东昆仑浪木日铜多金属矿床成矿特征及找矿启示

童海奎 ,  龙灵利 ,  王玉往 ,  祝新友 ,  李顺庭 ,  谷子成 ,  马财 ,  代岩 ,  李杰 ,  于小亮 ,  王成勇 ,  王新雨 ,  张志超

地球科学 ›› 2023, Vol. 48 ›› Issue (12) : 4349 -4369.

PDF (12593KB)
地球科学 ›› 2023, Vol. 48 ›› Issue (12) : 4349 -4369. DOI: 10.3799/dqkx.2023.028

东昆仑浪木日铜多金属矿床成矿特征及找矿启示

作者信息 +

Metallogenic Characteristics of Langmuri Copper Polymetallic Deposit in East Kunlun and Its Ore Prospecting Enlightenment

Author information +
文章历史 +
PDF (12894K)

摘要

位于东昆仑造山带东段的浪木日铜镍钴多金属矿床,在新近勘查工作中又圈出独立的铂矿体,对该矿床成矿特征的进一步研究有助于指导勘查找矿.通过矿床地质特征分析,结合含矿橄辉岩主微量元素、Sr-Nd同位素及其中橄榄石、云母主量元素测试,以及黑云母花岗岩锆石U-Pb年代学及岩石地球化学特征研究,探讨了浪木日矿床成矿特征、成矿时代及矿床成因.含矿橄辉岩中橄榄石属贵橄榄石(Fo值为86.72~88.39),云母为金云母,其均为幔源岩浆作用产物;含矿橄辉岩稀土元素具右倾型的配分模式,富集Cs、Rb、U等元素,ε Ndt)值为0.66~2.66,暗示其形成过程中经历了地壳混染.获得黑云母花岗岩U-Pb年龄为414.5±8.8 Ma,其具弧岩浆地球化学特征,(87Sr/86Sr)i(0.718 609~0.719 177)、ε Ndt)值(1.28~5.36)显示其为壳幔岩浆混合作用产物.本研究认为浪木日铜多金属矿床具叠加成矿特征,在450~439 Ma形成与橄辉岩有关的铜镍钴铂钯矿体的基础上,叠加了415 Ma的与黑云母花岗岩有关的热液脉型铜矿化;本矿床以早期与橄辉岩有关的硫化物成矿为主,岩浆演化过程中的地壳混染及岩浆期后热液活动对成矿具积极贡献.本矿区基性-超基性杂岩体底部及顶部、黑云母花岗岩与之接触部位均为有利找矿空间.

关键词

东昆仑 / 浪木日 / 岩浆型硫化物矿床 / 叠加成矿 / 铜多金属矿床 / 成矿特征

Key words

East Kunlun / Langmuri / magmatic sulfide deposit / superimposed mineralization / copper-polymetallic deposit / metallogenic characteristics

引用本文

引用格式 ▾
童海奎,龙灵利,王玉往,祝新友,李顺庭,谷子成,马财,代岩,李杰,于小亮,王成勇,王新雨,张志超. 东昆仑浪木日铜多金属矿床成矿特征及找矿启示[J]. 地球科学, 2023, 48(12): 4349-4369 DOI:10.3799/dqkx.2023.028

登录浏览全文

4963

注册一个新账户 忘记密码

位于青藏高原北部的东昆仑造山带是典型的复合型增生造山带(张德全等,2002),经历了太古宙-古元古代古陆核形成、中新元古代古大陆裂解与超大陆汇聚、早古生代洋陆转换、晚古生代-早新生代洋陆转换以及中新生代陆内造山阶段(张德全等,2002Song et al., 2006校培喜等,2014李廷栋等,2019曾忠诚等,2020),随着原特提斯洋和古特提斯洋的构造演化(潘裕生等,1996潘桂棠等,2019吴福元等,2020李文渊等,2022朱日祥等,2022),东昆仑地区发育了复杂多样的构造岩浆作用,形成了大规模Cu、Au、Pb、Zn、Ag、Mo等多金属矿床(张德全等,2002李文渊等,2011).
近年来,在东昆仑地区相继发现了与志留纪镁铁-超镁铁杂岩有关的夏日哈木、石头坑德、浪木日、冰沟南、希望沟等镍钴矿床(点)(Liu et al.,2018施根红等,2018张照伟等,2020),其可能为伴随古特提斯洋裂解过程岩浆活动的成矿响应(张照伟等,2020).其中,位于东昆仑东段的浪木日铜镍矿床,是近年来找矿勘查取得突破的地区之一,在最新勘查工作中发现了与铜钴镍共生及独立的铂钯矿体,引起同行的关注.前人已对该矿床的地质特征、矿床成因、找矿潜力、构造背景、成矿时代等进行过研究(柴永强和尚生茂,2018施根红等,2018孟庆鹏,2019张照伟等,2020杨顺龙等,2022),但对该矿区发育的脉状铜矿化成矿期次研究相对薄弱,限制了对其成矿特征的深入理解,制约了勘查找矿的进一步突破.
本文在前人研究基础上,拟通过浪木日铜镍矿床赋矿橄辉岩岩石地球化学特征、Sr-Nd同位素特征、橄榄石和云母电子探针成分研究,结合引起脉状铜矿化的黑云母花岗岩锆石U-Pb年代学和岩石地球化学研究,进一步分析其成矿特征、成矿时代及矿床成因,以期对该区的找矿预测提供指导.

1 区域地质背景

东昆仑造山带位于中央造山带的西段,北邻柴达木板块,南接松潘-甘孜地块,向东与西秦岭造山带衔接,向西以阿尔金断裂与西昆仑相隔,处于古亚洲构造域和特提斯构造域结合部位.

不同学者对东昆仑造山带构造单元的划分及命名有所不同,但划分方案和边界基本类似.据近东西向的昆北断裂、昆中断裂、昆南断裂,自北向南将东昆仑造山带划分为昆北、昆中和昆南3个构造带(图1)(姜春发等,1992殷鸿福和张克信,1997潘桂棠等,2002张德全等,2007Dong et al., 2018陈国超等,2020).沿昆北断裂在祁漫塔格-香日德一带发育的蛇绿混杂岩,代表了早古生代弧后盆地的存在(Dong et al., 2018).昆中断裂带是一条古生代缝合带(肖序常等,1986Chen and Wang,1996李怀坤等,2006),其中蛇绿岩主要形成于早古生代(Yang et al.,1996Meng et al.,2015),代表了原特提斯洋的残片.昆南断裂带是一条复合增生杂岩带,记录了自新元古代原特提斯洋开启,从晚寒武纪-中三叠世原特提斯和古特提斯洋俯冲消减,直至闭合的产物(裴先治等,2018Fu et al.,2022Zhao et al.,2022).

昆北构造带(也有学者称之为祁漫塔格构造带)位于昆北断裂西段南、北分支之间(图1),为柴达木地块的南缘部分(莫宣学等,2007Dong et al.,2018),该带发育前寒武变质基底及古生代火山-沉积地层,以发育早古生代花岗岩和大面积分布的晚二叠世-中三叠世花岗岩为特征(Yu et al.,2020韩志辉等,2021封铿等,2022),且有428 Ma的榴辉岩及467~518 Ma的蛇绿混杂岩分布于该带的东部(孟繁聪等,2017).昆中构造带介于昆北断裂和昆中断裂之间(图1),发育古元古界结晶基底,局部出露中下泥盆统碎屑岩及碳酸盐和上泥盆统磨拉石,上部被石炭系-下二叠统火山-沉积建造角度不整合覆盖,中上三叠统鄂拉山组火山-火山碎屑岩于该带内广泛发育(周波,2019).新元古代、古生代及晚古生代-三叠纪岩浆作用广泛发育(Xia et al.,2014祁生胜,2015Li et al.,2018),其中晚古生代-中生代花岗岩类构成了岩浆岩带的主体(罗照华等,2002莫宣学等,2007Li et al.,2018陈国超等,2020),并形成与之相关的Cu、Pb、Zn、Au、Ag、Fe等矿床(张德全等,2002夏锐,2017Chen et al.,2020陈国超等,2020);该带内还发育古生代镁铁-超镁铁质岩体,并形成了与之相关的铜镍矿床(Liu et al.,2018张照伟等,2020).浪木日矿床位于此构造带东部.昆南构造带位于昆中断裂和昆南断裂之间(图1),该带沉积建造类型复杂,构造岩浆活动频繁,具有增生杂岩带特征(潘桂堂等,2019).

2 矿床地质特征

2.1 矿区地质

浪木日矿区地处东昆仑东段沟里矿集区内,位于都兰县南东约30 km处.矿区出露的地层主要为古元古代白沙河组中深变质岩系,岩性主要包括片麻岩、斜长角闪岩、大理岩、变粒岩和黑云石英片岩,其原岩可能为泥砂质碎屑岩-基性火山岩-碳酸盐建造,多被后期花岗岩体侵入,呈断块或侵入岩中残留体展布(青海省有色第三地质勘查院,青海省都兰县浪木日地区镍多金属矿预查工作报告.西宁,2018;孟庆鹏,2019;张照伟等,2020).少量沿沟系分布的冲洪积物、冰碛物及堆积的砂砾石、砂土、风成沙等分布在研究区中北部和西南部(图2).

研究区内构造发育,受矿区南部经过的昆中断裂的影响,以大规模逆冲推覆构造为主,主体为北东和近东西向压性-压扭性断裂,发育次级张性和扭性断裂.其中近东西向断裂为区内主要控矿构造,构造带宽几十米至上百米;北东向构造延伸规模较大,沿破碎带有后期花岗岩脉、闪长岩脉侵入,后期热液叠加改造明显;北西向断裂多为近东西向断裂的次级断裂,规模较小,沿走向宽窄不一,发育构造角砾岩和断层泥,可见少量黄铁矿化.

区内发育古生代-中生代中酸性岩,分布在矿区的中北部,主要沿断裂带侵入到早元古代地层中,包括花岗闪长岩、石英闪长岩、二长花岗岩、黑云母花岗岩、花岗岩等;矿区中东部发育闪长岩,其中可见条带状构造.具有铜镍找矿价值的基性-超基性岩主要分布在矿区的中南部(图2),主要以产状较陡的岩墙侵入到早元古代地层中,岩石类型主要为橄辉岩、辉橄岩、辉石岩和辉长岩,且它们可能为同一岩浆分异产物.前人研究获得其中橄辉岩、辉长岩、辉石岩锆石U-Pb年龄为450~419 Ma(孟庆鹏,2019赵旭,2020).

2.2 矿体地质特征

该矿区已发现有17个镁铁-超镁铁岩体(∑1~∑17)(图2),含矿岩体5处(∑2、∑3、∑4、∑7、∑14),共圈出镍矿体24条、镍铜钴矿体8条、镍铜铂矿体3条以及独立铂矿体2条.推断镍铜钴金属量为9 060 t、铂钯金属量为667.99 kg.其中∑2和∑4号镁铁-超镁铁杂岩体含矿性较好,均位于矿区的中北部,地表多被第四系覆盖,露头局部可见,侵位于元古代白沙河组片麻岩中,岩性主要为橄辉岩.∑2号岩体呈椭圆状近北东-南西向展布,出露长约700 m,宽约120 m,岩体深部厚度300 m,岩体南倾,倾角在45°~50°.该岩体中圈定镍钴矿体18条(M2-1~M2-7),矿体厚1.75~15.9 m,Ni品位在0.23%~0.64%,Co品位为0.016%,Cu品位为0.19%.最新勘查工作在该岩体中圈定铂钯共生矿体3条,独立铂钯矿体2条,矿体厚为1.98~5.94 m,铂+钯品位为0.34~0.55 g/t.∑4号岩体呈长条状近北西向展布,长约1 050 m,宽为30~100 m,岩体向北西倾斜,产状介于45°~50°(图3).该岩体中圈定镍钴矿体16条(M4-1~M4-16),厚度介于2.44~16.80 m,Ni品位为0.38%~1.72%,平均为0.91%;Co品位为0.017%~0.110%,平均为0.058%;Cu品位为0.20%~0.55%,平均为0.38%.在该岩体中新圈定铂钯矿体4条,长为160~300 m,矿体厚1.35~3.69 m,铂+钯品位为0.56~1.58 g/t.该区的镍钴铂钯以及独立的铂钯矿体主要以透镜状近平行展布于基性-超基性杂岩中,铂钯可能主要赋存在黄铜矿中(杨顺龙等,2022).

矿石类型主要为星点状、浸染状矿石,少量海绵陨铁状、块状矿石(图4);地表可见镍华、孔雀石等氧化物矿石.矿石结构有粒状结构、不等粒状、交代结构、海绵陨铁结构等,矿石构造主要有浸染状构造、块状构造、斑杂状构造、星点状构造等.金属矿物主要为镍黄铁矿、磁黄铁矿、黄铜矿、黄铁矿、磁铁矿.脉石矿物主要为橄榄石、辉石、金云母、蛇纹石.

3 样品采集及分析方法

3.1 地球化学测试

对主要含矿橄辉岩、黑云母花岗岩进行了元素和同位素地球化学分析.主量元素、微量元素和同位素分析测试均在核工业北京地质研究院分析测试研究中心完成.主量元素分析采用融片法在X射线荧光光谱仪PW2404分析完成,微量元素和稀土元素分析在ICP-MS实验室 “ELEMENTI”分析仪上采用In内标溶液、ICP-MS法完成.Sr-Nd同位素分析采用ISOPROBE-T热电离质谱计完成,Rb-Sr同位素质量分馏用86Sr/88Sr=0.119 4校正,标准测量结果NBS987为0.710 250±7;Sm-Nd同位素质量分馏用146Nd/144Nd=0.721 9校正,标准测量结果SHINESTU为0.512 118±3(标准值为0.512 110).分析结果见表1表2.

3.2 电子探针成分测试

选择研究区内含矿橄辉岩进行探针片的磨制,镀炭后在河北省区域地质矿产调查研究所实验室采用日本电子(JEOL)JXA-8230型电子探针进行橄榄石和云母单矿物主量元素分析,测试电压15 kV,电流20 nA,束斑直径5 μm.分析结果见表3表4.

3.3 锆石U-Pb年代学测试

对研究区具黄铁矿化、磁黄铁矿化的黑云母花岗岩进行了锆石U-Pb年代学的测定.锆石U-Pb同位素定年在武汉上谱分析科技有限责任公司采用LA-ICP-MS分析完成,详细的仪器参数和分析流程见Zong et al.(2017).GeolasPro激光剥蚀系统由COMPexPro 102 ArF 193 nm准分子激光器和MicroLas光学系统组成,ICP-MS型号为Agilent 7700e.测试分析的激光束斑和频率分别为32 µm和6 Hz.U-Pb同位素定年中采用锆石标准91 500作外标校正,以标准锆石GJ-1为盲样,检验U-Pb定年数据质量.每个时间分辨分析数据包括20~30 s空白信号和50 s样品信号.对分析数据的处理采用软件ICPMSDataCal(Liu et al.,2010)完成.测试结果207Pb/235U、206Pb/238U同位素比值及年单个数据点的误差为1σ,加权平均值的误差为2σ,锆石样品的U-Pb年龄谐和图绘制和年龄加权平均计算采用Isoplot/Ex_ver3 (Ludwig,2003) 完成.分析结果见表5.

4 分析结果

4.1 含矿橄辉岩矿物学及地球化学特征

研究区主要含矿岩类为金云母橄辉岩,主要由金云母(10%~15%,1~4 mm,片状、板状,具不同程度变形)、橄榄石(5%~35%,0.1~2.5 mm,粒状,部分碎裂呈小颗粒集合体,蛇纹石化)和辉石(50%~70%,多呈不规则状,强蛇纹石化)组成(图5),磁铁矿(10%)主要沿裂隙析出,发育浸染状黄铁矿和磁黄铁矿(1%~2%).

含矿橄辉岩中橄榄石电子探针矿物化学分析表明,其具高的Fo值(86.72~88.39),MgO含量为45.04%~47.87%,FeO含量为10.42%~12.81%,属于贵橄榄石.其他元素含量为CaO为0.00%~0.17%、TiO2为0.00%~0.01%、NiO为0.15%~0.29%、MnO为0.13%~0.19%.

在云母的Mg-(AlVI+Fe3++Ti)-(Fe2++Mn)分类图解中(图6a)(Forster and Nolan,1960),浪木日矿区含矿橄辉岩中云母成分投点均位于金云母区域,其中MgO含量为0.00%~0.04%,Al2O3含量为13.68%~15.50%,FeO含量为1.96%~2.54%,K2O含量为9.64%~10.37%,NaO含量为0.06%~0.44%,CaO含量为0.00%~0.05%.将浪木日矿区含矿橄辉岩中的金云母化学成分结果在MgO-FeOT/(FeOT+MgO)图上投点(图6b),均落在幔源岩浆区域(阮林森等,2017),暗示该区金云母可能是与幔源岩浆作用有关的原生矿物.

含矿金云母橄辉岩SiO2含量为42.42%~42.63%,MgO含量为30.90%~32.50%,FeOT含量为10.13%~10.33%,Al2O3含量为2.42%~3.27%,TiO2含量为0.15%~0.20%,烧失量为10.28~10.81,与橄辉岩的强蛇纹石化特征相对应;稀土总量为29.32×10-6~29.37×10-6,与张照伟等(2020)获得该区稀土总量26.92×10-6近似;稀土元素球粒陨石标准化图中可见,含矿橄辉岩具右倾型的配分模式,(La/Yb)N值为13.21~17.24,Eu表现出一定的负异常(δEu为0.42)(图7);微量元素蛛网图中,显示出Nb、Sr、Zr、Ti的亏损,相对富集Cs、Rb、U等元素,显示出岩浆演化过程可能存在地壳物质的混染或者来自受沉积物改造的弧岩浆(管涛等,2006).

橄辉岩Sr含量为31.4×10-687Sr/86Sr初始比值为0.711 914;Nd含量为6.42×10-6,εNdt)为2.66,t DM1=0.64 Ga(表2).

4.2 矿化黑云母花岗岩岩石地球化学及年代学特征

该矿区在形成与基性-超基性杂岩有关的铜镍钴矿化之后,可观察到有后期热液扰动现象.在ZK0802钻孔中可明显观察到有黑云母花岗岩脉的侵入,该岩石发生硅化、绢云母化、碳酸盐化,且其中发育石英-磁黄铁矿-黄铜矿-方解石细脉;黑云母花岗岩脉两侧围岩片麻岩中硅化增强,且在脉岩两侧围岩中同样可见石英-磁黄铁矿-黄铜矿细脉的发育(图8).推测该区黑云母花岗岩可能与后期的铜矿化具成因关系.

铜矿化黑云母花岗岩具花岗结构,主要由黑云母(5%~15%,0.4~2.5 mm,晶型较差,呈填隙状、片状、板条状)、石英(30%~40%,0.2~4.0 mm,他形)和长石(主要为碱性长石,40%~50%,1~3 mm,多粘土矿化;斜长石为10%~20%,0.5~2.0 mm,呈细长条状、聚片双晶发育)组成,岩石具弱绢云母化、粘土矿化.其中可见星点状黄铁矿化、少量黄铜矿化(<1%).

黑云母花岗岩SiO2含量为70.74%~75.30%,Al2O3含量为14.19%~15.66%,K2O含量为1.42%~2.73 %,Na2O含量为4.54%~4.82%,FeOT含量为0.57%~1.09 %,MgO含量为0.21%~0.55 %,CaO含量为0.99%~2.48%.K2O/Na2O比值为0.29~0.59,全碱(K2O+Na2O)含量为6.24%~7.35%,铝饱和指数A/CNK为1.12~1.19,σ为1.40~1.67,均小于3.3,岩石为过铝质钙碱性系列.黑云母花岗岩稀土总量ΣREE为43.30×10-6~69.82×10-6,(La/Yb)N为5.59~7.87,δEu为0.70~0.97,呈轻稀土富集的右倾型配分模式(图7);相对富集Cs、Rb、Ba、Th、U、K元素,Nb、Ta相对亏损.黑云母花岗岩Sr含量为153×10-6~400×10-687Sr/86Sr初始比值为0.718 609~0.719 177;Nd含量为10.9×10-6~12.8×10-6,εNdt)为1.28~5.36,t DM1=0.75~1.04 Ga(图9).

本文对黑云母花岗岩采用LA-ICM-MS法进行年代学测定.测试所选锆石晶体形态较好,大多呈柱状, Th/U比值为0.07~0.86,CL图像中可见其多发育韵律环带(图10),显示岩浆锆石特征.本次共选择32颗锆石进行测试,结果如图10a10b所示,年龄介于1 367~402 Ma,分布在谐和线附近,部分数据分布在1 000~800 Ma,可能反映了该地区存在老的继承锆石;部分数据集中在400 Ma左右,其可能反映了黑云母花岗岩的结晶年龄.对这组年轻的数据中谐和度较好的11颗锆石U-Pb年龄进行加权平均年龄计算,获得206Pb/238U加权平均年龄为414.5±8.8 Ma(图10),可能代表了黑云母花岗岩的形成年龄.

5 讨论

5.1 成矿时代

前人对浪木日矿区内与成矿密切相关的基性-超基性杂岩年代学进行了研究,孟庆鹏(2019)获得矿区内橄榄辉石岩和辉长岩LA-ICP-MS锆石U-Pb年龄为438.8±2.6 Ma和439.5±2.0 Ma,张照伟等(2020)文中报道获得该矿区内辉长岩和辉石岩的年龄分别为430 Ma和419 Ma,这些研究资料显示了浪木日矿区与CuCoPtPd成矿密切相关的基性-超基性岩形成时间介于440~419 Ma,间接限定了其成矿时代为志留纪.这一时期东昆仑地区还形成了含铜镍矿的夏日哈木(439~406 Ma;王冠等,2014Li et al.,2015;Song et al.,2016)、石头坑德(425~334 Ma;Zhang et al.,2018)、冰沟南(427~378 Ma;何书跃等,2017)辉长岩、辉石岩等基性-超基性岩,它们可能均为东昆仑地区志留纪(-早石炭世)镁铁-超镁铁质岩浆-成矿作用产物.

本文研究表明,浪木日矿区还发育有与415 Ma黑云母花岗岩有关的热液脉型铜矿化迹象(图8),可能为后期的岩浆-热液对早期成矿的改造,使得该区的成矿元素进一步活化富集.这一时期(早古生代末期),在东昆仑地区区域上也存在中酸性岩浆活动事件,形成有黄龙沟-深水潭-红旗沟419~417 Ma的二长花岗岩(陆露等,2013)、金水口水电站411 Ma石榴堇青花岗岩、跃进山407 Ma花岗闪长岩(刘彬等,2012)等.王小龙等(2017)研究表明在哈日扎银多金属矿区也发育晚志留世花岗岩,且其中发育明显热液矿化.前人研究认为东昆仑地区随古生代构造演化,在早古生代末期有中酸性岩浆活动,并伴随岩浆-热液矿化,主要集中在祁漫塔格地区,晚志留-中泥盆世以形成岩浆热液型钨锡矿床为主(许骏等,2021).浪木日地区发育与区域近同期的岩浆活动,但相应的矿化主要可能源于该区早期的成矿事件,使得该地区成矿元素富集,后期易被活化富集.

已有的年代学研究表明,浪木日地区以志留纪岩浆型铜多金属成矿为主,经历了早泥盆世岩浆-热液的扰动,叠加有热液脉型铜矿化.

5.2 矿床成因及物质来源

前人研究认为浪木日铜镍钴矿床为岩浆熔离型硫化物矿床(柴永强和尚生茂,2018孟庆鹏,2019),其可能为镁铁-超镁铁质岩浆,在裂解伸展环境,深部部分熔融的超镁铁质岩浆上涌,发生硫化物熔离的岩浆在地壳浅部形成硫化物聚集成矿(张照伟等,2020).浪木日矿床的矿体主要赋存在橄辉岩及其与围岩片麻岩的接触带,多呈透镜状平行产出;矿石类型以稀疏浸染状为主,少量块状和海绵陨铁状;矿体类型主要为镍矿体、镍铜钴、镍铜铂以及独立铂矿体;金属矿物组合以镍黄铁矿、黄铜矿(铂族矿物主要赋存其中)、磁黄铁矿为特征(图2图3柴永强和尚生茂,2018施根红等,2018;孟庆鹏,2019;张照伟等,2020),这些特征显示了该矿床具较典型的岩浆型硫化物矿床特征,与前人的认识基本一致.

浪木日矿区在早期形成了与橄辉岩有关的硫化物矿体,后期受热液扰动明显,并伴有成矿的叠加.早期,可能是与含矿基性-超基性杂岩体近同期的岩浆期后热液侵入到片岩-片麻岩围岩中,导致围岩发生不同程度的硅化、绿泥石化等蚀变,并形成长英质的脉体,其中发育少量浸染状磁黄铁矿和黄铜矿,但矿化整体不强;其后,含矿橄辉岩、围岩及其中的含硫化物的脉体均受到区域韧性剪切作用,不同程度发生变形(图11a11b).晚期,该区沿构造破碎带又发育有中酸性岩脉的侵入,叠加在早期变形地质体之上,随着这期脉岩的侵入,主要是在黑云母花岗岩脉两侧硅化较强,且在黑云母花岗岩及围岩中发育含磁黄铁矿、黄铜矿化的石英脉,其未发生明显变形(图8图11c~11f).本文获得与成矿相关的黑云母花岗岩年龄为415 Ma,进一步佐证了该区可能存在多期Cu矿化的叠加.

岩浆型硫化物矿床成矿多为幔源岩浆经过岩浆分异、岩浆熔离等作用最终发生硫化物熔离而成.本文对主要含矿橄辉岩中橄榄石成分分析结果表明其主要为贵橄榄石(Fo值为86.72~88.39),佐证了其成因为幔源岩浆成因;含矿橄辉岩中云母电子探针分析结果表明,其可能为与幔源岩浆演化相关的原生金云母,这也暗示了该地区可能发生了地幔交代作用(Menzies et al.,1985),其为洋壳释放出的流体交代地幔楔的产物(张照伟等,2020).

地壳物质的混染是岩浆型铜镍钴矿床成矿过程中导致岩浆中S过饱和的关键因素,李文渊等(2020)研究表明导致柴周缘夏日哈木、金川、坡一成矿规模不同的主要原因可能是地壳混染程度不同.本文对浪木日含矿橄辉岩地球化学特征研究结果表明其稀土配分曲线为右倾型的配分模式,且相对富集Cs、Rb、U等元素(图7),表现出弧岩浆的特征,暗示其形成过程中可能受到地壳物质的混染;含矿橄辉岩(87Sr/86Sr)i为0.779 14,εNdt)值为2.66(图9),也反映了幔混物质的参与;而地壳混染对成矿具有积极的贡献(Salama et al.,2016李文渊等,2020).而后期黑云母花岗岩稀土配分曲线特征与含矿橄辉岩类似,均反映出岛弧岩浆岩的地球化学特征;(87Sr/86Sr)i(0.718 609~0.719 177)、εNdt)值(1.28~5.36)(图9)则反映了该区晚期岩浆中仍有新的地幔物质的加入,也可能为该区早期新生洋壳的混染;U-Pb同位素测试中老的继承锆石的存在(1 367~773 Ma;图10)进一步佐证了该区存在老的地壳物质,且参与了岩浆活动作用过程.

再者,岩浆房中多期原始岩浆注入、岩浆混合及岩浆后期热液作用对硫化物矿床中的Pt组贡献显著(汤中立和李文渊,1995Molnar et al.,2001糜梅等,2009).浪木日矿区存在多期的矿化,且已发现独立的镍矿体、铜镍钴矿体及铂矿体,它们形成过程中可能有岩浆热液活动的参与.前人研究也表明在东昆仑夏日哈木、石头肯德、冰沟南等地区镁铁-超镁铁岩体岩浆在上侵中发生的硫化物不混溶作用、地壳混染作用、多次岩浆脉动上侵对成矿具有重要作用(张照伟等,2020).

特提斯成矿域是全球三大成矿域之一,其形成和演化主要受控于特提斯洋多次打开闭合,俯冲和陆-陆碰撞.浪木日所在东昆仑地区是特提斯成矿域的重要组成部分,该区经历了原特提斯、古特提的构造演化及岩浆成矿过程(李文渊等,2020吴福元等,2020).志留纪-早泥盆世,东昆仑地区可能处于原特提斯洋碰撞后伸展的拉张环境下,携带成矿物质的幔源岩浆上涌,与上部地壳物质混染,促使硫化物饱和,最终导致Cu、Ni、Co、Pt、Pd等元素熔离成矿;随着构造演化,岩浆的多次脉动,后期有酸性岩浆的侵入,继承了该区早期形成的弧岩浆的特征,并促使该区早期的成矿元素进一步活化,在局部地区形成热液脉状Cu矿化.

5.3 找矿启示

虽然前人研究成果已表明浪木日地区成矿主要为与基性-超基性杂岩有关硫化物矿床(柴永强和尚生茂,2018;孟庆鹏,2019),但由于该矿区主要赋矿的橄辉岩和辉橄岩少量可见的露头均以断裂与围岩接触,且深部找矿遭遇瓶颈,在实际的勘查找矿中对其成因有“冷侵位”(构造侵位,也就是非岩浆成因)和“热侵位”(岩浆成因)之争,该问题争论的核心即为成矿岩体深部有无“根”,该矿区深部有无进一步找矿的空间?本文对主要含矿橄辉岩中橄榄石成分分析结果表明其主要为贵橄榄石(Fo值为86.72~88.39),佐证了其成因为岩浆成因;含矿橄辉岩中云母电子探针分析结果表明,其可能为与幔源岩浆演化的原生金云母,这也暗示了该地区可能发生了地幔交代作用(Menzies et al.,1985);该认识有助于指导本矿区进一步对成矿岩体深部的分布状态进行探索,结合此类矿床矿石从底部向上有块状、稠密浸染状和浸染状的分带特征(叶天竺等,2017),也暗示了浪木日矿区深部有进一步寻找稠密浸染状和块状矿石的可能.

浪木日矿区主要形成与橄辉岩有关的硫化物矿体,但后期受热液扰动明显,并伴有成矿的叠加(图8图11).岩浆后期热液作用对硫化物矿床中的Pt族贡献显著(糜梅等,2009),浪木日矿区存在多期的矿化,且已发现独立的镍矿体、铜镍钴矿体及铂矿体,它们可能是本区岩浆热液频繁活动的产物.浪木日矿区成矿规模虽不大,但存在多期的岩浆-热液活动,且发生了复杂的壳幔岩浆混合作用,显示该区具有良好的成矿条件.基于该区新的独立铂矿体的圈定,以及矿体多分布在岩体与围岩的接触带、以浸染状矿石为主等成矿特征,暗示在勘查找矿中可借鉴铜镍-铂族矿床(如河南周俺)成矿特征,不仅要关注传统的岩浆型矿床含矿岩体底部矿体的寻找,还要重视矿体顶部与围岩接触带中矿体的探索.其次,本次研究结果表明浪木日矿区存在多期的矿化叠加,虽对与黑云母花岗岩有关的矿化潜在成矿规模不清,其是否会对早期成矿进行改造,造成二次富集成矿认识尚浅,但该认识一定程度上拓展了找矿思路,在该区应重视中酸性脉岩,尤其是黑云母花岗岩的展布特征,以及其与基性-超基性岩接触部位,可能是有利的找矿部位,皆有新的热液脉状矿体的形成潜力,也可能存在对早期矿体的改造叠加,形成富矿体的可能.

6 结论

(1)浪木日矿区含矿橄辉岩Fo值为86.72~88.39,属于贵橄榄石,其为岩浆成因;含矿橄榄岩中的云母为金云母,其为与幔源岩浆作用有关的原生矿物.

(2)获得浪木日矿区矿化黑云母花岗岩锆石U-Pb年龄为414.5±8.8 Ma,佐证了该矿区可能存在早志留纪岩浆型Cu多金属矿化和晚志留世热液脉状Cu矿化的叠加.含矿橄辉岩和黑云母花岗岩地球化学特征表明其形成过程中有壳幔物质的混染,地壳物质混染及岩浆热液作用对成矿具重要贡献.

(3)浪木日矿区找矿不仅要关注基性-超基性杂岩体的底部空间,也要关注该杂岩体的顶部与围岩接触带附近,同时黑云母花岗岩周边及其与基性-超基性杂岩体接触带部分也是找矿的有利部位.

参考文献

[1]

Chai,Y.Q.,Shang,S.M.,2018.Prospecting Potential of Magmatic Melt Copper Nickel Sulfide Deposits in the Remote Area of the Langmuri.World Nonferrous Metals,(8):124-127(in Chinese).

[2]

Chen,B.W.,Wang,Y.B.,1996.Some Characteristics of the Orogenic Belts in Qinghai-Tibet Plateau.Journal of Southeast Asian Earth Sciences,13(3-5):237-242.https://doi.org/10.1016/0743-9547(96)83685-3

[3]

Chen,G.C.,Pei,X.Z.,Li,R.B.,et al.,2020.Late Palaeozoic-Early Mesozoic Tectonic-Magmatic Evolution and Mineralization in the Eastern Section of the East Kunlun Orogenic Belt.Earth Science Frontiers,27(4):33-48 (in Chinese with English abstract).

[4]

Chen,X.D.,Li,Y.G.,Li,M.T.,et al.,2020.Ore Geology,Fluid Inclusions,and C-H-O-S-Pb Isotopes of Nagengkangqieergou Ag-Polymetallic Deposit,East Kunlun Orogen,NW China.Geological Journal,55(4):2572-2590.https://doi.org/10.1002/gj.3526

[5]

Dong,Y.P.,He,D.F.,Sun,S.S.,et al.,2018.Subduction and Accretionary Tectonics of the East Kunlun Orogen,Western Segment of the Central China Orogenic System.Earth-Science Reviews,186:231-261.https://doi.org/10.1016/j.earscirev.2017.12.006

[6]

Feng,K.,Li,R.B.,Pei,X.Z.,et al.,2022.Zircon U-Pb Chronology,Geochemistry and Geological Significance of Late Triassic Intermediate-Acid Volcanic Rocks in Boluositai Area,East Kunlun Orogenic Belt.Earth Science,47(4):1194-1216 (in Chinese with English abstract).

[7]

Forster,M.D.,Nolan,T.B.,1960.Interpretation of the Composition of Trioctahedral Micas.Geological Survey Professional Paper,345-B,Washington,U.S.A.,11-48.https://doi.org/10.3133/pp354b

[8]

Fu,L.B.,Bagas,L.,Wei,J.H.,et al.,2022.Growth of Early Paleozoic Continental Crust Linked to the Proto-Tethys Subduction and Continental Collision in the East Kunlun Orogen,Northern Tibetan Plateau.GSA Bulletin.https://doi.org/10.1130/b36292.1.

[9]

Guan,T.,Huang,Z.L.,Xu,D.R.,et al.,2006.Lithogeochemistry of the Sulfide-Bearing Mafic-Ultramafic Rock at Baimazhai,Jinping,Southern Yunnan.Chinese Journal of Geology,41(3):441-454 (in Chinese with English abstract).

[10]

Han,Z.H.,Sun,F.Y.,Tian,N.,et al.,2021.Zircon U-Pb Geochronology,Geochemistry and Geological Implications of the Early Paleozoic Wulanwuzhuer Granites in the Qimantag,East Kunlun,China.Earth Science,46(1):13-30 (in Chinese with English abstract).

[11]

He,S.Y.,Sun,F.F.,Li,Y.P.,et al.,2017.Geochemical and Geochronological Significance of the Binggounan Garbbro in the Qiman Tage Region,Qinghai Province.Bulletin of Mineralogy,Petrology and Geochemistry,36(4):582-592 (in Chinese with English abstract).

[12]

Jiang,C.F.,Yang,J.S.,Feng,B.G.,et al.,1992.Close-Open Tectonic of Kunlun Orogenic Belt.Geological Publishing House,Beijing(in Chinese).

[13]

Li,C.S.,Zhang,Z.W.,Li,W.Y.,et al.,2015.Geochronology,Petrology and Hf-S Isotope Geochemistry of the Newly-Discovered Xiarihamu Magmatic Ni-Cu Sulfide Deposit in the Qinghai-Tibet Plateau,Western China.Lithos,216-217:224-240.https://doi.org/10.1016/j.lithos.2015.01.003

[14]

Li,H.K.,Lu,S.N.,Xiang,Z.Q.,et al.,2006.SHRIMP U-Pb Zircon Age of the Granulite from the Qingshuiquan Area,Central Eastern Kunlun Suture Zone.Earth Science Frontiers,13(6):311-321 (in Chinese with English abstract).

[15]

Li,R.B.,Pei,X.Z.,Pei,L.,et al.,2018.The Early Triassic Andean-Type Halagatu Granitoids Pluton in the East Kunlun Orogen,Northern Tibet Plateau:Response to the Northward Subduction of the Paleo-Tethys Ocean.Gondwana Research,62:212-226.https://doi.org/10.1016/j.gr.2018.03.005

[16]

Li,T.D.,Xiao,Q.H.,Pan,G.T.,et al.,2019.A Consideration about the Development of Ocean Plate Geology.Earth Science,44(5):1441-1451 (in Chinese with English abstract).

[17]

Li,W.Y.,Wang,Y.L.,Qian,B.,et al.,2020.Discussion on the Formation of Magmatic Cu-Ni-Co Sulfide Deposits in Margin of Tarim Block.Earth Science Frontiers,27(2):276-293 (in Chinese with English abstract).

[18]

Li,W.Y.,Zhang,Z.W.,Gao,Y.B.,et al.,2011.Important Metallogenic Events and Tectonic Response of Qinling,Qilian and Kunlun Orogenic Belts.Geology in China,38(5):1135-1149 (in Chinese with English abstract).

[19]

Li,W.Y.,Zhang,Z.W.,Wang,Y.L.,et al.,2022.Tectonic Transformation of Proto- and Paleo-Tethys and the Metallization of Magmatic Ni-Cu-Co Sufide Deposits in Kunlun Orogen,Northwest China.Journal of Earth Sciences and Environment,44(1):1-19 (in Chinese with English abstract).

[20]

Liu,B.,Ma,C.Q.,Zhang,J.Y.,et al.,2012.Petrogenesis of Early Devonian Intrusive Rocks in the East Part of Eastern Kunlun Orogen and Implication for Early Palaeozoic Orogenic Processes.Acta Petrologica Sinica,28(6):1785-1807 (in Chinese with English abstract).

[21]

Liu,Y.G.,Li,W.Y.,Jia,Q.Z.,et al.,2018.The Dynamic Sulfide Saturation Process and a Possible Slab Break-off Model for the Giant Xiarihamu Magmatic Nickel Ore Deposit in the East Kunlun Orogenic Belt,Northern Qinghai-Tibet Plateau,China.Economic Geology,113(6):1383-1417.https://doi.org/10.5382/econgeo.2018.4596

[22]

Liu,Y.S.,Gao,S.,Hu,Z.C.,et al.,2010.Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen:U-Pb Dating,Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths.Journal of Petrology,51(1-2):537-571.https://doi.org/10.1093/petrology/egp082

[23]

Lu,L.,Zhang,Y.L.,Wu,Z.H.,et al.,2013.Zircon U-Pb Dating of Early Paleozoic Granites from the East Kunlun Mountains and Its Geological Significance.Acta Geoscientica Sinica,34(4):447-454 (in Chinese with English abstract).

[24]

Ludwig,K.R.,2003.ISOPLOT 3.00:Geochronological Toolkit for Microsoft Execel.Berkeley Geochronology Center,California,Berkeley,39.

[25]

Luo,Z.H.,Ke,S.,Cao,Y.Q.,et al.,2002.Late Indosinian Mantle-Derived Magmatism in the East Kunlun.Geological Bulletin of China,21(6):292-297 (in Chinese with English abstract).

[26]

Meng,F.C.,Cui,M.H.,Wu,X.K.,et al.,2015.Heishan Mafic-Ultramafic Rocks in the Qimantag Area of Eastern Kunlun,NW China:Remnants of an Early Paleozoic Incipient Island Arc.Gondwana Research,27(2):745-759.https://doi.org/10.1016/j.gr.2013.09.023

[27]

Meng,F.C.,Jia,L.H.,Ren,Y.F.,et al.,2017.Magmatic and Metamorphic Events Recorded in the Gneisses of the Wenquan Region,East Kunlun Mountains,Northwest China:Evidence from the Zircon U-Pb Geochronology.Acta Petrologica Sinica,33(12):3691-3709 (in Chinese with English abstract).

[28]

Meng,Q.P.,2019.Study on Geological Characteristics and Genesis of Langmuri Copper-Nickel Deposit in Eastern Kunlun,Qinghai (Dissertation).Jilin University,Changchun(in Chinese with English abstract).

[29]

Menzies,M.,Kempton,P.,Dungan,M.,1985.Interaction of Continental Lithosphere and Asthenospheric Melts below the Geronimo Volcanic Field,Arizona,U.S.A..Journal of Petrology,26(3):663-693.https://doi.org/10.1093/petrology/26.3.663

[30]

Mi,M.,Chen,Y.J.,Sun,Y.L.,et al.,2009.Rare Earth Element and Platinum-Group Element Geochemistry of the Zhou’an Ni-Cu-PGE Deposit in Henan Province:Implications for Hydrothermal Origin.Acta Petrologica Sinica,25(11):2769-2775 (in Chinese with English abstract).

[31]

Mo,X.X.,Luo,Z.H.,Deng,J.F.,et al.,2007.Granitoids and Crustal Growth in the East-Kunlun Orogenic Belt.Geological Journal of China Universities,13(3):403-414 (in Chinese with English abstract).

[32]

Molnar,F.,Watkinson,D.H.,Jones,P.C.,2001.Multiple Hydrothermal Processes in Footwall Units of the North Range,Sudbury Igneous Complex,Canada,and Implications for the Genesis of Vein-Type Cu-Ni-PGE Deposits.Economic Geology,96(7):1645-1670.https://doi.org/10.2113/gsecongeo.96.7.1645

[33]

Pan,G.T.,Li,X.Z.,Wang,L.Q.,et al.,2002.Preliminary Division of Tectonic Units of the Qinghai-Tibet Plateau and Its Adjacent Regions.Geological Bulletin of China,21(11):701-707 (in Chinese with English abstract).

[34]

Pan,G.T.,Xiao,Q.H.,Zhang,K.X.,et al.,2019.Recognition of the Oceanic Subduction-Accretion Zones from the Orogenic Belt in Continents and Its Important Scientific Significance.Earth Science,44(5):1544-1561 (in Chinese with English abstract).

[35]

Pan,Y.S.,Zhou,W.M.,Xu,R.H.,et al.,1996.The Early Paleozoic Geological Features and Evolutions of the Kunlun Mountain.Science in China (Series D),26(4):302-307 (in Chinese).

[36]

Pei,X.Z.,Li,R.B.,Li,Z.C.,et al.,2018.Composition Feature and Formation Process of Buqingshan Composite Accretionary Mélange Belt in Southern Margin of East Kunlun Orogen.Earth Science,43(12):4498-4520 (in Chinese with English abstract).

[37]

Qi,S.S.,2015.Petrotectonic Assemblages and Tectonic Evolution of the East Kunlun Orogenic Belt in Qinghai Province (Dissertation).China University of Geosciences,Beijing(in Chinese with English abstract).

[38]

Ruan,L.S.,Lu,S.M.,Zhao,L.L.,et al.,2017.Geochemical Chracteristics of the Mg-Fe Mica from Magmatic Rocks in the Shapinggou Molybdenum Deposit and Their Petrogenetic and Metallogenic Significances.Bulletin of Mineralogy,Petrology and Geochemistry,36(3):502-509 (in Chinese with English abstract).

[39]

Salama,W.,Anand,R.R.,Verrall,M.,2016.Mineral Exploration and Basement Mapping in Areas of Deep Transported Cover Using Indicator Heavy Minerals and Paleoredox Fronts,Yilgarn Craton,Western Australia.Ore Geology Reviews,72:485-509.https://doi.org/10.1016/j.oregeorev.2015.07.014

[40]

Shi,G.H.,Xiong,S.Y.,Li,Y.N.,et al.,2018.Analysis on Prospecting Potential of Langmuri Nickel Polymetallic Deposit in East Kunlun Orogenic Belt,Qinghai.Mineral Exploration,9(6):1205-1211 (in Chinese with English abstract).

[41]

Song,S.G.,Zhang,L.F.,Niu,Y.L.,et al.,2006.Evolution from Oceanic Subduction to Continental Collision:A Case Study from the Northern Tibetan Plateau Based on Geochemical and Geochronological Data.Journal of Petrology,47(3):435-455.https://doi.org/10.1093/petrology/egi080

[42]

Sun,S.S.,McDonough,W.F.,1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes.Geological Society,London,Special Publications,42(1):313-345.https://doi.org/10.1144/gsl.sp.1989.042.01.19

[43]

Tang,Z.L.,Li,W.Y.,1995.Mineralized Mechanism and Geological Contrast of Jinchan Cu-Ni-(PGE) Deposit.Geological Publishing House,Beijing(in Chinese).

[44]

Wang,G.,Sun,F.Y.,Li,B.L.,et al.,2014.Zircon U-Pb Geochronology and Geochemistry of Diorite in Xiarihamu Ore District from East Kunlun and Its Geological Significance.Journal of Jilin University (Earth Science Edition),44(3):876-891 (in Chinese with English abstract).

[45]

Wang,X.L.,Yuan,W.M.,Feng,X.,et al.,2017.LA-ICP-MS Zircon U-Pb Age and Geological Significance of Granite Porphyry and Diorite in the Harizha Polymetallic Ore District,East Kunlun Mountains.Geological Bulletin of China,36(7):1158-1168 (in Chinese with English abstract).

[46]

Wood,D.A.,Joron,J.L.,Treuil,M.,et al.,1979.Elemental and Sr Isotope Variations in Basic Lavas from Iceland and the Surrounding Ocean Floor.Contributions to Mineralogy and Petrology,70(3):319-339.https://doi.org/10.1007/bf00375360

[47]

Wu,F.Y.,Wan,B.,Zhao,L.,et al.,2020.Tethyan Geodynamics.Acta Petrologica Sinica,36(6):1627-1674 (in Chinese with English abstract).

[48]

Xia,R.,2017.Paleo-Tethys Orogenic Process and Gold Metallogenesis of the East Kunlun (Dissertation).China University of Geosciences,Beijing(in Chinese with English abstract).

[49]

Xia,R.,Wang,C.M.,Deng,J.,et al.,2014.Crustal Thickening Prior to 220 Ma in the East Kunlun Orogenic Belt:Insights from the Late Triassic Granitoids in the Xiao-Nuomuhong Pluton.Journal of Asian Earth Sciences,93:193-210.https://doi.org/10.1016/j.jseaes.2014.07.013

[50]

Xiao,P.X.,Gao,X.F.,Hu,Y.X.,et al.,2014.Geological Settings Study on Arkin-West Part of Eastern Kunlun Orogenic Belt.Geological Publishing House,Beijing(in Chinese).

[51]

Xiao,X.C.,Tang,Y.Q.,Gao,Y.L.,1986.Reexposition of Plate Tectonics of the Qinghai-Xizang Plateau.Bulletin of the Chinese Academy of Geological Sciences,7(3):7-19 (in Chinese).

[52]

Xiong,F.H.,Ma,C.Q.,Zhang,J.Y.,et al.,2011.LA-ICP-MS Zircon U-Pb Dating,Elements and Sr-Nd-Hf Isotope Geochemistry of the Early Mesozoic Mafic Dyke Swarms in East Kunlun Orogenic Belt.Acta Petrologica Sinica,27(11):3350-3364 (in Chinese with English abstract).

[53]

Xu,J.,Deng,X.H.,Zhu,X.Y.,2021.Geological Characteristics and Spatio-Temporal Distribution of Mineralization in the Qimantage Metallogenic Belt.Xinjiang Geology,39(4):671-678 (in Chinese with English abstract).

[54]

Yang,J.S.,Robinson,P.T.,Jiang,C.F.,et al.,1996.Ophiolites of the Kunlun Mountains,China and Their Tectonic Implications.Tectonophysics,258(1-4):215-231.https://doi.org/10.1016/0040-1951(95)00199-9

[55]

Yang,S.L.,Duan,H.C.,Yang,Y.J.,et al.,2022.Metallogenic Characteristics of Nickel-Platinum-Palladium Deposit in Langmuri Area,Qinghai.Mineral Exploration,13(9):1276-1287 (in Chinese with English abstract).

[56]

Ye,T.Z.,Wei,C.S.,Wang,Y.W.,et al.,2017.Prospecting Prediction and Theory in Exploration Area (Various Theories).Geological Publishing House,Beijing(in Chinese).

[57]

Yin,H.F.,Zhan,K.X.,1997.Characteristics of the Eastern Kunlun Orogenic Belt.Earth Science,22(4):3-6 (in Chinese with English abstract).

[58]

Yu,M.,Dick,J.M.,Feng,C.Y.,et al.,2020.The Tectonic Evolution of the East Kunlun Orogen,Northern Tibetan Plateau:A Critical Review with an Integrated Geodynamic Model.Journal of Asian Earth Sciences,191:104168.https://doi.org/10.1016/j.jseaes.2019.104168

[59]

Zeng,Z.C.,Hong,Z.L.,Liu,F.X.,et al.,2020.Confirmation of Gneissic Granite of Qingbaikou Period and Its Constraint on the Timing of the Rodinia Supercontinent on the Altun Orogenic Belt.Geology in China,47(3):569-589 (in Chinese with English abstract).

[60]

Zhang,D.Q.,Wang,F.C.,She,H.Q.,et al.,2007.Three-Order Ore-Controlling Structural System of Orogenic Gold Deposits in the Northern Qaidam Margin-East Kunlun Region.Geology in China,34(1):92-100 (in Chinese with English abstract).

[61]

Zhang,D.Q.,Zhu,H.P.,Yan,S.H.,et al.,2002.Multicyclic Paleozoic Orogeny and Metallogeny in East Kunlun Mountains.Mineral Deposits,21(Suppl.1):293-296(in Chinese with English abstract).

[62]

Zhang,W.,Zhou,H.W.,Zhu,Y.H.,et al.,2016.The Evolution of Triassic Granites Associated with Mineralization within East Kunlun Orogenic Belt:Evidence from the Petrology,Geochemistry and Zircon U-Pb Geochronology of the Mohexiala Pluton.Earth Science,41(8):1334-1348 (in Chinese with English abstract).

[63]

Zhang,Z.W.,Qian,B.,Wang,Y.L.,et al.,2020.Discussion on the Tectonic Settings of Magmatic Nickel-Cobalt Sulfi Deposits in the Eastern Kunlun Orogenic Belt.Geology in China (in Chinese with English abstract)(in press).

[64]

Zhang,Z.W.,Wang,Y.L.,Qian,B.,et al.,2018.Metallogeny and Tectonomagmatic Setting of Ni-Cu Magmatic Sulfide Mineralization,Number I Shitoukengde Mafic-Ultramafic Complex,East Kunlun Orogenic Belt,NW China.Ore Geology Reviews,96:236-246.https://doi.org/10.1016/j.oregeorev.2018.04.027

[65]

Zhao,X.,2020.Tectono-Magmatic Transformation and Gold Mineralization in the Gouli Area,the East Kunlun Orogen (Dissertation).China University of Geosciences,Wuhan(in Chinese with English abstract).

[66]

Zhao,X.,Fu,L.B.,Santosh,M.,et al.,2022.The Growth and Evolution of Continental Crust Contributed by Multiple Sources in the East Kunlun Orogen during Early Paleozoic.Earth-Science Reviews,233:104190.https://doi.org/10.1016/j.earscirev.2022.104190

[67]

Zhou,B.,2019.The Thermal History and Uplift-Exhumation Process of the East Kunlun Orogenic Belt during Meso-Cenozoic Time (Dissertation).Northwest University,Xi’an(in Chinese with English abstract).

[68]

Zhu,R.X.,Zhao,P.,Zhao,L.,2022.Tectonic Evolution and Geodynamics of the Neo-Tethys Ocean.Science China Earth Sciences, 65(1):1-24 (in Chinese).

[69]

Zong,K.Q.,Klemd,R.,Yuan,Y.,et al.,2017.The Assembly of Rodinia:The Correlation of Early Neoproterozoic (ca.900 Ma) High-Grade Metamorphism and Continental Arc Formation in the Southern Beishan Orogen,Southern Central Asian Orogenic Belt (CAOB).Precambrian Research,290:32-48.https://doi.org/10.1016/j.precamres.2016.12.010

[70]

柴永强,尚生茂,2018.浪木日地区岩浆融离型铜镍硫化物矿床找矿前景分析.世界有色金属,(8):124-127.

[71]

陈国超,裴先治,李瑞保,等,2020.东昆仑造山带东段晚古生代-早中生代构造岩浆演化与成矿作用.地学前缘,27(4):33-48.

[72]

封铿,李瑞保,裴先治,等,2022.东昆仑造山带波洛斯太地区晚三叠世中酸性火山岩锆石U-Pb年代学、地球化学及地质意义.地球科学,47(4):1194-1216.

[73]

管涛,黄智龙,许德如,等,2006.云南金平白马寨含矿镁铁-超镁铁岩体岩石地球化学.地质科学,41(3):441-454.

[74]

韩志辉,孙丰月,田楠,等,2021.东昆仑祁漫塔格地区乌兰乌珠尔早古生代花岗岩锆石U-Pb年代学、地球化学及其地质意义.地球科学,46(1):13-30.

[75]

何书跃,孙非非,李云平,等,2017.青海祁漫塔格地区冰沟南辉长岩岩石地球化学特征及年代学意义.矿物岩石地球化学通报,36(4):582-592.

[76]

姜春发,杨经绥,冯炳贵,等,1992.昆仑开合构造.北京:地质出版社.

[77]

李怀坤,陆松年,相振群,等,2006.东昆仑中部缝合带清水泉麻粒岩锆石SHRIMP U-Pb年代学研究.地学前缘,13(6):311-321.

[78]

李廷栋,肖庆辉,潘桂棠,等,2019.关于发展洋板块地质学的思考.地球科学,44(5):1441-1451.

[79]

李文渊,王亚磊,钱兵,等,2020.塔里木陆块周缘岩浆Cu-Ni-Co硫化物矿床形成的探讨.地学前缘,27(2):276-293.

[80]

李文渊,张照伟,高永宝,等,2011.秦祁昆造山带重要成矿事件与构造响应.中国地质,38(5):1135-1149.

[81]

李文渊,张照伟,王亚磊,等,2022.东昆仑原、古特提斯构造转换与岩浆铜镍钴硫化物矿床成矿作用.地球科学与环境学报,44(1):1-19.

[82]

刘彬,马昌前,张金阳,等,2012.东昆仑造山带东段早泥盆世侵入岩的成因及其对早古生代造山作用的指示.岩石学报,28(6):1785-1807.

[83]

陆露,张延林,吴珍汉,等,2013.东昆仑早古生代花岗岩锆石U-Pb年龄及其地质意义.地球学报,34(4):447-454.

[84]

罗照华,柯珊,曹永清,等,2002.东昆仑印支晚期幔源岩浆活动.地质通报,21(6):292-297.

[85]

孟繁聪,贾丽辉,任玉峰,等,2017.东昆仑东段温泉地区片麻岩记录的岩浆和变质事件:锆石U-Pb年代学证据.岩石学报,33(12):3691-3709.

[86]

孟庆鹏,2019.青海东昆仑浪木日铜镍矿矿床地质特征及成因探讨(硕士学位论文).长春:吉林大学.

[87]

糜梅,陈衍景,孙亚莉,等,2009.河南周庵铂族-铜镍矿床的稀土和铂族元素地球化学特征:热液成矿的证据.岩石学报,25(11):2769-2775.

[88]

莫宣学,罗照华,邓晋福,等,2007.东昆仑造山带花岗岩及地壳生长.高校地质学报,13(3):403-414.

[89]

潘桂棠,李兴振,王立全,等,2002.青藏高原及邻区大地构造单元初步划分.地质通报,21(11):701-707.

[90]

潘桂棠,肖庆辉,张克信,等,2019.大陆中洋壳俯冲增生杂岩带特征与识别的重大科学意义.地球科学,44(5):1544-1561.

[91]

潘裕生,周伟明,许荣华,等,1996.昆仑山早古生代地质特征与演化.中国科学(D辑),26(4):302-307.

[92]

裴先治,李瑞保,李佐臣,等,2018.东昆仑南缘布青山复合增生型构造混杂岩带组成特征及其形成演化过程.地球科学,43(12):4498-4520.

[93]

祁生胜,2015.青海省东昆仑造山带火成岩岩石构造组合与构造演化(博士学位论文).北京:中国地质大学.

[94]

阮林森,陆三明,赵丽丽,等,2017.沙坪沟钼矿床岩浆岩中镁铁云母地球化学特征及其成岩成矿意义.矿物岩石地球化学通报,36(3):502-509.

[95]

施根红,熊生云,李永娜,等,2018.东昆仑造山带浪木日地区镍多金属矿找矿潜力分析.矿产勘查,9(6):1205-1211.

[96]

汤中立,李文渊,1995.金川铜镍硫化物(含铂)矿床成矿模式及地质对比.北京:地质出版社.

[97]

王冠,孙丰月,李碧乐,等,2014.东昆仑夏日哈木矿区闪长岩锆石U-Pb年代学、地球化学及其地质意义.吉林大学学报(地球科学版),44(3):876-891.

[98]

王小龙,袁万明,冯星,等,2017.东昆仑哈日扎多金属矿区花岗斑岩与闪长岩LA-ICP-MS锆石U-Pb年龄及其地质意义.地质通报,36(7):1158-1168.

[99]

吴福元,万博,赵亮,等,2020.特提斯地球动力学.岩石学报,36(6):1627-1674.

[100]

夏锐,2017.东昆仑古特提斯造山过程与金成矿作用(博士学位论文).北京:中国地质大学.

[101]

校培喜,高晓峰,胡云绪,等,2014.阿尔金-东昆仑西段成矿带地质背景研究.北京:地质出版社.

[102]

肖序常,汤耀庆,高延林,1986.再论青藏高原的板块构造.中国地质科学院院报,7(3):7-19.

[103]

熊富浩,马昌前,张金阳,等,2011.东昆仑造山带早中生代镁铁质岩墙群LA-ICP-MS锆石U-Pb定年、元素和Sr-Nd-Hf同位素地球化学.岩石学报,27(11):3350-3364.

[104]

许骏,邓小华,祝新友,2021.祁漫塔格成矿带地质特征和成矿时空分布规律.新疆地质,39(4):671-678.

[105]

杨顺龙,段鸿昌,杨一军,等,2022.青海浪木日地区镍铂钯成矿特征.矿产勘查,13(9):1276-1287.

[106]

叶天竺,韦昌山,王玉往,等,2017.勘查区找矿预测与理论(各论).北京:地质出版社.

[107]

殷鸿福,张克信,1997.东昆仑造山带的一些特征.地球科学,22(4):3-6.

[108]

曾忠诚,洪增林,刘芳晓,等,2020.阿尔金造山带青白口纪片麻状花岗岩的厘定及对 Rodinia超大陆汇聚时限的制约.中国地质,47(3):569-589.

[109]

张德全,王富春,佘宏全,等,2007.柴北缘—东昆仑地区造山型金矿床的三级控矿构造系统.中国地质,34(1):92-100.

[110]

张德全,朱华平,闫升好,等,2002.东昆仑古生代复合造山过程及金属成矿作用.矿床地质,21(增刊1):293-296.

[111]

张炜,周汉文,朱云海,等,2016.东昆仑与成矿有关的三叠纪花岗岩演化:基于莫河下拉岩体岩石学、地球化学和锆石U-Pb年代学的证据.地球科学,41(8):1334-1348.

[112]

张照伟,钱兵,王亚磊,等,2020.东昆仑造山带岩浆镍钴硫化物矿床形成构造背景探讨.中国地质(待刊).

[113]

赵旭,2020.东昆仑造山带沟里地区构造岩浆转换与金成矿作用(博士学位论文).武汉:中国地质大学.

[114]

周波,2019.东昆仑造山带中新生代热演化史及隆升-剥露过程研究(博士学位论文).西安:西北大学.

[115]

朱日祥,赵盼,赵亮,2022.新特提斯洋演化与动力过程.中国科学:地球科学,52(1):1-25.

基金资助

青海省省级财政资金地质项目(2019048001ky001)

AI Summary AI Mindmap
PDF (12593KB)

206

访问

0

被引

详细

导航
相关文章

AI思维导图

/