月球正面火山复合体穹窿形貌特征识别和聚类分析
Morphological Identification and Clustering Analysis of Domes in the Lunar Large Volcanic Complexes
,
,
月球火山穹窿是了解月球火山活动的重要窗口.利用高分辨率多源遥感数据,对月球正面的3个火山复合体区(Marius Hills和Rümker Hills位于风暴洋克里普地体,Gardner在风暴洋克里普地体外)里发育的火山穹窿进行形貌和铁钛元素特征提取,利用这些特征参数进行层次聚类分析,并将所有穹窿划分为7个聚类(DC1~DC7);然后结合流变学、年代学和区域地质背景对3个火山复合体区的火山活动特征进行了综合分析.Marius Hills发育的火山穹窿数量多,高度和坡度较高,以中高钛为主,穹窿代表类型为DC7,岩浆活动时间跨度大(约2.6 Ga)、周期长,表明该区域存在多期次不同特征的火山活动.Rümker Hills发育的火山穹窿数量少,高度和坡度居中,以低钛为主,穹窿代表类型为DC1和DC4,活动时间相对集中(约0.8 Ga).Gardner及其周边区域发育的穹窿呈环状和带状分布,高度和坡度较低,以中低钛为主,岩浆活动时间持续约1.0 Ga,穹窿代表类型为DC6,该区域发生了多期次且复杂多样的火山活动.本研究揭示了月球正面火山复合体岩浆活动的复杂性,这种复杂性可能与岩浆源区及生热元素的不均匀分布情况有关.
月球 / 火山复合体 / 穹窿 / 特征提取 / 聚类分析 / 遥感
Moon / volcanic complexes / dome / feature extraction / clustering analysis / remote sensing
| [1] |
Arya, A. S., Rajasekhar, R. P., Sur, K., et al., 2018. Morphometric and Rheological Study of Lunar Domes of Marius Hills Volcanic Complex Region Using Chandrayaan-1 and Recent Datasets. Journal of Earth System Science, 127(5): 70. https://doi.org/10.1007/s12040-018-0971-y |
| [2] |
Baratoux, D., Pinet, P., Toplis, M. J., et al., 2009. Shape, Rheology and Emplacement Times of Small Martian Shield Volcanoes. Journal of Volcanology and Geothermal Research, 185(1-2): 47-68. https://doi.org/10.1016/j.jvolgeores.2009.05.003 |
| [3] |
Bohnenstiehl, D. R., Howell, J. K., White, S. M., et al., 2012. A Modified Basal Outlining Algorithm for Identifying Topographic Highs from Gridded Elevation Data, Part 1: Motivation and Methods. Computers & Geosciences, 49: 308-314. https://doi.org/10.1016/j.cageo.2012.04.023 |
| [4] |
Chen, Y. C., Huang, Q., Zhao, J. N., et al., 2021. Unsupervised Machine Learning on Domes in the Lunar Gardner Region: Implications for Dome Classification and Local Magmatic Activities on the Moon. Remote Sensing, 13(5): 845. https://doi.org/10.3390/rs13050845 |
| [5] |
Euillades, L. D., Grosse, P., Euillades, P. A., 2013. NETVOLC: An Algorithm for Automatic Delimitation of Volcano Edifice Boundaries Using DEMs. Computers & Geosciences, 56: 151-160. https://doi.org/10.1016/j.cageo.2013.03.011 |
| [6] |
Giguere, T. A., Taylor, G. J., Hawke, B. R., et al., 2000. The Titanium Contents of Lunar Mare Basalts. Meteoritics & Planetary Science, 35(1): 193-200. https://doi.org/10.1111/j.1945-5100.2000.tb01985.x |
| [7] |
Gillis, J. J., Jolliff, B. L., Elphic, R. C., 2003. A Revised Algorithm for Calculating TiO2 from Clementine UVVIS Data: A Synthesis of Rock, Soil, and Remotely Sensed TiO2 Concentrations. Journal of Geophysical Research: Planets, 108(E2): 5009. https://doi.org/10.1029/2001je001515 |
| [8] |
Grosse, P., van Wyk de Vries, B., Euillades, P. A., et al., 2012. Systematic Morphometric Characterization of Volcanic Edifices Using Digital Elevation Models. Geomorphology, 136(1): 114-131. https://doi.org/10.1016/j.geomorph.2011.06.001 |
| [9] |
Head, J. W., Gifford, A., 1980. Lunar Mare Domes: Classification and Modes of Origin. The Moon and the Planets, 22(2): 235-258. https://doi.org/10.1007/BF00898434 |
| [10] |
Heather, D. J., Dunkin, S. K., Wilson, L., 2003. Volcanism on the Marius Hills Plateau: Observational Analyses Using Clementine Multispectral Data. Journal of Geophysical Research (Planets), 108(E3): 5017. https://doi.org/10.1029/2002JE001938 |
| [11] |
Hiesinger, H., Gebhart, J., van der Bogert, C. H., et al., 2016. Stratigraphy of Low Shields and Mare Basalts of the Marius Hills Region, Moon. The 47th Lunar and Planetary Science Conference, Houston. |
| [12] |
Hiesinger, H., Jaumann, R., Neukum, G., et al., 2000. Ages of Mare Basalts on the Lunar Nearside. Journal of Geophysical Research: Planets, 105(E12): 29239-29275. https://doi.org/10.1029/2000je001244 |
| [13] |
Huang, Q., Zhao, J. N., Wang, X. M., et al., 2020. A Large Long-Lived Central-Vent Volcano in the Gardner Region: Implications for the Volcanic History of the Nearside of the Moon. Earth and Planetary Science Letters, 542: 116301. https://doi.org/10.1016/j.epsl.2020.116301 |
| [14] |
Lawrence, D. J., Feldman, W. C., Barraclough, B. L., et al., 1998. Global Elemental Maps of the Moon: The Lunar Prospector Gamma-Ray Spectrometer. Science, 281(5382): 1484-1489. https://doi.org/10.1126/science.281.5382.1484 |
| [15] |
Lawrence, D. J., Feldman, W. C., Elphic, R. C., et al., 2002. Iron Abundances on the Lunar Surface as Measured by the Lunar Prospector Gamma-Ray and Neutron Spectrometers. Journal of Geophysical Research (Planets), 107(E12): 5130. https://doi.org/10.1029/2001JE001530 |
| [16] |
Lawrence, S. J., Stopar, J. D., Hawke, B. R., et al., 2013. LRO Observations of Morphology and Surface Roughness of Volcanic Cones and Lobate Lava Flows in the Marius Hills. Journal of Geophysical Research: Planets, 118(4): 615-634. https://doi.org/10.1002/jgre.20060 |
| [17] |
Lena, R., Wöhler, C., Phillips, J., et al., 2013. Lunar Domes: Properties and Formation Processes. Springer & Praxis Publishing, Chichester. |
| [18] |
Li, Q. L., Zhou, Q., Liu, Y., et al., 2021. Two-Billion-Year-Old Volcanism on the Moon from Chang’E-5 Basalts. Nature, 600: 54-58. https://doi.org/10.1038/s41586-021-04100-2 |
| [19] |
Lin, Y. T., 2010. Key Issues of the Formation and Evolution of the Moon. Geochimica, 39(1): 1-10 (in Chinese with English abstract). |
| [20] |
Liu, J. J., Li, C. L., Wang, W. R., et al., 2019. Extraction of Lunar Domes from Chang’E-2 Data with New Method. Icarus, 321: 29-33. https://doi.org/10.1016/j.icarus.2018.10.030 |
| [21] |
Lucey, P. G., Blewett, D. T., Jolliff, B. L., 2000. Lunar Iron and Titanium Abundance Algorithms Based on Final Processing of Clementine Ultraviolet-Visible Images. Journal of Geophysical Research: Planets, 105(E8): 20297-20305. https://doi.org/10.1029/1999je001117 |
| [22] |
Morota, T., Haruyama, J., Ohtake, M., et al., 2011. Timing and Characteristics of the Latest Mare Eruption on the Moon. Earth and Planetary Science Letters, 302(3-4): 255-266. https://doi.org/10.1016/j.epsl.2010.12.028 |
| [23] |
Podobnikar, T., 2012. Detecting Mountain Peaks and Delineating Their Shapes Using Digital Elevation Models, Remote Sensing and Geographic Information Systems Using Autometric Methodological Procedures. Remote Sensing, 4(3): 784-809. https://doi.org/10.3390/rs4030784 |
| [24] |
Qiao, L., Chen, J., Ling, Z. C., 2021. Volcanic Landforms on the Moon. Acta Geologica Sinica, 95(9): 2678-2691 (in Chinese with English abstract). |
| [25] |
Qiao, L., Head, J. W., Wilson, L., et al., 2021. Mare Domes in Mare Tranquillitatis: Identification, Characterization, and Implications for Their Origin. Journal of Geophysical Research (Planets), 126(9): e06888. https://doi.org/10.1029/2021JE006888 |
| [26] |
Sato, H., Robinson, M. S., Lawrence, S. J., et al., 2017. Lunar Mare TiO2 Abundances Estimated from UV/Vis Reflectance. Icarus, 296: 216-238. https://doi.org/10.1016/j.icarus.2017.06.013 |
| [27] |
Spudis, P. D., McGovern, P. J., Kiefer, W. S., 2013. Large Shield Volcanoes on the Moon. Journal of Geophysical Research: Planets, 118(5): 1063-1081. https://doi.org/10.1002/jgre.20059 |
| [28] |
Tian, H. C., Wang, H., Chen, Y., et al., 2021. Non-KREEP Origin for Chang’E-5 Basalts in the Procellarum KREEP Terrane. Nature, 600: 59-63. https://doi.org/10.1038/s41586-021-04119-5 |
| [29] |
Weitz, C. M., Head, J. W. III, 1999. Spectral Properties of the Marius Hills Volcanic Complex and Implications for the Formation of Lunar Domes and Cones. Journal of Geophysical Research: Planets, 104(E8): 18933-18956. https://doi.org/10.1029/1998je000630 |
| [30] |
Whitford-Stark, J. L., Head, J. W., 1977. The Procellarum Volcanic Complexes: Contrasting Styles of Volcanism. Lunar and Planetary Science Conference Proceedings, 3: 2705-2724. |
| [31] |
Wieczorek, M. A., Phillips, R. J., 2000. The “Procellarum KREEP Terrane”: Implications for Mare Volcanism and Lunar Evolution. Journal of Geophysical Research: Planets, 105(E8): 20417-20430. https://doi.org/10.1029/1999je001092 |
| [32] |
Wilson, L., Head, J. W., 2003. Lunar Gruithuisen and Mairan Domes: Rheology and Mode of Emplacement. Journal of Geophysical Research (Planets), 108(E2): 5012. https://doi.org/10.1029/2002JE001909 |
| [33] |
Wöhler, C., Lena, R., 2009. Lunar Intrusive Domes: Morphometric Analysis and Laccolith Modelling. Icarus, 204(2): 381-398. https://doi.org/10.1016/j.icarus.2009.07.031 |
| [34] |
Wöhler, C., Lena, R., Lazzarotti, P., et al., 2006. A Combined Spectrophotometric and Morphometric Study of the Lunar Mare Dome Fields near Cauchy, Arago, Hortensius, and Milichius. Icarus, 183(2): 237-264. https://doi.org/10.1016/j.icarus.2006.03.003 |
| [35] |
Wöhler, C., Lena, R., Phillips, J., 2007. Formation of Lunar Mare Domes along Crustal Fractures: Rheologic Conditions, Dimensions of Feeder Dikes, and the Role of Magma Evolution. Icarus, 189(2): 279-307. https://doi.org/10.1016/j.icarus.2007.01.011 |
| [36] |
Wood, C. A., Higgins, W., Pau, K. C., et al., 2005. The Lamont-Gardner Megadome Alignment: A Lunar Volcano-Tectonic Structure? The 36th Annual Lunar and Planetary Science Conference, League City. |
| [37] |
Xu, Y. G., 2010. Mare Basalts and Lunar Evolution. Geochimica, 39(1): 50-62 (in Chinese with English abstract). |
| [38] |
Yang, W., Hu, S., Li, Q. L., et al., 2022. How Long Has Lunar Volcanism Lasted? Earth Science, 47(10): 3789-3791 (in Chinese). |
| [39] |
Zhang, F., Zhu, M. H., Bugiolacchi, R., et al., 2018. Diversity of Basaltic Lunar Volcanism Associated with Buried Impact Structures: Implications for Intrusive and Extrusive Events. Icarus, 307: 216-234. https://doi.org/10.1016/j.icarus.2017.10.039 |
| [40] |
Zhao, J. N., Xiao, L., Qiao, L., et al., 2017. The Mons Rümker Volcanic Complex of the Moon: A Candidate Landing Site for the Chang’E-5 Mission. Journal of Geophysical Research: Planets, 122(7): 1419-1442. https://doi.org/10.1002/2016je005247 |
国家重点研发计划项目(2021YFA0715100)
国家自然科学基金项目(42030108)
地质探测与评估教育部重点实验室主任基金项目(GLAB2022ZR09)
中央高校基本科研业务费专项(CUG2106122)
/
| 〈 |
|
〉 |