基于时序InSAR与机器学习的大范围地面沉降预测方法
罗袆沅 , 许强 , 蒋亚楠 , 孟冉 , 蒲川豪
地球科学 ›› 2024, Vol. 49 ›› Issue (05) : 1736 -1745.
基于时序InSAR与机器学习的大范围地面沉降预测方法
The Prediction Method of Large-Scale Land Subsidence Based on Multi-Temporal InSAR and Machine Learning
,
地面沉降是由自然因素和人为因素综合作用下形成的地面标高损失,为预防这种累进性的缓变地质灾害,高效的大范围地面沉降预测显得尤为重要.现有的预测方法忽略了地面沉降的空间特征,且基于单点循环预测存在高耗时现象.针对上述问题,提出了一种基于时序InSAR与机器学习的大范围地面沉降预测方法.首先,利用SBAS-InSAR技术获取大范围的地面沉降时序信息;其次,采用经验正交函数(empirical orthogonal function, EOF)提取时序信息的空间模态及对应的主成分(principal components, PCs);最后,采用基于误差反馈的岭多项式神经网络(ridge polynomial neural network with error-output feedbacks, RPNN-EOF)模型训练与预测PCs,将预测结果重构回地面沉降时序.以延安新区2018年8月至2021年5月的84景Sentinel-1A数据为例,获取了新区的地面沉降时序.同时,EOF所提取的空间模态能清晰地表达整个新区的空间变化特征.预测结果显示,相较于传统点循环模式以及主流的时间序列预测方法,本文方法的均方根误差至少降低了22.7%,建模耗时至少降低了27.5%,因此该方法具有良好的实用性.
机器学习 / 时间序列预测 / 经验正交函数 / 空间模态 / 神经网络 / 时序InSAR / 地面沉降 / 灾害
machine learning / time series prediction / empirical orthogonal functions / spatial modalities / neural networks / multi-temporal InSAR / land subsidence / hazards
| [1] |
Chen, Y., He, Y., Zhang, L. F., et al., 2021. Prediction of InSAR Deformation Time-Series Using a Long Short-Term Memory Neural Network. International Journal of Remote Sensing, 42(18): 6919-6942. https://doi.org/10.1080/01431161.2021.1947540 |
| [2] |
Ding, Q., Shao, Z. F., Huang, X., et al., 2021. Monitoring, Analyzing and Predicting Urban Surface Subsidence: A Case Study of Wuhan City, China. International Journal of Applied Earth Observation and Geoinformation, 102: 102422. https://doi.org/10.1016/j.jag.2021.102422 |
| [3] |
Fan, Z.L., Zhang, Y.H., 2019. Research Progress on Intelligent Algorithms Based Ground Subsidence Prediction. Geomatics & Spatial Information Technology, 42(5): 183-188 (in Chinese with English abstract). |
| [4] |
Gao, H., Song, Q. C., Huang, J., 2016. Subgrade Settlement Prediction Based on Least Square Support Vector Regession and Real-Coded Quantum Evolutionary Algorithm. International Journal of Grid and Distributed Computing, 9(7): 83-90. https://doi.org/10.14257/ijgdc.2016.9.7.09 |
| [5] |
Gers, F. A., Schmidhuber, J., Cummins, F., 2000. Learning to Forget: Continual Prediction with LSTM. Neural Computation, 12(10): 2451-2471. https://doi.org/10.1162/089976600300015015 |
| [6] |
Hill, P., Biggs, J., Ponce-López, V., et al., 2021. Time Series Prediction Approaches to Forecasting Deformation in Sentinel 1 InSAR Data. Journal of Geophysical Research (Solid Earth), 126(3): e2020JB020176. https://doi.org/10.1029/2020JB020176 |
| [7] |
Jin, B. J., Yin, K. L., Gui, L., et al., 2022. Evaluation of Ground Subsidence Susceptibility of Transmission Line Towers in Salt Lake Area Based on Remote Sensing Interpretation. Earth Science, 1-13 (in Chinese with English abstract). |
| [8] |
Li, H. J., Zhu, L., Dai, Z. X., et al., 2021. Spatiotemporal Modeling of Land Subsidence Using a Geographically Weighted Deep Learning Method Based on PS-InSAR. Science of the Total Environment, 799: 149244. https://doi.org/10.1016/j.scitotenv.2021.149244 |
| [9] |
Li, L., 2014. Study on Forecasting Model of Land Subsidence and Its Application (Dissertation). Chang’an University, Chang’an (in Chinese with English abstract). |
| [10] |
Li, X., Li, L. C., Song, Y. X., et al., 2019. Characterization of the Mechanisms Underlying Loess Collapsibility for Land-Creation Project in Shaanxi Province, China—A Study from a Micro Perspective. Engineering Geology, 249: 77-88. https://doi.org/10.1016/j.enggeo.2018.12.024 |
| [11] |
Liu, Q.H., Zhang, Y.H., Deng, M., et al., 2021. Time Series Prediction Method of Large-Scale Surface Subsidence Based on Deep Learning. Acta Geodaetica et Cartographica Sinica, 50(3): 396-404 (in Chinese with English abstract). |
| [12] |
Lorenz, E. N., 1956. Empirical Orthogonal Functions and Statistical Weather Prediction. Massachusetts Institute of Technology Department of Meteorology, Cambridge, 31-69. |
| [13] |
Luo, Z. J., Wang, X., Dai, J., et al., 2022. Research on the Influence of Land Subsidence on the Minable Groundwater Resources. Earth Science, 49(1) : 238-252 (in Chinese with English abstract). |
| [14] |
Nikolopoulos, K., Goodwin, P., Patelis, A., et al., 2007. Forecasting with Cue Information: A Comparison of Multiple Regression with Alternative Forecasting Approaches. European Journal of Operational Research, 180(1): 354-368. https://doi.org/10.1016/j.ejor.2006.03.047 |
| [15] |
Phi, T. H., Strokova, L. A., 2015. Prediction Maps of Land Subsidence Caused by Groundwater Exploitation in Hanoi, Vietnam. Resource-Efficient Technologies, 1(2): 80-89. https://doi.org/10.1016/j.reffit.2015.09.001 |
| [16] |
Pu, C.H., Xu, Q., Zhao, K.Y., et al., 2021. Land Uplift Monitoring and Analysis in Yan’an New District Based on SBAS-InSAR Technology. Geomatics and Information Science of Wuhan University, 46(7): 983-993 (in Chinese with English abstract). |
| [17] |
Shahin, M. A., Maier, H. R., Jaksa, M. B., 2003. Settlement Prediction of Shallow Foundations on Granular Soils Using B-Spline Neurofuzzy Models. Computers and Geotechnics, 30(8): 637-647. https://doi.org/10.1016/j.compgeo.2003.09.004 |
| [18] |
Shao, Q., Li, W., Han, G. J., et al., 2021. A Deep Learning Model for Forecasting Sea Surface Height Anomalies and Temperatures in the South China Sea. Journal of Geophysical Research: Oceans, 126(7): e2021JC017515. https://doi.org/10.1029/2021JC017515 |
| [19] |
Shearer, T. R., 1998. A Numerical Model to Calculate Land Subsidence, Applied at Hangu in China. Engineering Geology, 49(2): 85-93. https://doi.org/10.1016/S0013-7952(97)00074-4 |
| [20] |
Shi, L. Y., Gong, H. L., Chen, B. B., et al., 2020. Land Subsidence Prediction Induced by Multiple Factors Using Machine Learning Method. Remote Sensing, 12(24): 4044. https://doi.org/10.3390/rs12244044 |
| [21] |
Shi, X. Q., Wu, J. C., Ye, S. J., et al., 2008. Regional Land Subsidence Simulation in Su-Xi-Chang Area and Shanghai City, China. Engineering Geology, 100(1/2): 27-42. https://doi.org/10.1016/j.enggeo.2008.02.011 |
| [22] |
Shin, Y., Ghosh, J., 1995. Ridge Polynomial Networks. IEEE Transactions on Neural Networks, 6(3): 610-622. https://doi.org/10.1109/72.377967 |
| [23] |
Su, H. Y., Hu, Z. Z., 1980. Review of Land Subsidence Research abroad. Geology of Shanghai, 1(2): 65-77 (in Chinese with English abstract). |
| [24] |
Waheeb, W., Ghazali, R., 2020. A Novel Error-Output Recurrent Neural Network Model for Time Series Forecasting. Neural Computing and Applications, 32(13): 9621-9647. https://doi.org/10.1007/s00521-019-04474-5 |
| [25] |
Waheeb, W., Ghazali, R., Herawan, T., 2016. Ridge Polynomial Neural Network with Error Feedback for Time Series Forecasting. PLoS One, 11(12): e0167248. https://doi.org/10.1371/journal.pone.0167248 |
| [26] |
Waheeb, W., Ghazali, R., Hussain, A. J., 2018. Dynamic Ridge Polynomial Neural Network with Lyapunov Function for Time Series Forecasting. Applied Intelligence, 48(7): 1721-1738. https://doi.org/10.1007/s10489-017-1036-7 |
| [27] |
Wang, Y., Yang, G., 2014. Prediction of Composite Foundation Settlement Based on Multi-Variable Gray Model. Applied Mechanics and Materials, 580/581/582/583: 669-673. https://doi.org/10.4028/www.scientific.net/amm.580-583.669 |
| [28] |
Williams, R. J., Zipser, D., 1989. A Learning Algorithm for Continually Running Fully Recurrent Neural Networks. Neural Computation, 1(2): 270-280. https://doi.org/10.1162/neco.1989.1.2.270 |
| [29] |
Yin, Y.P., Zhang, Z.C., Zhang, K.J., 2005. Land Subsidence and Countermeasures for Its Prevention in China. The Chinese Journal of Geological Hazard and Control, 16(2): 1-8 (in Chinese with English abstract). |
| [30] |
Zhang, H. X., 2021. Research on Monitoring and Prediction of Subsidence in Yan’an New Area Based on InSAR and Machine Learning (Dissertation). Lanzhou University, Lanzhou (in Chinese with English abstract). |
| [31] |
Zhang, Y. L., Zhang, Y. H., 2013. Land Subsidence Prediction Method of Power Cables Pipe Jacking Based on the Peck Theory. Advanced Materials Research, 634/635/636/637/638: 3721-3724. https://doi.org/10.4028/www.scientific.net/amr.634-638.3721 |
| [32] |
Zhou, C. D., Lan, H. X., Bürgmann, R., et al., 2022. Application of an Improved Multi-Temporal InSAR Method and Forward Geophysical Model to Document Subsidence and Rebound of the Chinese Loess Plateau Following Land Reclamation in the Yan’an New District. Remote Sensing of Environment, 279: 113102. https://doi.org/10.1016/j.rse.2022.113102 |
国家自然科学基金项目(41790445;41630640)
国家重点研发计划项目(2021YFC3000401)
地质灾害防治与地质环境保护国家重点实验室自主研究课题(SKLGP2023Z026)
/
| 〈 |
|
〉 |