东海盆地丽水凹陷古气候和古环境对有机质富集的约束:来自古新统泥岩的元素地球化学证据
雷闯 , 叶加仁 , 殷世艳 , 吴景富 , 静禹钱
地球科学 ›› 2024, Vol. 49 ›› Issue (07) : 2359 -2372.
东海盆地丽水凹陷古气候和古环境对有机质富集的约束:来自古新统泥岩的元素地球化学证据
Constraints of Paleoclimate and Paleoenvironment on Organic Matter Enrichment in Lishui Sag, East China Sea Basin: Evidence from Element Geochemistry of Paleocene Mudstones
,
为明晰东海盆地丽水凹陷古新统月桂峰组、灵峰组、明月峰组烃源岩的生烃潜力,基于24个泥岩样品主量和微量元素地球化学研究,剖析了古气候和古环境变化过程及其对有机质富集的影响.结果表明,丽水凹陷古新统沉积物相对贫碎屑组分、富自生组分,且主量和微量元素变化未受到成岩蚀变的影响.根据特征元素参数的垂向变化趋势,认为丽水凹陷古新世月桂峰组→灵峰组→明月峰组沉积时期,古气候经历了温湿→干旱→温湿、水体古盐度经历了半咸水→咸水→淡水、水体古深度经历了较深水→较浅水→浅水、水体还原程度经历了弱还原‒还原→氧化→弱氧化‒氧化的变化过程.古气候和古环境协同变化控制着沉积物有机质生产和保存/降解,是月桂峰组、灵峰组、明月峰组泥岩有机质富集程度存在差异性的主要原因.月桂峰组泥岩形成于温湿气候下的半深湖‒深湖环境,水体生产力高,大量藻类和高等植物有机质在分层的贫氧水体介质中得以保存,导致有机质丰度较高.灵峰组泥岩形成于干旱气候下的滨浅海环境,水体生产力低,高盐度且富氧水体介质不利于藻类生存与保存,导致有机质丰度较低.明月峰组煤系泥岩形成于温湿气候下的海陆过渡环境,地表植被发育,地势平坦适宜大量高等植物有机质堆积,形成煤岩与泥岩互层分布.丽水凹陷油气勘探应围绕有机质丰度高且生烃能力强的月桂峰组生烃中心选择有效构造或岩性圈闭进行钻探.
主量元素 / 微量元素 / 古气候 / 古环境 / 有机质富集 / 丽水凹陷 / 石油地质.
major element / trace element / paleoclimate / paleoenvironment / organic matter enrichment / Lishui Sag / petroleum geology
| [1] |
Adachi, M., Yamamoto, K., Sugisaki, R., 1986. Hydrothermal Chert and Associated Siliceous Rocks from the Northern Pacific: Their Geological Significance as Indication of Ocean Ridge Activity. Sedimentary Geology, 47(1-2): 125-148. https://doi.org/10.1016/0037-0738(86)90075-8 |
| [2] |
Adegoke, A. K., Abdullah, W. H., Hakimi, M. H., et al., 2015. Geochemical Characterisation and Organic Matter Enrichment of Upper Cretaceous Gongila Shales from Chad (Bornu) Basin, Northeastern Nigeria: Bioproductivity Versus Anoxia Conditions. Journal of Petroleum Science and Engineering, 135: 73-87. https://doi.org/10.1016/j.petrol.2015.08.012 |
| [3] |
Algeo, T. J., Maynard, J. B., 2004. Trace-Element Behavior and Redox Facies in Core Shales of Upper Pennsylvanian Kansas-Type Cyclothems. Chemical Geology, 206(3-4): 289-318. https://doi.org/10.1016/j.chemgeo.2003.12.009 |
| [4] |
Cai, X.F., 1994. Paleoclimate as a Necessary Factor in Basin Analysis. Sedimentary Facies and Palaeogeography, 14(2): 42-46 (in Chinese). |
| [5] |
Calvert, S. E., Pedersen, T. F., 2007. Elemental Proxies for Palaeoclimatic and Palaeoceanographic Variability in Marine Sediments: Interpretation and Application. Developments in Marine Geology. Elsevier, Amsterdam, 567-644. https://doi.org/10.1016/s1572-5480(07)01019-6 |
| [6] |
Cui, T., Jiao, Y.Q., Du, Y.S., et al., 2013. Analysis on Paleosalinity of Sedimentary Environment of Bauxite in Wuchuan-Zheng’an-Daozhen Area, Northern Guizhou Province. Geological Science and Technology Information, 32(1): 46-51 (in Chinese with English abstract). |
| [7] |
Cullers, R. L., 2000. The Geochemistry of Shales, Siltstones and Sandstones of Pennsylvanian-Permian Age, Colorado, USA: Implications for Provenance and Metamorphic Studies. Lithos, 51(3): 181-203. https://doi.org/10.1016/s0024-4937(99)00063-8 |
| [8] |
Ding, X.J., Liu, G.D., Huang, Z.L., et al., 2016. Controlling Function of Organic Matter Supply and Preservation on Formation of Source Rocks. Earth Science, 41(5): 832-842 (in Chinese with English abstract). |
| [9] |
Fan, Y.H., Qu, H.J., Wang, H., et al., 2012. The Application of Trace Elements Analysis to Identifying Sedimentary Media Environment: A Case Study of Late Triassic Strata in the Middle Part of Western Ordos Basin. Geology in China, 39(2): 382-389 (in Chinese with English abstract). |
| [10] |
Fu, C., Li, S. L., Li, S. L., et al., 2022. Genetic Types of Mudstone in a Closed-Lacustrine to Open-Marine Transition and Their Organic Matter Accumulation Patterns: A Case Study of the Paleocene Source Rocks in the East China Sea Basin. Journal of Petroleum Science and Engineering, 208: 109343. https://doi.org/10.1016/j.petrol.2021.109343 |
| [11] |
Gao, Y.D., Lin, H.M., Wang, X.D., et al., 2022. Geochemical Constraints on the Sedimentary Environment of Wenchang Formation in Pearl River Mouth Basin and Its Paleoenvironmental Implications. Geoscience, 36(1): 118-129 (in Chinese with English abstract). |
| [12] |
Garzanti, E., Padoan, M., Setti, M., et al., 2013. Weathering Geochemistry and Sr-Nd Fingerprints of Equatorial Upper Nile and Congo Muds. Geochemistry, Geophysics, Geosystems, 14(2): 292-316. https://doi.org/10.1002/ggge.20060 |
| [13] |
Ge, H.P., Chen, X.D., Diao, H., et al., 2012. An Analysis of Oil Geochemistry and Sources in Lishui Sag, East China Sea Basin. China Offshore Oil and Gas, 24(4): 8-12, 31 (in Chinese with English abstract). |
| [14] |
Hao, F., Zhou, X. H., Zhu, Y. M., et al., 2011. Lacustrine Source Rock Deposition in Response to Co-Evolution of Environments and Organisms Controlled by Tectonic Subsidence and Climate, Bohai Bay Basin, China. Organic Geochemistry, 42(4): 323-339. https://doi.org/10.1016/j.orggeochem.2011.01.010 |
| [15] |
Hatch, J. R., Leventhal, J. S., 1992. Relationship between Inferred Redox Potential of the Depositional Environment and Geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestone, Wabaunsee County, Kansas, U.S.A.. Chemical Geology, 99(1-3): 65-82. https://doi.org/10.1016/0009-2541(92)90031-y |
| [16] |
Hu, J.J., Ma, Y.S., Wang, Z.X., et al., 2017. Palaeoenvironment and Palaeoclimate of the Middle to Late Jurassic Revealed by Geochemical Records in Northern Margin of Qaidam Basin. Journal of Palaeogeography (Chinese Edition), 19(3): 480-490 (in Chinese with English abstract). |
| [17] |
Jaraula, C. M. B., Siringan, F. P., Klingel, R., et al., 2014. Records and Causes of Holocene Salinity Shifts in Laguna de Bay, Philippines. Quaternary International, 349: 207-220. https://doi.org/10.1016/j.quaint.2014.08.048 |
| [18] |
Jiang, L., Li, B.H., Zhong, S.L., et al., 2004. Biostratigraphy and Paleoenvironment of the Yueguifeng Formation in the Taipei Depression of the Continental Shelf Basin of the East China Sea. Marine Geology & Quaternary Geology, 24(1): 37-42 (in Chinese with English abstract). |
| [19] |
Jiang, Z. L., Li, Y. J., Du, H. L., et al., 2015. The Cenozoic Structural Evolution and Its Influences on Gas Accumulation in the Lishui Sag, East China Sea Shelf Basin. Journal of Natural Gas Science and Engineering, 22: 107-118. https://doi.org/10.1016/j.jngse.2014.11.024 |
| [20] |
Jin, S., Ma, P.F., Guo, H., et al., 2022. Genesis of Mesoproterozoic Gaoyuzhuang Formation Manganese Ore in Qinjiayu, East Hebei: Constraints from Mineralogical and Geochemical Evidences. Earth Science, 47(1): 277-289 (in Chinese with English abstract). |
| [21] |
Jones, B., Manning, D. A. C., 1994. Comparison of Geochemical Indices Used for the Interpretation of Palaeoredox Conditions in Ancient Mudstones. Chemical Geology, 111(1-4): 111-129. https://doi.org/10.1016/0009-2541(94)90085-x |
| [22] |
Kaufman, A. J., Knoll, A. H., 1995. Neoproterozoic Variations in the C-Isotopic Composition of Seawater: Stratigraphic and Biogeochemical Implications. Precambrian Research, 73: 27-49. https://doi.org/10.1016/0301-9268(94)00070-8 |
| [23] |
Lei, C., Yin, S. Y., Ye, J. R., et al., 2021. Characteristics and Deposition Models of the Paleocene Source Rocks in the Lishui Sag, East China Sea Shelf Basin: Evidences from Organic and Inorganic Geochemistry. Journal of Petroleum Science and Engineering, 200: 108342. https://doi.org/10.1016/j.petrol.2021.108342 |
| [24] |
Lei, C., Yin, S.Y., Ye, J.R., et al., 2021. Geochemical Characteristics and Hydrocarbon Generation History of Paleocene Source Rocks in Jiaojiang Sag, East China Sea Basin. Earth Science, 46(10): 3575-3587 (in Chinese with English abstract). |
| [25] |
Li, H., Lu, J.L., Li, R.L., et al., 2017. Generation Paleoenvironment and Its Controlling Factors of Lower Cretaceous Lacustrine Hydrocarbon Source Rocks in Changling Depression, South Songliao Basin. Earth Science, 42(10): 1774-1786 (in Chinese with English abstract). |
| [26] |
Li, M.L., Chen, L., Tian, J.C., et al., 2019. Paleoclimate and Paleo-Oxygen Evolution during the Gucheng Period-Early Nantuo Period of Nanhua System in the Zouma Area, West Hubei: Evidence from Elemental Geochemistry of Fine Clastic Rocks. Acta Geologica Sinica, 93(9): 2158-2170 (in Chinese with English abstract). |
| [27] |
Li, Y., Zhang, J. L., Liu, Y., et al., 2019. Organic Geochemistry, Distribution and Hydrocarbon Potential of Source Rocks in the Paleocene, Lishui Sag, East China Sea Shelf Basin. Marine and Petroleum Geology, 107: 382-396. https://doi.org/10.1016/j.marpetgeo.2019.05.025 |
| [28] |
Li, Y.H., Xu, X.Y., Zhang, J.F., et al., 2022. Hybrid Sedimentary Conditions of Organic-Rich Shales in Faulted Lacustrine Basin during Volcanic Eruption Episode: A Case Study of Shahezi Formation (K1 sh Fm.), Lishu Faulted Depression, South Songliao Basin. Earth Science, 47(5): 1728-1747 (in Chinese with English abstract). |
| [29] |
Liu, Z.H., Hou, Y.L., Chen, S.H., et al., 2022. Early Cenozoic Sedimentary Characteristics and Provenance Evolution of Lishui Depression, East China Sea. Earth Science, 47(7): 2562-2572 (in Chinese with English abstract). |
| [30] |
Nesbitt, H. W., Young, G. M., 1982. Early Proterozoic Climates and Plate Motions Inferred from Major Element Chemistry of Lutites. Nature, 299(5885): 715-717. https://doi.org/10.1038/299715a0 |
| [31] |
Shen, W.L., Qi, B.W., 2020. Definition and Distribution Prediction of Effective Source Rocks in Lishui Sag, East China Sea Basin. Bulletin of Geological Science and Technology, 39(3): 77-88 (in Chinese with English abstract). |
| [32] |
Taylor, S.R., McLennan, S.M., 1985. The Continental Crust: Its Composition and Evolution: An Examination of the Geochemical Record Preserved in Sedimentary Rocks. Journal of Geology, 94(4): 632-633. |
| [33] |
Tian, Y., Ye, J.R., Lei, C., et al., 2016. Development Controlling Factors and Forming Model for Source Rock of Yueguifeng Formation in Lishui-Jiaojiang Sag, the East China Sea Continental Shelf Basin. Earth Science, 41(9): 1561-1571 (in Chinese with English abstract). |
| [34] |
Tribovillard, N., Algeo, T. J., Lyons, T., et al., 2006. Trace Metals as Paleoredox and Paleoproductivity Proxies: An Update. Chemical Geology, 232(1-2): 12-32. https://doi.org/10.1016/j.chemgeo.2006.02.012 |
| [35] |
Wang, P.W., Zou, C., Li, X.J., et al., 2021. Geochemical Characteristics of Element Qiongzhusi Group in Dianqianbei Area and Paleoenvironmental Significance. Journal of China University of Petroleum (Edition of Natural Science), 45(2): 51-62 (in Chinese with English abstract). |
| [36] |
Xu, X.T., Shao, L.Y., 2018. Limiting Factors in Utilization of Chemical Index of Alteration of Mudstones to Quantify the Degree of Weathering in Provenance. Journal of Palaeogeography (Chinese Edition), 20(3): 515-522 (in Chinese with English abstract). |
| [37] |
Yu, Z.K., Zhao, H., Diao, H., et al., 2020. Thermal Evolution Modeling and Present Geothermal Field of the Lishui Sag of East China Sea Basin. Marine Geology & Quaternary Geology, 40(2): 124-134 (in Chinese with English abstract). |
| [38] |
Zhang, L.L., Shu, Y., Cai, G.F., et al., 2019. Evolution of Eocene-Oligocene Sedimentary Environment in the Eastern Pearl River Mouth Basin and Its Influence on Hydrocarbon Source Conditions. Acta Petrolei Sinica, 40(S1): 153-165 (in Chinese with English abstract). |
| [39] |
Zhang, N., Wu, Y., Zhang, X., et al., 2021. Geochemical Characteristics and Its Implications of the Third Member of Paleogene Shahejie Formation from the Damintun Sag, Liaohe Depression. Acta Geologica Sinica, 95(2): 517-535 (in Chinese with English abstract). |
| [40] |
Zhu, W. L., Zhong, K., Fu, X. W., et al., 2019. The Formation and Evolution of the East China Sea Shelf Basin: A New View. Earth-Science Reviews, 190: 89-111. https://doi.org/10.1016/j.earscirev.2018.12.009 |
国家科技重大专项子课题(2016ZX05024-002-003;2017ZX05032-001-004)
构造与油气资源教育部重点实验室开放课题(TPR-2022-11;TPR-2022-24)
唐山市科技计划项目(22130213H)
/
| 〈 |
|
〉 |