): 2508-2525 DOI:10.3799/dqkx.2023.010

登录浏览全文

4963

注册一个新账户 忘记密码

0 引言

华南地块位于中国东南部,与秦岭‒大别‒苏鲁造山带、印支地块相邻(图1),由扬子地块和华夏地块在新元古代早期沿江南造山带聚合而成(Gao et al.,2014a).印支造山运动中,华南地块与印支沿松马缝合线发生斜向碰撞,扬子地块与华北地块沿秦岭‒大别造山带聚合(Carter et al., 2001Lepvrier et al., 2004).印支‒燕山运动中,华南地块之下的古太平洋板块向西北俯冲.形成华南分布广泛的印支期(三叠纪)、早燕山期(侏罗纪)和大量晚燕山期(白垩纪)中酸性侵入岩和火山岩.

三叠纪是华南地块一个较为活跃的构造热事件时期,该时期生成的岩浆岩出露地表面积超过 20 000 km2,主要是花岗岩,有少量的正长岩和辉长岩(Wang et al.,2005He et al., 2010Mao et al., 2013),以岩基的形式面状分布在华南(图1).一般认为其属于S型和I型花岗岩(He et al., 2010Wang et al.,2013),少量为A型花岗岩(Gao et al., 2014aSun et al.,2017Xia and Xu,2020; 王川等, 2021).基于不同的研究背景,学者对华南三叠纪花岗岩形成的构造背景存在不同的观点:部分学者认为华南在早三叠世就进入伸展减薄环境(郭春丽等,2012;王文宝等,2018).也有学者提出,华南地块在晚三叠世才进入碰撞后伸展环境,之前为华南与印支的碰撞及华北板块的碰撞形成的同碰撞挤压背景(王丽娟等,2007; He et al.,2010; 钟玉芳等,2011; Gao et al., 2017Sun et al., 2017).至于引起构造背景变化的地球动力过程,是由特提斯构造域陆陆碰撞造山历史造成还是由古太平洋板块向华南板块“平坦俯冲”引起,或者仅由板块俯冲间接相关的陆内造山改造引起,仍然存在争议(Zhou et al., 2006Li and Li, 2007Wang et al., 2013Zhao et al., 2017).

因此,需要对华南印支期花岗岩进行系统调查,以更好了解华南地块的构造历史.在大多数情况下,A型花岗岩可以反映局部或区域尺度上的伸展构造环境,因此,对华南A型花岗岩进行系统地质研究可以为构造演化提供重要信息.目前华南已发现的A型花岗岩体包括翁山、蔡江、高溪、靖居、大双等多分布在华南东部(Sun et al., 2011; 李万友等, 2012; Mao et al., 2013Zhao et al., 2017)(图1),在华南印支期岩体出露规模较大的南岭地区则较少报道(Sun et al., 2017).坪田岩体位于粤北华南南岭中部,北接南雄盆地,处于盆岭构造中间.在区域地质调查中定为燕山期花岗岩体,含有小面积的印支期A型二长花岗岩(孙立强等,2010).本文通过对坪田不同岩性的侵入岩进行详细的锆石U-Pb年龄和Hf同位素、全岩主微量元素综合研究,并将这些数据与华南三叠纪不同地区不同形成年代的典型花岗岩岩体地球化学结果进行比较分析,揭示在约240 Ma,华南地块从早三叠世的碰撞挤压环境过渡到中晚三叠世的后碰撞伸展环境.

1 地质背景

华南地块构造历史复杂,由西北扬子地块和东南华夏地块以绍兴‒江山‒萍乡断裂为界合并而成(图1a).地表出露有前寒武纪碎屑岩和浅变质火山岩地层,到古生代地层较为连续.中生代地层主要以陆相沉积和湖盆相沉积互层.范围内比较重要的断裂呈北东‒北北东向发育,如绍兴‒江山‒萍乡断裂带和政和‒大浦断裂带(图1b).前者是组成华南的扬子地块和华夏地块的碰撞拼合带,并在新元古代地块间拼合后到中新生代还持续活动(舒徐洁, 2014).后者在地质研究中发现断裂带两侧地质岩性具有明显的差异,据此断裂带把华夏地块分为西部华夏地块(内陆)和东部华夏地块(沿海)两部分,西部基底为古元古代而东部基底以新元古代地壳为主,含少量太古宙到中元古代成分.与中生代岩浆活动和稀有稀土金属矿床形成密切相关的还有慈利‒保靖断裂、郴州‒临武等断裂带.华南岩浆岩分布广泛,时代跨度较大,从前寒武纪到第四纪都有岩浆活动产物出露(孙涛,2006;徐先兵等, 2021).华南地表出露岩浆岩以中生代为主,其中燕山期岩浆岩规模最大,其次是三叠纪,以粗粒到中粒过铝质花岗岩为主,偶见侏罗‒白垩纪的火山岩、正长岩等.通常称为印支期(三叠纪)花岗岩、早燕山期(侏罗纪)花岗岩和晚燕山期(白垩纪)花岗岩.

坪田位于南岭地区,基底露头包括新元古代变质岩,包括千枚岩、板岩和砂砾岩.岩浆岩主要为印支期和燕山早期.露头面积约60 km2,主要包括粗粒似斑状黑云母花岗岩、粗粒似斑状钾长花岗岩和中粒二长岩.因地表风化强烈(图2a),风化壳厚度较大,覆盖严重,不同岩性花岗岩填图界线难以划分(图1c).这些花岗岩类与新元古代和古生界地层构成了与花岗岩相邻的坪田北部南雄断坳盆地的基底.区内北东向构造较为发育,最具规模的为江头断裂、高硐俺断裂(图1c).江头断裂从南雄至信丰九渡圩,长达数十公里,穿切三叠纪‒侏罗纪岩体.沿断裂发育平行石英脉,花岗岩中糜棱岩化,硅化十分明显,断面倾向南东,倾角在南西段为40°~50°、北东段为35°,具有张性断层特征.高硐俺断裂形成于中三叠世‒晚侏罗世花岗岩体中,北东35°左右走向,倾角较陡,呈现分枝复合的特征.沿此断裂可见宽度3~25 m的破碎带,其中见有大量的构造角砾岩、石英脉.

坪田相邻为陂头岩体和龙源坝复式岩体,印支期碱长花岗岩、正长岩、黑云母花岗岩,晚期为燕山期二云母花岗岩和正长岩.龙源坝印支期花岗岩为过铝质S型花岗岩,龙源坝和陂头燕山期花岗岩主要是A型(Gao et al., 2018; 孙立强, 2018).

2 岩石学特征及样品分析方法

2.1 岩石学特征

本次研究基于坪田区域稀土矿产普查的勘探钻孔中采集的新鲜花岗岩作为样品,进行岩石矿物学研究.钻孔SK01、SK02和SK03位置见图1c,样品分别采自钻孔不同深度.

粗粒似斑状黑云母花岗岩(图2b),分布在岩体北部,灰白色,似斑状结构.斑晶含量约40%,斑晶由碱性长石和斜长石组成,碱性长石部分包含有斜长石自形晶,边缘包含基质矿物斜长石、石英等,显示其边缘在结晶晚期的加大再增生,普遍具不均匀绢云母化(图2c).次生矿物主要为绢云母(交代斜长石)、绿泥石(交代黑云母)(图2g2h).局部见有绢云母集合体沿裂隙分布(图2d),后期碳酸盐沿裂隙沉淀.基质由大量斜长石(25%)、石英(25%)及黑云母、绿泥石(8%)组成,极少量黄铁矿分布.

粗粒似斑状钾长花岗岩(图2e),分布在岩体南东部,肉红色.斑晶由钾长石组成,占40%~45%,呈大小不等的板柱状,具有条纹结构,主晶显卡式双晶;部分包含有斜长石自形晶,边缘包含基质矿物斜长石、石英等(图2f).基质占50%左右,粗粒结构,粒径多为2~5 mm,由大量斜长石(25%)、石英(25%)及黑云母、绿泥石(8%)组成,极少量黄铁矿分布.其中石英呈自形粒状,部分呈波状消光,斜长石呈半自形‒自形板状,聚片双晶发育,部分被包含于斑晶中,普遍具不均匀绢云母化(图2f).次生矿物主要为绢云母(交代斜长石)、绿泥石(交代黑云母).后期碳酸盐沿裂隙分布,见有黄铁矿发育,且褐铁矿化.

中粒二长岩(图2g),分布在岩体南西部,灰白色,似斑状结构.斑晶由碱性长石和斜长石组成,占30%~35%,其中碱性长石呈大小不等的板柱状,具有条纹结构,主晶显卡式双晶;部分包含有斜长石自形晶,边缘包含基质矿物斜长石、石英等.斜长石呈半自形‒自形板状,部分被包含于斑晶中,具不均匀绢云母化(图2h).基质由大量斜长石(30%)、石英(30%)及黑云母、绿泥石(8%)组成,石英呈自形粒状,斜长石占15%~20%,半自形‒自形板状,具不均匀绢云母化(图2h).次生矿物较少,主要为绢云母(交代斜长石)、绿泥石(交代黑云母)(图2h).局部见有碳酸盐沿裂隙分布(图2i).

2.2 分析方法

本次样品全部采集自钻孔不同深度新鲜花岗岩,3种岩性各采集5件进行分析测试,样品新鲜无明显蚀变,位置见图1.锆石U-Pb年龄、全岩主微量元素和Lu-Hf同位素分析测试在广州地球化学研究所同位素国家重点实验室完成.分析结果见附表1~附表3.

锆石U-Pb同位素定年样品经过破碎电磁选分离后挑选颗粒完整、透明度好的锆石进行制靶,并进行透反射和阴极发光(CL)照相,选择合适测试位置进行原位定年和微量元素测试.使用多接收质谱仪MC-ICP-MS 193 nm以及准分子激光剥蚀(New Wave Research)系统.分析中激光束斑直径为 30 μm,剥蚀深度为20~40 μm,采用国际标准锆石91500作为定年外标,以标准锆石Plešovice(Sláma et al., 2008)为盲样测试数据质量.采用硅酸盐玻璃标准参考物质NIST SRM610及29Si作为元素含量外标和内标.本次实验测试的标样结果在推荐值范围内.各点分析得出的同位素比值及年龄误差为1σ.

样品破碎至200目进行主、微量元素测试.使用日本理学ZSX 100e型X射线荧光光谱仪测定主量元素,SiO2的准确度约为1%,其他主量元素的准确度为2%~5%.微量元素使用电感耦合等离子质谱仪(ICP-MS),型号为Perkin-Elmerciex ELAN DRC-e,分析精度优于5%.

锆石Lu-Hf同位素分析测试仪器采用多接收杯电感耦合等离子质谱仪MC-ICP-MS(Neptune)和相干193 nm ARF准分子激光剥蚀系统(RESOlutionM-50).激光束斑直径为50 μm,能量强度为3.5 mJ/cm2,频率为9 Hz,每个分析测试点气体背景采集时间30 s,测试中每隔5颗锆石样品依次测试1颗标准锆石(包括GJ-1、91500、Plešovice、Penglai)验证锆石Hf同位素比值质量.ε Hft)根据锆石U-Pb平均年龄计算,采用的176Lu衰变常数λ=1.867×10-11Söderlund et al., 2004),锆石比值176/Hf/177Hf=0.282 772, 176Lu/177Hf=0.033 2(Blichert-Toft et al., 1997).利用平均大陆壳的176Lu/177Hf=0.015(Griffin et al., 2000)计算锆石Hf同位素地壳模式年龄(t DM2).

3 分析结果

3.1 LA-ICP-MS锆石U-Pb定年

对坪田岩体三种不同岩性样品进行了锆石U-Pb测年,样品中锆石阴极发光图像和谐和图、加权平均年龄图见图3.锆石无色透明,含少量包裹体,裂隙发育,长宽比为1∶1~4∶1,晶体一般呈正方双锥短柱或长柱状,长约50~250 μm,宽约40~120 μm.显示典型的岩浆震荡环带,表明均是岩浆成因锆石(图3d3e3f).粗粒似斑状黑云母花岗岩样品SK1-1共完成20个测试点,有效测点12个.U含量为554×10-6~1 853×10-6,Th含量为60×10-6~262×10-6,Th/U比值介于0.08~0.14,平均为0.13,大于0.1.锆石206Pb/238U加权平均年龄为239± 2 Ma.粗粒似斑状钾长花岗岩样品SK2-1共完成20个测试点,有效测点13个.U含量为537×10-6~ 3 036×10-6,Th含量为78×10-6~1 223×10-6,Th/U比值介于0.05~0.47,平均为0.19,大于0.1.锆石206Pb/238U加权平均年龄为228±2 Ma.中粒二长岩样品SK3-1共完成20个测试点,有效测点17个.U含量为606×10-6~1 116×10-6,Th含量为52×10-6~1 116×10-6,Th/U比值介于0.08~0.46,平均为0.14,大于0.1.锆石206Pb/238U加权平均年龄为238±1 Ma.坪田岩体三种岩性样品测试年龄基本一致,为同期花岗岩,表示岩体侵位时间是在中三叠世.测试结果见附表1.

3.2 全岩地球化学

主微量元素分析结果见附表2.黑云母花岗岩SiO2含量为67.56%~70.06%.碱质量Na2O+K2O为6.22%~9.8%,碱度率AR为3.98~7.43,在TAS图解中落入花岗闪长岩‒石英二长岩范围(图4a).Al2O3含量介于13.53%~14.54%,铝过饱和指数(A/CNK)在0.97~1.12之间,属于弱过铝质岩石(图4b).K2O含量为3.09%~6.55%,K2O/Na2O比值为1.01~2.01,比值都大于1,属于高钾钙碱性‒钾玄岩系列和钙碱性‒碱性花岗岩(图4c4d).

钾长花岗岩样品中SiO2含量为60.45%~63.81%.碱质量Na2O+K2O为10.51%~12.6%,碱度率AR在4.34~6.98,在TAS图解中落入正长岩范围(图4a),可称为正长花岗岩.Al2O3含量介于17.38%~18.67%,铝过饱和指数(A/CNK)在1.01~1.13之间,属于过铝质岩石(图4b).K2O含量为4.93%~8.18%,K2O/Na2O比值为0.88~1.99,比值都大于1,属于钾玄岩系列(图4c4d).

二长岩样品中SiO2含量为56.71%~59.94%.碱质量Na2O+K2O为9.39%~10.25%,碱度率AR为5.16~10.81,在TAS图解中落入二长岩范围(图4a).Al2O3含量介于17.62%~18.96%,铝过饱和指数(A/CNK)在0.78~0.97之间,属于准铝质岩石(图4b).K2O含量为3.42%~4.8%,K2O/Na2O比值为0.52~0.88,比值小于1,钙含量较高,属于钾玄岩系列和碱性花岗岩(图4c4d).

总体上,坪田黑云母花岗岩、钾长花岗岩和二长岩(坪田花岗岩)属碱性花岗岩,为准铝质到弱过铝质,钾含量较高,为二长岩、正长岩等碱性长石和钾长石发育的花岗岩类.

稀土和微量元素中,坪田三种花岗岩类总体趋势较为一致(图5).稀土总量ΣREE集中在(257.43~556.74)×10-6,轻、重稀土比值LREE/HREE为14.65~19.66,表明轻稀土较为富集、重稀土亏损的特征,这导致坪田‒陂头地区稀土矿床均为轻稀土型(赵芝等,2014).(La/Yb)N介于19.81~35.86,平均为27.92.在稀土配分模式图中(图5),轻、重稀土分馏较明显,轻稀土富集且分馏明显,重稀土亏损且分馏不明显,呈中等倾斜的右倾平滑型型式.δEu为0.28~0.62,具有强烈Eu负异常.δCe值为0.84~1.42,平均值1.02,具不明显的正异常.在原始地幔标准化蛛网图中(图5),呈右倾斜的不规则曲线,Rb、Th、K等大离子亲石元素富集,P、Ti显著亏损,显示Rb、Th 等不相容元素呈正异常和Ba、Nb、Sr等元素形成明显的波谷,具负异常特点.

区域上,早三叠世铁山和洋坊与中三叠世的坪田、龙源坝较为相似,属钾玄岩和碱性花岗岩系列.不同的是晚三叠世如大神山、瓦屋塘和靖居花岗岩类碱性比早中三叠世低,属高钾钙碱性和钙碱性花岗岩系列.稀土元素中,从早三叠世到晚三叠世稀土元素含量变化较为明显,早三叠世比中三叠世稀土元素更加富集,偏离上、下地壳平均值较多.晚三叠世较为复杂,与地壳平均值相互交叉.微量元素较为类似,早三叠世微量元素普遍更加富集,晚三叠世微量元素与地壳平均值有所交叉.中三叠世花岗岩类的微量元素Ba、Nb、Ta、Sr、P和Ti等元素与上地壳均值接近,其他微量元素一般高于地壳平均值.

3.3 Hf同位素地球化学

锆石Hf同位素分析结果见附表3.黑云母花岗岩(SK1-1)测点10个(图6).ε Hft)为-37.8~-9.0,平均值为-13.5,t DM2二阶段模式年龄为1 826~ 3 597 Ma.钾长花岗岩(SK2-1)测点10个,ε Hft)为-13.6~-5.0,平均值为-10.0,t DM2二阶段模式年龄为1 578~2 117 Ma,平均为1 895 Ma.二长岩(SK3-1)测点10个(图6),ε Hft)为-29.4~-7.3,平均值为-13.7,t DM2二阶段模式年龄为1 722~ 3 091 Ma.坪田岩体不同岩性的花岗岩类Hf同位素范围基本是一致的,最小的ε Hft)值为黑云母花岗岩的-37.7,最大的ε Hft)值为钾长花岗岩的-5.0.

4 讨论

4.1 岩石成因及源区特征

近年来,花岗岩成因研究将花岗岩分为I型、S型、M型和A型,不同类型花岗岩可以揭示不同的岩浆源区和岩石成因.M型花岗岩是地幔岩浆直接结晶分异的产物,一般只分布在大洋中脊(舒徐洁, 2014).A型花岗岩开始指碱性、贫水及非造山环境的花岗岩类,随后进行了定义的大幅扩展和讨论(Eby,1992; 张旗等,2012).10 000×Ga/Al和Zr+Nb+Ce+Y结合主微量元素判别被认为能够有效地将A型和I、S型进行区分(Whalen et al.,1987).坪田侵入岩在10 000×Ga/Al与K2O+Na2O图解、与Zr元素图解以及Zr+Nb+Ce+Y对(Na2O+K2O)/CaO图解中(图7a~7c),主要集中在A型花岗岩范围.在准铝质‒弱过铝质岩浆中,随着岩浆持续演化,磷灰石的溶解度会降低,易结晶分离,从而随SiO2含量增加,P2O5、Th、Ta等会降低.坪田花岗岩SiO2与P2O5图解中(图7d),随SiO2含量的增加,P2O5分布较为离散,趋势不明显,排除I型花岗岩的属性.除此之外,坪田侵入岩属于准铝质‒弱过铝质,碱性含量较高的钾玄岩和碱性花岗岩系列(图4b~4d),矿物成分上以石英、碱性长石、钾长石、黑云母为主,主微量元素特征为富硅(SiO2=56.71%~70.06%)、富碱(Na2O=2.77%~6.63%,K2O=3.42%~8.18%),较高的TFeO/(TFeO+MgO)(0.76~0.80),低MgO(0.70%~1.68%,平均1.15%),低CaO(0.66%~5.25%,平均2.20%),富集Zr、Hf、Y、Ce等元素(Zr+Nb+Ce+Y=(345~749.2)×10-6),10 000×Ga/ Al=2.11~3.34,亏损Sr、P、Ti和Eu元素,这些是A型花岗岩的典型特征(向文帅等, 2021),进一步表明坪田花岗岩属于A型花岗岩.

关于A型花岗岩的起源目前还未达成共识(Bonin, 2007).已经提出的三种解释A型花岗岩起源的主要成因机制包括:(1)幔源碱性玄武岩的结晶分异(Mushkin et al., 2003Papoutsa et al., 2016);(2)大陆地壳特定原岩的部分熔融 (Anderson, 1983Zhao et al., 2013);(3)深熔花岗岩和幔源镁铁质岩浆的混合 (Zhao et al.,2013Gao et al., 2014a).

坪田岩体北部的湖南省道县虎子岩玄武岩(约150 Ma,ε Hft)= -43.2~2.6)中发现有三叠纪镁铁质岩石作为辉长质捕虏体,其年龄为220~233 Ma,具有亏损地幔Hf同位素组成(ε Hft)=-5.4~20.8)(Dai et al., 2008; 杨金豹等, 2015).研究区坪田花岗岩的ε Hft)值明显较低(-37.74~-4.95),其 ε Ndt)值也远低于三叠纪镁铁质的捕虏体(杨金豹等,2015; Sun et al., 2017).这排除了它们起源于同期幔源岩浆的结晶分异.此外,在坪田花岗岩中未发现岩石包体的存在,其锆石ε Hft)值单峰状出现而不是岩浆混合常有的双峰状,这也排除坪田岩体是深熔花岗岩和幔源镁铁质岩浆混合作用的形成机制.

微量Rb、Th、Nb等元素特征可以有效反映岩浆源区的性质.坪田花岗岩的Rb、Th等强不相容元素富集显示花岗岩具有陆壳的特点,属于岛弧或活动大陆边缘碱性岩浆岩的特征.坪田花岗岩Rb/Sr比值为0.35~2.45,平均为1.28,远大于地幔Rb/Sr标准值0.03;Ba/Nb与La/Nb比值分别为12.28~88.08(平均为44.48)和2.40~5.97(平均为3.98),与地壳标准值(54.0和2.2)相近,大幅度高于地幔标准值(9.0和0.94).Th/La比值为0.41~0.80(平均0.53),Th/Nb比值为1.75~2.96(平均2.02),高于地幔平均值0.13和0.12(Sun and McDonough, 1989),反映源区可能为成熟的地壳物质.实验岩石学表明Mg#值可以判断岩浆源熔体特征,地壳熔融所形成的岩石Mg#值通常小于40,而Mg#大于45的岩石一般是地幔物质混入的结果(Rapp and Watson,1995).坪田花岗岩Mg#值为31~36,小于40,表明岩浆源熔体未与幔源物质相互作用.坪田花岗岩的锆石有3个样品的ε Hft)值分别为-37.7、-29.4和-25.9,其他27个测点的ε Hft)值为-14.7~-5.0,对应的二阶段Hf模式年龄(t DM2)为1.58~2.20 Ga.Wang et al. (2013)统计华南三叠纪花岗岩的ε Hft)值范围从-2.0到-20.2,Hf模型年龄为1.2~2.5 Ga.Sun et al.(2017)测定坪田黑云母花岗岩的锆石ε Hft)值为-11.1~-7.3(图6).这些特征都表明坪田花岗岩源岩来源于地壳物质.3个极低的ε Hft)值可能是受继承锆石的影响,同时也表明岩浆的形成可能有更加古老的地壳物质加入.

A型花岗岩可能来源于变沉积岩的高温熔融(Huang et al., 2011).在实验中以杂砂岩为源岩部分熔融形成的花岗岩通常CaO/Na2O比值大于0.3,泥质岩部分熔融形成的花岗岩则CaO/Na2O比值小于0.3(Sylvester,1998).坪田花岗岩的CaO/Na2O为0.12~0.99,样品中钾长花岗岩普遍小于0.3,黑云母花岗岩和二长岩普遍大于0.3,不具有特定的阈值.Anderson(1983)提出,A型花岗岩也有可能是由石英闪长岩、英云闪长岩等部分熔融形成.对英云闪长岩和花岗闪长岩的部分熔融实验表明,在相对较低的压力(<0.4 GPa)下,残留相为斜长石和斜方辉石,形成的准铝质到弱过铝质花岗岩具有A型花岗岩的典型特征(Patiño Douce, 1997).同时,在华南南岭江西大余和坪田北部诸广山地区出露有早古生代石英闪长岩,前者ε Hft)为-17.5~-2.2,后者ε Hft)为-7.6~-1.9,与坪田花岗岩类同位素特征较为相似(李光来等,2010; 王彦斌等,2010).由此推测坪田A型花岗岩可能主要是地壳内长英质物质部分熔融形成的.

微量元素Sr常取代斜长石中的Ca,富集于磷灰石、斜长石中,研究区花岗岩Nb/Ta比值为8.10~12.85,低于大陆地壳平均值,微量元素Sr、P、Ti明显亏损,可能是花岗岩形成过程中富钙斜长石、磷灰石等含Sr矿物及钛铁矿发生了结晶分离作用(国显正等, 2018).坪田与华南三叠纪花岗岩的La/Nb与Ba/Nb、Rb/Sr与Y/Sr的关系指示花岗岩经历了斜长石和钾长石的结晶分离作用(图8b).Patiño Douce (1997)根据熔融实验指出长英质地壳物质熔融过程中,压力影响熔体相比岩浆源区在岩浆演化中同样重要.相对低压背景下生成的熔体一般具有准铝质到弱过铝质以及铁质性质,而相对高压背景下形成的熔体一般为强过铝质.坪田花岗岩显示出准铝质‒弱过铝质(A/CNK值为0.78~1.13)和富铁质(TFeO/(TFeO+MgO)值为0.76~0.80)特征,说明其形成环境压力较低.根据张旗等(2006)提出的花岗岩分类,土窑洞花岗质岩Sr为138~350,平均为231.4,Yb为1.65~2.96,平均为2.39,与澳大利亚Lachlan构造带花岗岩低Sr高Yb类似,δEu为0.28~0.55,强负异常,表明其源区为斜长石稳定的低压环境.

花岗岩中,在锆石饱和和充分估计熔体成分条件下,可以根据岩浆中Zr的含量和温度表现出的相关性来计算锆石饱和温度(Watson et al., 2006).Chappell et al. (1998, 2004)把花岗岩分为高温和低温两类,其中高温花岗岩早期表现出随温度增高,Zr含量增加.随着结晶反应的持续发生,Zr含量因达到饱和而在总成分中含量降低.而低温花岗岩有相对丰富的残留锆石,岩浆初始结晶Zr就达到饱和,因此在结晶过程中Zr含量呈降低趋势.因此,高温花岗岩计算的锆石饱和温度代表岩浆的最低温度,而低温花岗岩则反映最高温度.根据修正后的锆石饱和温度模拟公式T Zr=12 900/(2.95+0.85M+ ln(496 000/Zrmelt))(使原子数分数和为1,M=(Na+K+2Ca)/(Al×Si),Zrmelt为全岩的Zr含量)(Watson et al., 2006).通过计算得到坪田花岗岩锆石饱和温度为788~860 ℃,平均为826 ℃(图9).推测坪田花岗岩岩浆形成初始温度可能在860 ℃以上,与形成A型花岗岩的熔体实验温度一致(Patiño Douce,1997).因此,坪田花岗岩形成于相对高温低压环境,可能是由幔源岩浆提供主要热源(Gao et al., 2014a; 农军年等,2022).

综上,本文认为坪田花岗岩可能是在地幔或软流圈物质上涌提供热源条件下,诱发地壳中先存的长英质火成岩在低压高温环境下部分熔融,混入古老地壳物质,并经历了结晶分异作用.

4.2 构造环境与地质意义

三叠纪时期华南地区发生了大范围的岩浆活动,其规模仅次于燕山期花岗岩(图10a),形成时间跨越整个三叠纪(图10).大部分三叠纪花岗岩为过铝质S型花岗岩,其次是钙碱性I型花岗岩,呈面状广泛分布在华南中西部(湖南、广西、江西、广东和其他省份)(图1b)(He et al., 2010;郭春丽等,2012; Wang et al.,2013Xu et al.,2014a).近年来,华南花岗岩研究中陆续提到一些A型花岗岩的出现,主要分布在浙江省、福建省,在江西和湖南未发现(图1a)(Gao et al., 2014bSun et al.,2017; 孙立强,2018; Xia et al.,2020).三叠纪不同阶段形成的花岗岩在地球化学特征上有一定的区别,是华南构造演化过程不同阶段的产物.比如,早三叠世铁山和洋坊正长岩的微量与稀土元素距离地壳平均值较远,是富集地幔岩浆分异结晶的产物(图5a、5b)(Wang et al.,2005).中三叠世龙源坝和坪田花岗岩微量元素和稀土元素靠近上地壳平均值,岩浆源以地壳物质为主(He et al.,2010)(图5c5d).晚三叠世花岗类的微量元素和稀土元素大多与地壳平均值一致,也有比地壳平均值高的岩体(图5e5f),这说明晚三叠世花岗岩岩浆来源较为复杂,可能为不同端元源区物质混合形成.

大量学者对华南三叠纪区域构造演化进行了研究.在印支运动早期,基梅里(Cimmerian)大陆带向北增生至印支和华南地块.在早三叠世,印支地块沿松马缝合线与华南地块发生斜向碰撞(Carter et al., 2001; Lepvrier et al., 2004).这次碰撞导致华南地块北部发育近东西向的挤压变形以及华南地块南部的北西‒北西西和南东‒南东东倾向断层和剪切带(He et al.,2010).中三叠世(约240~ 220 Ma),华南地块沿秦岭‒大别‒苏鲁超高压变质带向北深俯冲到华北地块之下(Mao et al.,2013Wang et al.,2013Sun et al.,2017).图10显示华南三叠纪花岗岩年龄分布峰值在~240 Ma、~230 Ma和~215 Ma,华南与印支板块碰撞发生在250~ 240 Ma,与华北板块之间碰撞发生在240~225 Ma,时间上与花岗岩活动高峰期吻合.随着三叠纪华南区域大陆碰撞,古特提斯洋逐渐封闭.华南地块与印支地块和华北地块的构造演化过程形成了华南普遍发育的北西‒北西西走向的构造(包括褶皱、断层、韧性变形带等)以及三叠纪大面积的花岗质岩浆岩.

同时,有学者认为华南三叠纪区域构造岩浆演化还与华南地块下的古太平洋板块的斜向俯冲有关(Wang et al.,2005Li et al., 2012).Li et al.(2006)在海南岛发现SHRIMP U-Pb 年龄为 267~262 Ma的五指山花岗岩,认为是活动大陆边缘大陆弧岩浆作用的结果,古太平洋板块已经开始俯冲.Li and Li(2007)采用板块俯冲模型解释了中生代岩浆活动,并指出古太平洋板块俯冲始于二叠纪.但目前尚无证据表明华南地区存在二叠纪‒早三叠世的蛇绿岩、洋盆或弧形岩浆作用(Zhao et al., 2013).在三叠纪与花岗岩同期的火山岩在华南地块西南端的峨眉山、滇东南、桂东南等地有报道,区域较为集中,其形成可能与峨眉山地幔柱有关(Chen et al.,2011; 杨江海等,2017; 农军年等,2022).而华南内陆三叠纪区域褶皱和逆冲构造以东西向为主,表明印支板块向北碰撞形成的南北向挤压作用,这与早三叠世太平洋板块向西俯冲有矛盾.Zhou et al.(2006)提出了古太平洋板块的两阶段俯冲地球动力学模型,侏罗纪的火山岩对应于初始俯冲引起的板内造山事件,连续的白垩纪岩浆作用对应于俯冲造山主阶段.这表明华南内陆三叠纪地球动力演化背景与古太平洋板块斜向俯冲造山无明显关系,其主要受到华南地块与印支地块碰撞带和华南地块与华北地块碰撞带构造域的共同影响.

图1图10所示,在华南与印支地块和华南与华北地块之间的两次碰撞高峰期之后,形成了许多A型花岗岩.A型花岗岩的特征包括碱性、无水和非造山环境,通常形成于拉张的构造环境(Whalen et al.,1987).根据Eby(1992)对A型花岗岩的细分,坪田花岗岩在Y/Nb-Rb/Nb图解中属于A2型,代表碰撞后花岗岩或岛弧岩浆作用末期花岗岩,华南A型花岗岩基本都属于A2型(图11a).坪田花岗岩在R1-R2图解中位于碰撞后和晚造山期花岗岩区域(图11b),具体到构造环境还需要结合详细的地质过程加以讨论.类似于A型花岗岩,大多数碱性正长岩常形成于典型的碰撞后环境(Mao et al.,2013).因此,华南地区A型花岗岩及正长岩的出现对确定构造环境的性质及构造环境转变的时间节点具有重要意义.

Wang et al.(2005)首先指出华南沿海的阳坊和铁山碱性正长岩SHRIMP 锆石U-Pb年龄分别为242 Ma 和254 Ma,属早三叠世;Sun et al.(2011)在浙西北发现瓮山铝A型花岗岩,锆石U-Pb年龄为224 Ma.Zhao et al.(2013)在蔡江(江西省)和高溪(闽北)发现了三叠纪铝质A型花岗岩(228~ 230 Ma).Zhao et al.(2017)指出福建高溪和江西蔡江A型花岗岩是由前寒武纪地壳岩石部分熔融形成,指示华南在225 Ma之前长期处于挤压构造环境,之后转为碰撞后伸展背景.李万友等(2012)报道浙西南地区靖居正长花岗岩U-Pb 锆石年龄为215 Ma,属于A型花岗岩.Mao et al.(2013)指出U-Pb锆石年龄为224~231 Ma的大双岩体具有钙碱性向碱性演化趋势的特征.Gao et al.(2014a)指出大双岩体年龄为231~234 Ma,靖居岩体为241~ 246 Ma,均为A型花岗岩.对于这些 A 型花岗岩的形成,Sun et al.(2011)认为这些三叠系 A 型花岗岩是在伸展状态下形成的,主要受古太平洋板块俯冲影响.然而,如前所述,华南内陆的构造机制以华南与印支地块或华北地块之间的碰撞为主.此外,已发现的其他三叠纪A型花岗岩并没有呈现北东向到构造‒岩浆带,而是分散在绍兴‒江山断裂以南区域(图1).这也与Zhao et al. (2013)认为的华南A型花岗岩的形成和华南地块与印支地块或华北地块碰撞引起的局部北东向伸展断层有关的观点不符.

在区域上,华南地块发育早中三叠世逆冲相关的挤压走滑和在斜向挤压碰撞状态下发育的大规模花卉状构造(Wang et al.,2013),表明早三叠世的挤压构造环境.如前所述,华南A型花岗岩形成于碰撞后伸展环境中,而坪田花岗岩限制了在中三叠世(240 Ma左右)为伸展环境.从图1图10看到,华南A型花岗岩体和碱性正长岩年龄集中在224~234 Ma,其次是240~246 Ma.说明华南东南部的华夏地块可能在中三叠世(240 Ma左右)开始经历了构造背景的转换.虽然华南地块与华北地块的碰撞一直持续到226 Ma,但华夏地块内部很可能在中三叠世之后从挤压环境转变为过度挤压增厚重力不稳定状态下的碰撞后伸展拉张环境(Zhao et al.,2017;孙立强, 2018;李响等, 2021).对于扬子地块内部,目前还没有A型花岗岩的报道,Sun et al. (2017)根据岩浆源为变沉积岩与变火成岩混合源的I型花岗岩出现年代提出扬子地块在220 Ma左右过渡为后碰撞伸展背景,晚于华夏地块.

5 结论

(1)粤北南岭坪田岩体由粗粒似斑状黑云母花岗岩、粗粒似斑状钾长花岗岩和中粒二长岩组成,LA-ICP-MS锆石U-Pb加权平均年龄分别为239±2 Ma、238±2 Ma和238± 1 Ma,表明花岗岩形成于中三叠世.

(2)地球化学和Hf同位素分析表明坪田花岗岩属A型花岗岩,岩浆来源于地壳中长英质物质在低温高压环境下部分熔融,同时有古老地壳物质的混入,并经历了一定的结晶分异作用.

(3)华南地块内部在中三叠世(238 Ma左右)可能发生构造环境的转变,从早三叠世的碰撞挤压环境,到中晚三叠世过渡到碰撞后伸展环境.

附表见本刊官网(http://www.earth-science.net).

参考文献

[1]

Anderson, J. L., 1983. Proterozoic Anorogenic Granite Plutonism of North America. Geological Society of America Memoirs, 161: 133-154. https://doi.org/10.1130/mem161-p133

[2]

Bai, D.Y., Wu, N.J., Zhong, X., et al., 2016. Geochronology, Petrogenesis and Tectonic Setting of Indosinian Wawutang Granites, Southwestern Hunan Province. Geotectonica et Metallogenia, 40(5): 1075-1091 (in Chinese with English abstract).

[3]

Batchelor, R. A., Bowden, P., 1985. Petrogenetic Interpretation of Granitoid Rock Series Using Multicationic Parameters. Chemical Geology, 48(1-4): 43-55. https://doi.org/10.1016/0009-2541(85)90034-8

[4]

Blichert-Toft, J., Chauvel, C., Albarède, F., 1997. Separation of Hf and Lu for High-Precision Isotope Analysis of Rock Samples by Magnetic Sector-Multiple Collector ICP-MS. Contributions to Mineralogy and Petrology, 127(3): 248-260. https://doi.org/10.1007/s004100050278

[5]

Boehnke, P., Watson, E. B., Trail, D., et al., 2013. Zircon Saturation Re-Revisited. Chemical Geology, 351: 324-334. https://doi.org/10.1016/j.chemgeo.2013.05.028

[6]

Bonin, B., 2007. A-Type Granites and Related Rocks: Evolution of a Concept, Problems and Prospects. Lithos, 97: 1-29.https://doi.org/10.1016/j.lithos.2006.12.007

[7]

Carter, A., Roques, D., Bristow, C., et al., 2001. Understanding Mesozoic Accretion in Southeast Asia: Significance of Triassic Thermotectonism (Indosinian Orogeny) in Vietnam. Geology, 29(3): 211-214. https://doi.org/10.1130/0091-7613(2001)0290211: umaisa>2.0.co;2

[8]

Chappell, B. W., Bryant, C. J., Wyborn, D., et al., 1998. High- and Low-Temperature I-Type Granites. Resource Geology, 48(4): 225-235. https://doi.org/10.1111/j.1751-3928.1998.tb00020.x

[9]

Chappell, B. W., White, A. J. R., Williams, I. S., et al., 2004. Low- and High-Temperature Granites. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 95(1-2): 125-140. https://doi.org/10.1017/s0263593300000973

[10]

Chen, C. H., Hsieh, P. S., Lee, C. Y., et al., 2011. Two Episodes of the Indosinian Thermal Event on the South China Block: Constraints from LA-ICPMS U-Pb Zircon and Electron Microprobe Monazite Ages of the Darongshan S-Type Granitic Suite. Gondwana Research, 19(4): 1008-1023. https://doi.org/10.1016/j.gr.2010.10.009

[11]

Chen, W. D., Zhang, W. L., Wang, R. C., et al., 2016. A Study on the Dushiling Tungsten-Copper Deposit in the Miao’ershan-Yuechengling Area, Northern Guangxi, China: Implications for Variations in the Mineralization of Multi-Aged Composite Granite Plutons. Science China Earth Sciences, 59(11): 2121-2141. https://doi.org/10.1007/s11430-015-5360-3

[12]

Dai, B. Z., Jiang, S. Y., Jiang, Y. H., et al., 2008. Geochronology, Geochemistry and Hf-Sr-Nd Isotopic Compositions of Huziyan Mafic Xenoliths, Southern Hunan Province, South China: Petrogenesis and Implications for Lower Crust Evolution. Lithos, 102(1): 65-87. https://doi.org/10.1016/j.lithos.2007.08.010

[13]

Eby, N. G., 1992. Chemical Subdivision of the A-Type Granitoids: Petrogenetic and Tectonic Implications. Geology, 20(7): 641-644. https://doi.org/10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2

[14]

Feng, M., Feng, Z. H., Kang, Z. Q., et al., 2019. Establishing an Indosinian Geochronological Framework for Episodic Granitic Emplacement and W-Sn-Nb-Ta Mineralization in Limu Mining District, South China. Ore Geology Reviews, 107: 1-13. https://doi.org/10.1016/j.oregeorev.2019.02.012

[15]

Frost, B. R., Barnes, C. G., Collins, W. J., et al., 2001. A Geochemical Classification for Granitic Rocks. Journal of Petrology, 42(11): 2033-2048. https://doi.org/10.1093/petrology/42.11.2033

[16]

Gao, P., Zheng, Y. F., Chen, Y. X., et al., 2018. Relict Zircon U-Pb Age and O Isotope Evidence for Reworking of Neoproterozoic Crustal Rocks in the Origin of Triassic S-Type Granites in South China. Lithos, 300-301: 261-277. https://doi.org/10.1016/j.lithos.2017.11.036

[17]

Gao, P., Zheng, Y. F., Zhao, Z. F., 2017. Triassic Granites in South China: A Geochemical Perspective on Their Characteristics, Petrogenesis, and Tectonic Significance. Earth-Science Reviews, 173: 266-294. https://doi.org/10.1016/j.earscirev.2017.07.016

[18]

Gao, W. L., Wang, Z. X., Song, W. J., et al., 2014a. Zircon U-Pb Geochronology, Geochemistry and Tectonic Implications of Triassic A-Type Granites from Southeastern Zhejiang, South China. Journal of Asian Earth Sciences, 96(15): 255-268. https://doi.org/10.1016/j.jseaes.2014.09.024

[19]

Gao, P., Zhao, Z. F., Zheng, Y. F., 2014b. Petrogenesis of Triassic Granites from the Nanling Range in South China: Implications for Geochemical Diversity in Granites. Lithos, 210-211: 40-56. https://doi.org/10.1016/j.lithos.2014.09.027

[20]

Griffin, W. L., Pearson, N. J., Belousova, E., et al., 2000. The Hf Isotope Composition of Cratonic Mantle: LAM-MC-ICPMS Analysis of Zircon Megacrysts in Kimberlites. Geochimica et Cosmochimica Acta, 64(1): 133-147. https://doi.org/10.1016/s0016-7037(99)00343-9

[21]

Guo, A.M., Chen, B.H., Chen, J.F., et al., 2017. SHRIMP Zircon U-Pb Age of Tashan Granite in Hunan Province and Its Geological Significance. Geological Bulletin of China, 36(S1): 459-465 ( in Chinese).

[22]

Guo, C.L., Zheng, J.H., Lou, F.S., et al., 2012. Petrography, Genetic Types and Geological Dynamical Settings of the Indosinian Granitoids in South China. Geotectonica et Metallogenia, 36(3): 457-472 (in Chinese with English abstract).

[23]

Guo, X.Z., Li, Y.Z., Jia, Q.Z., et al., 2018. Geochronology and Geochemistry of the Wulonggou Orefield Related Granites in Late Permian-Triassic East Kunlun: Implication for Metallogenic Tectonic. Acta Petrologica Sinica, 34(8): 2359-2379 (in Chinese with English abstract).

[24]

He, Z. Y., Xu, X. S., Niu, Y. L., 2010. Petrogenesis and Tectonic Significance of a Mesozoic Granite-Syenite-Gabbro Association from Inland South China. Lithos, 119(3-4): 621-641. https://doi.org/10.1016/j.lithos.2010.08.016

[25]

Huang, H. Q., Li, X. H., Li, W. X., et al., 2011. Formation of High δ18O Fayalite-Bearing A-Type Granite by High-Temperature Melting of Granulitic Metasedimentary Rocks, Southern China. Geology, 39(10): 903-906. https://doi.org/10.1130/g32080.1

[26]

Lepvrier, C., Maluski, H., Van Tich, V., et al., 2004. The Early Triassic Indosinian Orogeny in Vietnam (Truong Son Belt and Kontum Massif); Implications for the Geodynamic Evolution of Indochina. Tectonophysics, 393(1-4): 87-118. https://doi.org/10.1016/j.tecto.2004.07.030

[27]

Li, G.L., Hua, R.M., Hu, D.Q., et al., 2010. Petrogenesis of Shilei Quartz Diorite in Southern Jiangxi: Constraints from Petrochemistry, Trace Elements of Accessory Minerals, Zircon U-Pb Dating, and Sr-Nd-Hf Isotopes. Acta Petrologica Sinica, 26(3): 903-918 (in Chinese with English abstract).

[28]

Li, W.Y., Ma, C.Q., Liu, Y.Y., et al., 2012. Discovery of Indosinian Aluminous A-Type Granite in Zhejiang Province and Its Geological Significance. Scientia Sinica Terrae, 42(2): 164-177 (in Chinese).

[29]

Li, X., Wang, L.Z., Tu, B., et al., 2021. Zircon Geochronology, Geochemistry and Petrogenesis of the Taibao Pluton in Northwest Guangdong Province. Earth Science, 46(4): 1199-1216 (in Chinese with English abstract).

[30]

Li, X. H., Li, Z. X., Li, W. X., et al., 2006. Initiation of the Indosinian Orogeny in South China: Evidence for a Permian Magmatic Arc on Hainan Island. The Journal of Geology, 114(3): 341-353. https://doi.org/10.1086/501222

[31]

Li, Z. X., Li, X. H., 2007. Formation of the 1 300-km-Wide Intracontinental Orogen and Postorogenic Magmatic Province in Mesozoic South China: A Flat-Slab Subduction Model. Geology, 35(2): 179-182. https://doi.org/10.1130/G23193A.1

[32]

Liu, K., Mao, J.R., Zhao, X.L., et al., 2014. Geological and Geochemical Characteristics and Genetic Significance of the Ziyunshan Pluton in Hunan Province. Acta Geologica Sinica, 88(2): 208-227 (in Chinese with English abstract).

[33]

Lu, Y.L., Peng, J.T., Yang, J.H., et al., 2017. Petrogenesis of the Ziyunshan Pluton in Central Hunan, South China: Constraints from Zircon U-Pb Dating, Element Geochemistry and Hf-O Isotopes. Acta Petrologica Sinica, 33(6): 1705-1728 (in Chinese with English abstract).

[34]

Ma, L.Y., Liu, S.S., Fu, J.M., et al., 2016. Petrogenesis of the Tashan-Yangmingshan Granitic Batholiths: Constraint from Zircon U-Pb Age, Geochemistry and Sr-Nd Isotopes. Acta Geologica Sinica, 90(2): 284-303 (in Chinese with English abstract).

[35]

Mao, J. R., Ye, H. M., Liu, K., et al., 2013. The Indosinian Collision-Extension Event between the South China Block and the Palaeo-Pacific Plate: Evidence from Indosinian Alkaline Granitic Rocks in Dashuang, Eastern Zhejiang, South China. Lithos, 172-173: 81-97. https://doi.org/10.1016/j.lithos.2013.04.004

[36]

Middlemost, E. A. K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 37(3-4): 215-224. https://doi.org/10.1016/0012-8252(94)90029-9

[37]

Mushkin, A., Navon, O., Halicz, L., et al., 2003. The Petrogenesis of A-Type Magmas from the Amram Massif, Southern Israel. Journal of Petrology, 44(5): 815-832. https://doi.org/10.1093/petrology/44.5.815

[38]

Nong, J.N., Sun, M.H., Guo, S.Y., et al., 2022. The Discovery and Petrogenesis of Early Triassic Volcanic Vent in Southeastern Guangxi. Geological Review, 68(3): 1089-1105 (in Chinese with English abstract).

[39]

Papoutsa, A., Pe-Piper, G., Piper, D. J. W., 2016. Systematic Mineralogical Diversity in A-Type Granitic Intrusions: Control of Magmatic Source and Geological Processes. GSA Bulletin, 128(3-4): 487-501. https://doi.org/10.1130/b31245.1

[40]

Patiño Douce, A. E., 1997. Generation of Metaluminous A-Type Granites by Low-Pressure Melting of Calc-Alkaline Granitoids. Geology, 25(8): 743-746. https://doi.org/10.1130/0091-7613(1997)0250743: gomatg>2.3.co;2

[41]

Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81. https://doi.org/10.1007/BF00384745

[42]

Qin, H.F., Huang, X.Q., Jiang, J., et al., 2018. Genesis of Indosinian Granites in Maoershan, Northern Guangxi: Evidence from Petrology, Geochemistry, Zircon U-Pb Ages and Hf Isotope. Journal of Guilin University of Technology, 38(4): 597-613 (in Chinese with English abstract).

[43]

Rapp, R. P., Watson, E. B., 1995. Dehydration Melting of Metabasalt at 8-32 kbar: Implications for Continental Growth and Crust-Mantle Recycling. Journal of Petrology, 36(4): 891-931. https://doi.org/10.1093/petrology/36.4.891

[44]

Ren, H.T., Wu, J.Q., Ye, X.F., et al., 2013. Zircon U-Pb Age and Geochemical Characteristics of Peraluminous Fine-Grained Granite in Western Part of the Fucheng Pluton, Jiangxi Province. Geological Journal of China Universities, 19(2): 327-345 (in Chinese with English abstract).

[45]

Rickwood, P. C., 1989. Boundary Lines within Petrologic Diagrams Which Use Oxides of Major and Minor Elements. Lithos, 22(4): 247-263. https://doi.org/10.1016/0024-4937(89)90028-5

[46]

Rudnick, R. L., Gao, S., 2014. Composition of the Continental Crust. Treatise on Geochemistry, 4: 1-51. https://doi.org/10.1016/B978-0-08-095975-7.00301-6

[47]

Shu, X.J., 2014. Petrogenesis and Crustal Evolution of the Mesozoic Granites from Nanling, South China (Dissertation). Nanjing University, Nanjing (in Chinese with English abstract).

[48]

Sláma, J., Košler, J., Condon, D.J., et al., 2008. Plešovice Zircon—A New Natural Reference Material for U-Pb and Hf Isotopic Microanalysis. Chemical Geology, 249:1-35.https://doi.org/10.1016/j.chemgeo.2007.11.005

[49]

Söderlund, U., Patchett, P. J., Vervoort, J. D., et al., 2004. The 176Lu Decay Constant Determined by Lu-Hf and U-Pb Isotope Systematics of Precambrian Mafic Intrusions. Earth and Planetary Science Letters, 219(3-4): 311-324. https://doi.org/10.1016/s0012-821x(04)00012-3

[50]

Sun, Y., Ma, C. Q., Liu, Y. Y., et al., 2011. Geochronological and Geochemical Constraints on the Petrogenesis of Late Triassic Aluminous A-Type Granites in Southeast China. Journal of Asian Earth Sciences, 42(6): 1117-1131. https://doi.org/10.1016/j.jseaes.2011.06.007

[51]

Sun, L.Q., 2018. Petrogenesis of the Mesozoic Granites in the Zhuguangshan Area in the Nanling Region and Their Implications for the Uranium Mineralization (Dissertation). Nanjing University, Nanjing (in Chinese with English abstract).

[52]

Sun, L.Q., Ling, H.F., Shen, W.Z., et al., 2010. Geochronology of Youshan and Pingtian Granites in Nanling Range and Its Geological Implication. Geological Journal of China Universities, 16(2): 186-197 (in Chinese with English abstract).

[53]

Sun, L. Q., Ling, H. F., Shen, W. Z., et al., 2017. Petrogenesis of Two Triassic A-Type Intrusions in the Interior of South China and Their Implications for Tectonic Transition. Lithos, 284-285: 642-653. https://doi.org/10.1016/j.lithos.2017.05.006

[54]

Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society of London Special Publications, 42(1): 313-345. https://doi.org/10.1144/GSL.SP.1989.042.01.19

[55]

Sun, T., 2006. A New Map Showing the Distribution of Granites in South China and Its Explanatory Notes. Geological Bulletin of China, 25(3): 332-335 (in Chinese with English abstract).

[56]

Sylvester, P. J., 1998. Post-Collisional Strongly Peraluminous Granites. Lithos, 45(1-4): 29-44. https://doi.org/10.1016/s0024-4937(98)00024-3

[57]

Wang, C., Peng, J.T., Xu, J.B., et al., 2021. Petrogenesis and Metallogenic Effect of the Baimashan Granitic Complex in Central Hunan, South China. Acta Petrologica Sinica, 37(3): 805-829 (in Chinese with English abstract).

[58]

Wang, L.J., Yu, J.H., Xu, X.S., et al., 2007. Formation Age and Origin of the Gutian-Xiaotao Granitic Complex in the Southweslern Fujian Province, China. Acta Petrologica Sinica, 23(6): 1470-1484 (in Chinese with English abstract).

[59]

Wang, Q., Li, J. W., Jian, P., et al., 2005. Alkaline Syenites in Eastern Cathaysia (South China): Link to Permian-Triassic Transtension. Earth and Planetary Science Letters, 230(3-4): 339-354. https://doi.org/10.1016/j.epsl.2004.11.023

[60]

Wang, W.B., Li, J.H., Xin, Y.J., et al., 2018. Zircon LA-ICP-MS U-Pb Dating and Geochemical Analysis of the Darongshan-Shiwandashan Granitoids in Southwestern South China and Their Geological Implications. Acta Geoscientica Sinica, 39(2): 179-194 (in Chinese with English abstract).

[61]

Wang, Y.B., Wang, D.H., Han, J., et al., 2010. U-Pb Dating and Hf Isotopic Characteristics of Zircons and Re-Os Dating of Molybdenite from Gao’aobei Tungsten-Molybdenum Deposit, Southern Hunan Province. Geological Review, 56(6): 820-830 (in Chinese with English abstract).

[62]

Wang, Y. J., Fan, W. M., Zhang, G. W., et al., 2013. Phanerozoic Tectonics of the South China Block: Key Observations and Controversies. Gondwana Research, 23(4): 1273-1305. https://doi.org/10.1016/j.gr.2012.02.019

[63]

Watson, E. B., Wark, D. A., Thomas, J. B., 2006. Crystallization Thermometers for Zircon and Rutile. Contributions to Mineralogy and Petrology, 151(4): 413-433. https://doi.org/10.1007/s00410-006-0068-5

[64]

Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419. https://doi.org/10.1007/BF00402202

[65]

Xia, Y., Xu, X. S., 2020. The Epilogue of Paleo-Tethyan Tectonics in the South China Block: Insights from the Triassic Aluminous A-Type Granitic and Bimodal Magmatism. Journal of Asian Earth Sciences, 190: 104129. https://doi.org/10.1016/j.jseaes.2019.104129

[66]

Xiang, W.S., Jiang, J.S., Lei, Y.J., et al., 2021. Petrogenesis of A-Type Granite and Geological Significance of Bure Area, Western Ethiopia. Earth Science, 46(7): 2299-2310 (in Chinese with English abstract).

[67]

Xu, H. J., Ma, C. Q., Zhao, J. H., et al., 2014a. Petrogenesis of Dashenshan I-Type Granodiorite: Implications for Triassic Crust-Mantle Interaction, South China. International Geology Review, 56(3): 332-350. https://doi.org/10.1080/00206814.2013.857457

[68]

Xu, H. J., Ma, C. Q., Zhao, J. H., et al., 2014b. Magma Mixing Generated Triassic I-Type Granites in South China. The Journal of Geology, 122(3): 329-351. https://doi.org/10.1086/675667

[69]

Xu, X.B., Liang, C.H., Chen, J.J., et al., 2021. Fundamental Geological Features and Metallogenic Geological Backgrounds of Nanling Tectonic Belt. Earth Science, 46(4): 1133-1150 (in Chinese with English abstract).

[70]

Yang, J.B., Zhao, Z.D., Mo, X.X., et al., 2015. Petrogenesis and Implications for Alkali Olivine Basalts and Its Basic Xenoliths from Huziyan in Dao County, Hunan Province. Acta Petrologica Sinica, 31(5): 1421-1432 (in Chinese with English abstract).

[71]

Yang, J.H., Du, Y.S., Yu, X., et al., 2017. Early Permian Volcanic Fragment-Bearing Sandstones in Babu of Southeast Yunnan: Indicative of Paleo-Tethyan Ocean Subduction. Earth Science, 42(1): 24-34 (in Chinese with English abstract).

[72]

Zhang, Q., Ran, H., Li, C.D., 2012. A-Type Granite: What is the Essence? Acta Petrologica et Mineralogica, 31(4): 621-626 (in Chinese with English abstract).

[73]

Zhang, Q., Wang, Y., Li, C.D., et al., 2006. Granite Classification on the Basis of Sr and Yb Contents and Its Implications. Acta Petrologica Sinica, 22(9): 2249-2269 (in Chinese with English abstract).

[74]

Zhao, K. D., Jiang, S. Y., Chen, W. F., et al., 2013. Zircon U-Pb Chronology and Elemental and Sr-Nd-Hf Isotope Geochemistry of Two Triassic A-Type Granites in South China: Implication for Petrogenesis and Indosinian Transtensional Tectonism. Lithos, 160-161: 292-306. https://doi.org/10.1016/j.lithos.2012.11.001

[75]

Zhao, Z., Wang, D.H., Chen, Z.Y., et al., 2014. Metallogenic Specialization of Rare Earth Mineralized Igneous Rocks in the Eastern Nanling Region. Geotectonica et Metallogenia, 38(2): 255-263 (in Chinese with English abstract).

[76]

Zhao, Z. X., Miao, B. H., Xu, Z. W., et al., 2017. Petrogenesis of Two Types of Late Triassic Granite from the Guandimiao Complex, Southern Hunan Province, China. Lithos, 282-283: 403-419. https://doi.org/10.1016/j.lithos.2017.02.021

[77]

Zhao, Z.X., Xu, Z.W., Miao, B.H., et al., 2015. Diagenetic Age and Material Source of the Guandimiao Granitic Batholith, Hengyang City, Hunan Province. Acta Geologica Sinica, 89(7): 1219-1230 (in Chinese with English abstract).

[78]

Zhong, Y.F., Ma, C.Q., She, Z.B., et al., 2011. U-Pb-Hf Isotope of Zircons, Geochemistry and Genesis of Mengshan Granitoids in Northwestern Jiangxi Province. Earth Science, 36(4): 703-720 (in Chinese with English abstract).

[79]

Zhou, X. M., Sun, T., Shen, W. Z., et al., 2006. Petrogenesis of Mesozoic Granitoids and Volcanic Rocks in South China: A Response to Tectonic Evolution. Episodes, 29(1): 26-33. https://doi.org/10.18814/epiiugs/2006/v29i1/004

基金资助

国家自然科学基金项目(42101005)

有色金属成矿预测与地质环境监测教育部重点实验室(中南大学)开放基金项目(2022YSJS13)

洞庭湖区生态环境遥感监测湖南省重点实验室开放课题(DTH Key Lab.2022-06)

AI Summary AI Mindmap
PDF (8600KB)

192

访问

0

被引

详细

导航
相关文章

AI思维导图

/