腕足动物支撑的关山生物群层状底栖群落揭示寒武纪早期生态系统复杂性

陈飞扬 ,  张志飞 ,  Topper Timothy P. ,  刘茜

地球科学 ›› 2024, Vol. 49 ›› Issue (06) : 2277 -2295.

PDF (15577KB)
地球科学 ›› 2024, Vol. 49 ›› Issue (06) : 2277 -2295. DOI: 10.3799/dqkx.2023.052

腕足动物支撑的关山生物群层状底栖群落揭示寒武纪早期生态系统复杂性

作者信息 +

Brachiopod-Supported Benthic Communities from Guanshan Biota Uncover Early Cambrian Ecological Complexities

Author information +
文章历史 +
PDF (15950K)

摘要

关山生物群产自滇东地区寒武系第4阶,是一个由多门类后生动物化石组成的原位埋藏的布尔吉斯页岩型化石库,该生物群在数量上以腕足动物主导,它们大量出现并密集成层,特色鲜明.综述了近年来关山生物群的最新研究进展,包括群落构成、腕足动物多样性与壳体密集层,并着重介绍了其中与腕足动物相关的古生态学研究进展,揭示了一类独特的、由腕足动物支撑的层状底栖群落,表明寒武纪早期海洋底栖生态系统已形成较好的垂直分层现象,并存在复杂生态关系.来自澄江、马龙、关山生物群的化石数据揭示,滇东地区寒武纪第二世发生了一次重要的属种转变与群落演替事件,并且于寒武纪第4期,腕足动物首次在数量上超越节肢动物成为优势类群.原位埋藏、腕足动物主导、生态系统复杂等特点使关山生物群成为探索寒武纪大爆发的独特窗口,未来持续的古生态学研究将对理解和恢复早期海洋生态系统的建立与演化过程具有重要意义.同时,开展该时期古环境的纵向演变研究,探索影响群落演替的关键控制因素,将对寒武系第二统全球地层对比工作提供重要参考.

关键词

关山生物群 / 腕足动物 / 底栖群落演替 / 生态系统复杂性 / 寒武纪第4期 / 滇东地区 / 生态学.

Key words

Guanshan Biota / brachiopod / benthic community succession / ecosystem complexity / Cambrian Age 4 / East Yunnan / ecology

引用本文

引用格式 ▾
陈飞扬,张志飞,Topper Timothy P.,刘茜. 腕足动物支撑的关山生物群层状底栖群落揭示寒武纪早期生态系统复杂性[J]. 地球科学, 2024, 49(06): 2277-2295 DOI:10.3799/dqkx.2023.052

登录浏览全文

4963

注册一个新账户 忘记密码

寒武纪生命大爆发是史无前例、绝无仅有且最具革命性的重大演化事件,历时约4千万年,导致地球动物树三大亚界(包括基础动物、原口动物和后口动物亚界)依次成型,凸显了寒武纪大爆发的突发性、连续性和阶段性(Shu et al.,2010, 2014; Zhang X.L. et al.,2014; 张志飞和陈飞扬,2017; Erwin 2020; 舒德干和韩健,2020;Zhang Z.L. et al.,2021).在此期间不仅大量门一级动物躯体构型出现,成为现生动物门或亚门最重要的历史起点 (Erwin,2015, 2020Budd and Jensen,2017Wood et al.,2017Zhang and Shu,2021),而且还伴随有海洋生物多样性与生态系统复杂性的显著增加,体现在生态位的全方位拓展和生态空间利用效率的显著提高,导致了以后生动物为主导的包括内栖、表栖、游泳和浮游海洋复杂生态系统的初次建立(Zhao et al.,2010),奠定了显生宙伊始海洋生态系统的演化基础(Bassett et al.,2002Zhao et al.,2010, 20122014Erwin and Tweedt,2012Zhang et al.,2014Gabriela Mángano and Buatois,2017Bicknell and Paterson,2018Wood et al.,2019Murdock,2020; 张志飞等,2021).沉积物内生物扰动的增加也促使前寒武纪以微生物席为主的底质向寒武纪混合型底质过渡(Budd and Jensen,2017Bicknell and Paterson,2018Bottjer et al.,2000;庆国帅等,2020;刘炳辰等,2021),目前,关于寒武纪生命大爆发的认识主要基于前期发现于世界各地的前寒武纪-寒武纪时期沉积地层内的多个特异埋藏化石库(罗惠麟等,2008; 赵元龙等,2011; 胡世学等,2013; Kimmig and Pratt,2015Edgecombe et al.,2017Hou et al.,2017Fu et al.,2019Harper et al.,2019; 朱茂炎等, 2019; Droser et al.,2020Du et al.,2020Kimmig et al.,2020Peng et al.,2020; 张兴亮,2021).近年来随着研究的不断深入,华南地区在早期生命与环境演化方面的科学重要性日益凸显(Li et al.,2016Zhu and Li,2017Zhang and Brock,2018; 朱茂炎等,2019; Zhang Z.L.et al.,2021),越来越多的化石群被发现,如清江生物群、范店生物群、福禄生物群等(Fu et al.,2019Du et al.,2020Peng et al.,2020),均为相关研究提供了更加丰富的材料.滇东地区由于独特的沉积埋藏环境,保存了丰富多样的寒武纪早期特异埋藏化石库(如澄江生物群、小石坝生物群、马龙动物群、关山生物群),分布广泛、产地众多,一直以来都是国际寒武纪大爆发研究的热点地区(罗惠麟等,2008; 胡世学等,2013; Yang et al.,2013, 2021Zeng et al.,2014, 2020Cong et al.,2017Hou et al.,2017Chen et al.,2019, 20202021; 朱茂炎等,2019; 舒德干和韩健,2020; Zhang et al.,2020a).前期的研究以著名的澄江生物群(寒武系第3阶)为代表,自20世纪后半叶发现以来一直为古生物学家所关注,连续的化石采集工作及大力研究已取得系列成果(罗惠麟等,1999,2008; Zhao et al.,2010; 胡世学等,2013; Yang et al.,2013, 2021Shu et al.,2014Hou et al.,2017; 朱茂炎等,2019;舒德干和韩健,2020; Zeng et al.,2020).时代上出现稍晚的寒武纪第4期关山生物群,是一个由多门类软躯体后生动物化石组成的原位保存的布尔吉斯页岩型特异埋藏化石库.前期研究要追溯至20世纪末(罗惠麟等,1999),经过罗惠麟等(2008)和胡世学等(2013)的系统性发掘,已取得极大进展,目前共发现了 10 多个门类 60 多个属种,包括海绵动物、腔肠动物、始海百合类、开腔骨类、节肢动物、鳃曳动物、腕足动物、软舌螺、棘皮动物、古虫动物、奇虾类、叶足动物、遗迹化石、藻类等(胡世学等,2013).近期,在野外工作中发现了越来越多不同于澄江动物群的新物种,暗示关山动物群具有更高的物种多样性.大量精美保存的软躯体、软组织化石为理解该时期的个体解剖学、谱系演化、生物古地理等方面提供了新的关键信息(Liu et al.,2015, 2021Li et al.,2017Zeng et al.,2018Zhao et al.,2018, 20202022Wu and Liu,2019Zhang et al.,2020b),表明关山生物群具有极高的科学价值与研究潜力.
本文将结合前人的研究成果,基于笔者最新的研究工作,综述滇东马龙、武定、会泽地区的关山生物群研究进展(图1图2),关注其中与腕足动物相关的生态现象,探讨该时期以腕足动物和三叶虫为代表的底栖群落的纵向演替过程,并揭示寒武纪早期腕足动物在提升底栖生态系统复杂度方面的重要作用,为下一步工作提供新的思考.

1 关山生物群中腕足动物的属种组成

腕足动物是寒武纪和古生代演化动物群最重要的组成部分之一(Sepkoski,1984),也是寒武系第二统—苗岭统底栖群落中数量最为丰富的成员之一(Zhao et al.,2010Whitaker et al.,2020Chen et al.,2021).其身裹双壳,壳体通常由钙质或几丁磷灰质组成,具有相对简单的底栖固着滤食生活方式.腕足动物分布广泛、多样性高、数量丰富的特征使得该类动物在古生代的海洋领域中占据重要的生态位置,并且在寒武纪底栖生物群落中发挥了重要作用(Wang et al.,2012Chen et al.,2019, 2021Zhang et al.,2020a).澄江生物群中的腕足动物较为常见,目前已发现4纲6目8科 8 属 8 种和2类干群腕足动物,显示出极高的多样性与分异度(段晓林,2021).

关山生物群中的腕足动物常见软组织保存(图3),如罕见的刚毛、肌肉疤、内脏区、脉管等,精美程度可与澄江化石库相媲美(Chen et al.,2019, 2021Zhang et al.,2020b).最新的研究揭示,关山生物群中的腕足动物分属2纲4目8科8属8种(图4)(胡世学等,2013;Chen et al.,2019, 2021;Zhang et al.,2020a, 2020bDuan et al.,2021;段晓林,2021).包括磷酸钙质壳舌形贝类Linnarssonia sapushanensisEoobolus malongensisNeobolus wulongqingensisSchizopholis wulongqingensisAcanthotretella decaiusPalaeobolus liantuoensis,以及钙质壳小嘴贝类 Kutorgina sinensisNisusia sp.(Hu,2005; 胡世学等,2013; Zhang and Holmer,2013Chen et al.,2019, 2021Zhang et al.,2020a, 2020bDuan et al.,2021),表现出较高的物种分异度,其中L.sapushanensisE.malongensisN. wulongqingensisS.wulongqingensis的个体丰度明显高于其余4属种(Zhang et al.,2020a, 2020bChen et al.,2021Duan et al.,2021).整体上,关山生物群中的腕足动物个体较大(壳体宽度约5 mm或更大),唯一例外的是毫米级大小的乳孔贝科洒普山林纳逊贝Linnarssonia sapushanensis Duan and Zhang,2021(壳体宽度通常小于2 mm )大量产出,不同于澄江生物群中较低的乳孔贝个体数量,经研究认为滇东地区乌龙箐组底部是该属在华南地区的最早层位(Duan et al.,2021).小嘴贝类腕足动物Kutorgina最早出现于寒武系第3阶的澄江化石库中,但 Nisusia 在滇东地区最早发现于第4阶的乌龙箐组内部,两者的首现时间稍有不同.值得注意的是,除Kutorgina外,关山生物群中腕足动物其他7个属均为继澄江生物群之后出现的新属种(Chen et al.,2019).总体而言,关山生物群中的腕足动物物种多样性较高,但目前并未发现干群腕足动物,其与鄂西地区石牌组内的腕足动物化石组合较为相似(刘璠等,2017),与澄江生物群中腕足动物的属种组成差异较大.

2 关山生物群中的腕足动物壳体化石密集层

化石密集主要指化石尤其生物硬体在沉积作用、生物作用甚至成岩作用的影响下,在地层中相对紧密的堆积(Kidwell et al.,1986).虽然其在整个地质历史时期都很普遍(Li and Droser,1997; El-Sabbagh and El Hedeny,2016; García-Ramos and Zuschin,2019),但在布尔吉斯页岩型化石库内却鲜有报道(Han et al.,2006).并且,群居、包壳和壳体富集的介壳层等重要的生态现象通常被认为出现在寒武纪中晚期到奥陶纪,是奥陶纪生物大辐射期间的重要生态现象(张志飞等,2021).然而近期Chen et al.(2019, 2021)通过研究发现,关山生物群中的腕足动物大量出现于乌龙箐组粉砂质泥岩、互层状泥岩与粉砂岩或砂岩内,以舌形贝目和乳孔贝目居多,包括L.sapushanensisE.malongensisN.wulongqingensisS.Wulongqingensis,通常在岩石层形成的单属种或多属种壳体化石密集层,在区域上形成了较为独特的数量多、密度大且分布稳定腕足动物单属种壳体密集层(图5).近期的研究显示N.wulongqingensis密集层中有超过50%的壳体铰合保存或轻微错动,而且壳体较为完整、管状附着生物保存完好,部分还保存了软组织如肌肉痕、内脏区等,属于原地或近原地埋藏(Chen et al.,2022).而L.sapushanensis密集层内的壳体通常背腹壳分离,未发现软躯体保存,由风暴作用导致(Duan et al.,2021).其他属种的腕足动物目前尚未深入研究,成因有待进一步探索.通过纵向的定量采集分析,发现不同的腕足属种密集层出现于不同岩石层位,唯一的三叶虫Palaeolenus 单属种密集层出现于泥岩内(Chen et al.,2021)(图5b).关山生物群中大量出现的舌形贝类壳体密集层在寒武纪早期的沉积物中并不常见(Chen et al.,2019, 2021Zhang et al.,2020aDuan et al.,2021Harper et al.,2021),这些腕足动物通过大量聚集的壳体或分散的壳体碎屑作用于寒武纪早期的海洋底质,硬化海底表面,加速了海洋底质革命演化,从而影响其他生物的生活方式和群落营养结构(Zhang et al.,2020a; Duan et al.,2021; Chen et al.,2022).

3 关山生物群中与腕足动物相关的生物相互作用

前期的研究揭示,寒武纪早期腕足动物作为基质生物与附生生物,不仅可被其他生物附着于表面生活,还可附着在三叶虫、软舌螺、微瓦虾、管状化石、开腔骨、海绵、藻类甚至腕足动物等生物的表面(Zhang et al.,2006, 2007,2010,,2011a,2011c,2020a; Topper et al.,2014, 2018),具有一定的空间层次性,其很可能是最早构建复杂生态分层的底栖后生动物之一(Zhang et al.,2010, 2018Wang et al.,2012Zhang and Holmer,2013Topper et al.,2018).到了寒武纪第4期,关山生物群中不仅出现了大量的腕足动物,而且还富集成层且广泛分布.值得注意的是,Zhang et al.(2020a)还在大量原位成层的N.wulongqingensis壳体上发现了数量较多的管状蠕虫生物附着,经统计分析发现,被蠕虫附着的腕足动物个体相对无附着个体,其生物量减少26%,并且目前仅发现管状蠕虫寄生在N.wulongqingensis壳体上,从而论证了这些虫管与其附着的腕足动物N.wulongqingensis之间存在明显的专性-窃食寄生关系,代表了地球上最原始的寄宿关系(Zhang et al.,2020a).由此可见,关山生物群中大量出现的底栖固着腕足动物,不仅硬化了当时海洋的混合底质,而且为其他生物提供了繁衍平台,它们开始超越寒武纪第3期的三叶虫,成为海洋底栖生物群落中最重要的基质生物(basibionts)和生态系统建设的贡献者.此外,该时期的腕足动物N.wulongqingensis壳体上还常见捕食痕和修复的疤痕(Zhang et al.,2011b),虽然前人在澄江化石库的三叶虫和纳罗虫等节肢动物表面发现了宏体捕食-被捕食的化石证据(Ou et al.,2009),但澄江生物群中的腕足动物并未发现遭受捕食攻击.由此推测,关山生物群时期海洋生物所面临的捕食压力更大,而且与腕足动物相关的生物相互作用关系网也更为复杂,这些腕足动物在寒武纪海洋底栖群落中所扮演的重要生态角色也就不言而喻了.

4 关山生物群中腕足动物支撑的层状底栖群落

前期研究认为埃迪卡拉纪的生态系统结构相对简单,主要由底栖固着生物组成,生物之间的相互作用非常有限(Clapham and Narbonne,2002Bush and Bambach,2011Laflamme et al.,2013Liu et al.,2015Cribb et al.,2019; 张志飞等,2021).近期生态学研究显示寒武纪的澄江、清江、布尔吉斯页岩生物群中保存了诸如捕食-被捕食关系、生物扰动、关键躯体结构的出现(眼睛、四肢、肠道、感觉器官、摄食结构)等证据(Caron and Jackson,2008Zhao et al.,2010Caron et al.,2014Budd and Jensen,2017Fu et al.,2019Wood et al.,2019),其中较高的物种多样性与生活方式、取食方式多样化等是导致复杂食物网形成的主要原因之一,暗示该时期海洋生态系统复杂度明显提高(Hu et al.,2007Vannier et al.,2007Vannier,2012Zhao et al.,2012).然而,除却已报道的共生关系与捕食行为(Zhu et al.,2004Vannier and Chen,2005Vannier,2012Wang et al.,2012Cong et al.,2017Bicknell and Paterson,2018Li et al.,2020Nanglu and Caron,2021),寒武纪早期有关生物相互作用的直接化石证据仍比较有限.

Chen et al.(2022)近期的研究为理解寒武纪大爆发时期的群落生态提供了新的线索.经过研究发现,在马龙砍斧箐和会泽大海剖面乌龙箐组下部产出的腕足动物N.wulongqingensis密集层内同时保存有寄生的管状蠕虫、古蠕虫以及中华吐卓虫Tuzoia sinensis Pan,1957(图6)(Chen et al.,2022).在其中一块面积约为 198 cm2的标本表面至少保存了231个几乎完整的N.wulongqingensis壳体,显示出极高的密度.腕足动物壳体上的管状蠕虫较为常见,通常附着在背、腹壳边缘(图5a).标本中的古蠕虫躯干通常呈弯曲状态,穿插分布于N.wulongqingensis密集层内(图6b),二者几乎总是相互叠压,保存在厚度不超5 mm的薄层泥岩内,而非单独分散于岩层表面.而且,N.wulongqingensis壳体表面有时可见到古蠕虫骨板的印痕,个别古蠕虫躯干也发现于破损剥落的N.wulongqingensis壳体之下,还有一些N.wulongqingensis壳体分布在T.sinensis壳体边缘或网状纹饰剥落的区域之下.经过综合分析认为,至少其中的腕足动物 N.wulongqingensis 、管状寄生蠕虫和古蠕虫属于原地或近原地埋藏,代表了原位生活的复杂群落.近期综合的沉积学、埋藏学和岩石学研究表明关山生物群属于原地或近原地埋藏,沉积地层内强烈的生物扰动包括水平遗迹和垂直潜穴也表明其未遭受搬运(胡世学等,2013; Chen et al.,2019, 2021).虽然,Han et al.(2006) 在澄江化石库中也发现了大量的化石聚集现象,然而仅有部分亲缘关系较近且占据相同或相邻生态位的蠕形动物在同一岩石微层面上大量富集(Han et al.,2006Vannier and Martin,2017),多数情况下富集的化石通常以单属、单种的形式出现在单一岩石层面上,这些保存在不同层面的单属种生物富集层很可能反映了不同机会种在风暴事件间隙的复苏与大量繁殖现象(Han et al.,2006).

因此,关山生物群与大多著名的寒武纪特异埋藏化石库(如澄江、清江和布尔吉斯页岩生物群)区别明显,前者是一个没有经历搬运或搬运距离很短的原地或近原地埋藏化石组合(胡世学等,2010,2013; Liu et al.,2012Chen et al.,2019),而后者内部化石显示出一定的平面定向,并且相对缺乏生物扰动证据(朱茂炎等,2001;Steiner et al.,2005Caron and Jackson,2006Han et al.,2006Zhao et al.,2012Caron et al.,2014Fu et al.,2019),在埋葬前都或多或少都经历了明显的水流搬运(除却个别情况;参见O’Brien and Caron,2012Kimmig and Pratt,2016Harper et al.,2019Yang et al.,2021),导致其中生物相互作用的直接证据通常由于搬运而被掩盖(朱茂炎等,2001;Steiner et al.,2005Han et al.,2006Caron and Jackson,2008Zhao et al.,2009, 2010Caron et al.,2014).

虽然澄江生物群中较高的物种多样性暗示了生态系统的复杂性(Zhao et al.,2010),但这些密集成层的生物并未在海洋中形成明显的垂直分层.而在随后的关山生物群中则发生了明显变化,新化石材料记录了古蠕虫、腕足动物N.wulongqingensis和壳体表面大量专性寄生的管状蠕虫共存(Zhang et al.,2020a),其中N.wulongqingensis和寄生的管状蠕虫表明该时期存在由腕足动物支撑的次级生态分层群落结构,暗示当时大量出现的腕足动物在改变周围环境方面发挥了显著作用,通过影响其他生物(穴居的蠕虫和寄生的管状生物)的选择压力,促使不同生态位的动物共同生活在同一海洋空间,并且在垂向上形成了很好的垂直分层现象.因此,关山生物群中腕足动物密集层的出现不仅硬化了当时的海洋底质,还为其他生物的大量繁盛提供生态机会和场所,加速了该时期的生态分层,形成了独特的以腕足动物支撑的层状底栖群落结构,生态空间利用率显著提高,生物群落结构趋向复杂.这种独特的由腕足动物支撑的层状底栖群落,代表了奥陶纪生物大辐射时期更为复杂的垂向群落分层和腕足动物主导的底栖群落的先驱(图7).

5 关山生物群动物门类的构成特征及纵向变化

近期Chen et al.(2019, 2020)对马龙、武定地区关山生物群的两个典型剖面进行了研究,共发现6 个主要化石类群,包括节肢动物、腕足动物、软舌螺、鳃曳动物、古虫动物和奇虾类.其中节肢动物多样性最高,包括RedlichiaPalaeolenusGuangweicarisPanlongiaLeanchoiliaIsoxysTuzoia、bradoriids等;腕足动物包括前文提到的8属8种;软舌螺仅发现马龙线带螺Linevitus Malongensis1属1种;鳃曳动物以古蠕虫类为主.众所周知,在寒武纪底栖生物群落中泛节肢动物(尤其三叶虫)在多样性和丰富度方面几乎总是占据主导地位,这可从滇东地区时代稍早的澄江生物群和马龙动物群中得到验证(罗惠麟等,2008; Zhao et al.,2010Chen et al.,2019, 2021).然而上述两个剖面中的统计结果却截然不同,相较于其他动物门类而言,腕足动物数量极其丰富,在个体丰度(马龙地区:67.9%;武定地区:72.9%)方面优势明显(图8),占据了底栖群落的主导地位(Chen et al.,2019, 2021).那么从节肢动物(尤其三叶虫)主导向腕足动物主导的底栖生态群落是如何过渡的?具体发生在何时?为此作者进一步开展了化石定量发掘工作,数据揭示出关山生物群化石群落的构成随时间在纵向上的确发生了明显变化.其中节肢动物 (如三叶虫)、腕足动物和软舌螺数量极高,纵向上个体丰度虽有波动但贯穿整个研究层位,鳃曳动物、古虫动物和奇虾类则零星出现于不同层位(图9).以红井哨组与乌龙箐组界线向上 1 m处为界限,其下的红井哨组为节肢动物尤其三叶虫主导,向上在乌龙箐组底部迅速变为腕足动物主导,记录了从三叶虫主导群落向腕足动物主导群落的生态过渡事件,与寒武纪第4期滇东地区广泛发育的海侵事件相吻合(罗惠麟等,2008; 胡世学等,2010,2013; Chen et al.,2019, 2021Duan et al.,2021)(图9).因此,在寒武纪大爆发的后期阶段扬子台地内有机磷酸钙质壳腕足动物达到了极高的丰富度(Zhang et al.,2020a).寒武纪第4期关山生物群中具有数量优势的有机磷酸钙质壳腕足动物的大幅增加,是化石记录中已知最早的以腕足动物为主导的软基底底栖动物群落.而且,关山生物群中,不同类型的腕足动物属种在纵向上也发生了明显变化,从最底部的三足鼎立模式(L.sapushanensisE.malongensisN.wulongqingensis),向上演变为一枝独秀(S.wulongqingensis)(图9),表明该时期海洋底栖群落波动频繁,很可能受到了当时沉积环境的影响(Chen et al.,2021).该结果揭示了关山生物群在物种个体丰度方面具有显著独特性,腕足动物在数量上占据绝对优势,明显区别于其他所有丰富度和多样性以泛节肢动物主导的寒武纪特异埋藏化石库(如澄江生物群、清江生物群、鸸鹋湾页岩动物群、布尔吉斯页岩生物群、凯里生物群等)(Caron and Jackson,2008; Zhao et al.,2010; Paterson et al.,2016Strang et al.,2016Fu et al.,2019Peng et al.,2020Chen et al.,2021).

6 滇东地区寒武纪第二世底栖群落的纵向演替

从结构组成角度看,在寒武纪第二世,滇东地区的澄江生物群、马龙动物群和关山生物群内的动物门类组成具有一定相似性,囊括了基础动物、冠轮动物、蜕皮动物和后口动物4大类群,澄江生物群与关山生物群的动物门类大致相同,马龙动物群的门类多样性偏低.其中节肢动物和腕足动物在3者中数量均较多,此外澄江化石库中常见的还有海绵动物、鳃曳动物和叶足动物(罗惠麟等,2008;胡世学等,2010;Zhao et al.,2010).然而,基于时间序列的化石组合构成数据表明:这3个动物群中的底栖生物群落结构随时间发生了明显变化,其中生态多样性较高的代表分子如腕足动物与三叶虫在属和种一级分类水平上完全不同(图10).澄江化石库中三叶虫的代表分子主要为EoredlichiaYunnanocephalusWutingaspisMalungia;腕足动物DiandongiaEoglossaLingulellotreta较为常见(罗惠麟等,1999;Hu,2005; Zhao et al.,2010).马龙动物群以数量庞大的三叶虫如 YiliangellinaDrepanuroides和腕足动物 Palaeobolus为特征(罗惠麟等,2008).关山生物群时期,三叶虫群落主要由 PalaeolenusMegapalaeolenus 主导,腕足动物中EoobolusNeobolusSchizopholis数量最为丰富(胡世学等,2013;Chen et al.,2019, 2021).3个动物群中三叶虫与腕足动物属种的明显不同,代表了滇东地区寒武纪第二世一次重要的属种转变与群落演替事件.究其原因,可能与当时的沉积环境变化有关.澄江生物群的赋存层位为黑林铺组玉案山段,以泥岩为主,沉积于生物扰动少、水动力弱、安静的深水环境,风暴作用的快速掩埋提高了化石的保存精美度(朱茂炎等,2001).其上的红井哨组产马龙动物群,以厚层粉砂岩、砂岩夹薄层泥页岩为特征,沉积于浅水、高能的三角洲前缘和三角洲平原环境,代表了筇竹寺期之后的海退事件(罗惠麟等,2008;胡世学等,2010).此后,随着海侵事件的发生,乌龙箐组水体加深,以粉砂岩、泥岩沉积为主,研究认为关山生物群保存于相对较浅水的下临滨环境,化石的精美保存得益于风暴事件的快速掩埋和微生物席的保护(胡世学等,2010,2013;Chen et al.,2019,2021).这些证据表明,滇东地区寒武纪第二世的澄江、马龙、关山动物群中腕足动物和三叶虫的属种演替与当时水体环境由深变浅、再加深的变化明显具有相关性,化石组合差异反映了不同水深环境对底栖群落组成的影响,暗示底栖固着群落如腕足动物可能受到与三叶虫相同的影响因素(罗惠麟等,2008).但究竟是何种环境因子对该时期底栖群落变化产生的影响最大,目前还不得而知,有待后续进一步的工作揭示.

7 结论与展望

原位保存的生物化石组合对理解早期海洋生态系统的建立与演化具有极其重要的意义,而产自我国滇东地区原位保存的关山生物群(寒武纪第4期)则为复原寒武纪生命大爆发期间的海洋图景提供了关键信息.关山生物群以腕足动物的大量出现及富集成层为特色,腕足动物首次在数量上超越节肢动物(尤其三叶虫),在地层内形成分布广泛且数量众多的壳体密集层,明显不同于寒武纪其他以节肢动物主导的特异埋藏化石库.该时期涉及腕足动物的生物相互作用关系的化石记录明显增多,表明腕足动物不仅面临更大的捕食-被捕食压力,而且还遭受了专性寄生虫的感染.近期报道的罕见多门类化石共生组合,包括底栖固着的腕足动物N.wulongqingensis、寄生的管状蠕虫、内栖的古蠕虫,代表了寒武纪第4期不同门类、不同生态位、不同生活方式的动物共同生活的直接化石证据,反映了较复杂的共生关系与食物网,还原了一个独具特色的、由腕足动物支撑的层状底栖生态群落的图景,表明该时期的生态空间利用率显著提高,群落结构趋向复杂.大量出现的腕足动物扮演了重要的生态角色,它们通过改造周围环境,为其他生物的大量繁盛提供基础和场所,加速了生态分层.基于时间序列的详细化石数据表明,在乌龙箐组底部向上1 m处,腕足动物在个体数量上迅速取代节肢动物成为优势类群,并且腕足动物内部在较短时间内也发生了明显的属种更替.进一步分析揭示,滇东地区寒武纪第二世发生了一次重要的属种转变与群落演替事件,澄江、马龙、关山生物群的底栖群落结构在很大程度上受到了当时水体环境变化的影响.

综合研究表明,毫不起眼的底栖固着腕足动物却在地球复杂生态系统的早期建立过程中扮演了不可或缺的生态角色,而原位埋藏的寒武纪第4期关山生物群特异埋藏化石库无疑为相关研究提供了关键化石材料.然而,目前尚不清楚是何种原因导致了该时期腕足动物的大量繁盛,寒武纪第二世底栖群落中主要类群和关山生物群中其他底栖生物的纵向演替与具体过程亦不明了.不仅如此,关山生物群中的腕足动物密集层种类较多,但目前仅发现与N.wulongqingensis相关的生物相互作用证据,还难以确定其他属种的腕足动物及底栖生物之间的生态关系.因此,未来需继续加强关山生物群古生态学方面的研究工作,重点探索其他属种的腕足动物(包括密集层)、底栖生物之间是否存在相互作用关系以及各自在群落中所扮演的生态角色,从更加全面的视角恢复该时期的海洋生态系统面貌.此外,还需开展古环境方面的研究,探索环境的纵向变化过程与特征,及影响群落演替的关键环境控制因素,建立该时期滇东地区生物与环境的协同演化过程,将对未来的寒武系第二统全球地层对比工作提供重要参考.

参考文献

[1]

Bassett,M.G.,Popov,L.E.,Holmer,L.E.,2002.Brachiopods:Cambrian-Tremadoc Precursors to Ordovician Radiation Events.Geological Society,London,Special Publications,194(1):13-23.https://doi.org/10.1144/gsl.sp.2002.194.01.02

[2]

Bicknell,R.D.C.,Paterson,J.R.,2018.Reappraising the Early Evidence of Durophagy and Drilling Predation in the Fossil Record:Implications for Escalation and the Cambrian Explosion.Biological Reviews,93(2):754-784.https://doi.org/10.1111/brv.12365

[3]

Bottjer,D.J.,Hagadorn,J.W.,Dornbos S.Q.,2000.The Cambrian Substrate Revolution.GSA Today,10(9):1-7.

[4]

Budd,G.E.,Jensen,S.,2017.The Origin of the Animals and a ‘Savannah’ Hypothesis for Early Bilaterian Evolution.Biological Reviews of the Cambridge Philosophical Society,92(1):446-473.https://doi.org/10.1111/brv.12239.

[5]

Bush,A.M.,Bambach,R.K.,2011.Paleoecologic Megatrends in Marine Metazoa.Annual Review of Earth and Planetary Sciences,39:241-269.https://doi.org/10.1146/annurev-earth-040809-152556

[6]

Caron,J.,Jackson,D.A.,2006.Taphonomy of the Greater Phyllopod Bed Community,Burgess Shale.Palaios,21(5):451-465.https://doi.org/10.2110/palo.2003.p05-070r

[7]

Caron,J.B.,Gaines,R.R.,Aria,C.,et al.,2014.A New Phyllopod Bed-Like Assemblage from the Burgess Shale of the Canadian Rockies.Nature Communications,5(1):3210.https://doi.org/10.1038/ncomms4210.

[8]

Caron,J.B.,Jackson,D.A.,2008.Paleoecology of the Greater Phyllopod Bed Community,Burgess Shale.Palaeogeography,Palaeoclimatology,Palaeoecology,258(3):222-256.https://doi.org/10.1016/j.palaeo.2007.05.023

[9]

Chen,F.Y.,Brock,G.A.,Zhang,Z.L.,et al.,2021.Brachiopod-Dominated Communities and Depositional Environment of the Guanshan Konservat-Lagerstätte,Eastern Yunnan,China.Journal of the Geological Society,178(1):jgs2020-043.https://doi.org/10.1144/jgs2020-043

[10]

Chen,F.Y.,Topper,T.,Skovsted,C.,et al.,2022.Cambrian Ecological Complexities:Perspectives from the Earliest Brachiopod - Supported Benthic Communities in the Early Cambrian Guanshan Lagerstätte.Gondwana Research,107:30-41.https://doi.org/10.1016/j.gr.2022.02.008

[11]

Chen,F.Y.,Zhang,Z.F.,Betts,M.J.,et al.,2019.First Report on Guanshan Biota (Cambrian Stage 4) at the Stratotype Area of Wulongqing Formation in Malong County,Eastern Yunnan,China.Geoscience Frontiers,10(4):1459-1476.https://doi.org/10.1016/j.gsf.2018.09.010

[12]

Chen,H.,Parry,L.A.,Vinther,J.,et al.,2020.A Cambrian Crown Annelid Reconciles Phylogenomics and the Fossil Record.Nature,583:249-252.https://doi.org/10.1038/s41586-020-2384-8

[13]

Clapham,M.E.,Narbonne,G.M.,2002.Ediacaran Epifaunal Tiering.Geology,30(7):627.https://doi.org/10.1130/0091-7613(2002)0300627:eet>2.0.co;2

[14]

Cong,P.Y.,Ma,X.Y.,Williams,M.,et al.,2017.Host-Specific Infestation in Early Cambrian Worms.Nature Ecology & Evolution,1(10):1465-1469.https://doi.org/10.1038/s41559-017-0278-4

[15]

Cribb,A.T.,Kenchington,C.G.,Koester,B.,et al.,2019.Increase in Metazoan Ecosystem Engineering Prior to the Ediacaran-Cambrian Boundary in the Nama Group,Namibia.Royal Society Open Science,6(9):190548.https://doi.org/10.1098/rsos.190548

[16]

Droser,M.L.,Tarhan,L.G.,Evans,S.D.,et al.,2020.Biostratinomy of the Ediacara Member (Rawnsley Quartzite,South Australia):Implications for Depositional Environments,Ecology and Biology of Ediacara Organisms.Interface Focus,10(4):20190100.https://doi.org/10.1098/rsfs.2019.0100

[17]

Du,K.S.,Ortega-Hernández,J.,Yang,J.,et al.,2020.A New Early Cambrian Konservat-Lagerstätte Expands the Occurrence of Burgess Shale-Type Deposits on the Yangtze Platform.Earth-Science Reviews,211:103409.https://doi.org/10.1016/j.earscirev.2020.103409

[18]

Duan,X.L.,Liang,Y.,Holmer,L.E.,et al.,2021.First Report of Acrotretoid Brachiopod Shell Beds in the Lower Cambrian (Stage 4) Guanshan Biota of Eastern Yunnan,South China.Journal of Paleontology,95(1):40-55.https://doi.org/10.1017/jpa.2020.66

[19]

Duan,X.L.,2021.Comparative Study of Early Cambrian Brachiopods from Western Hubei and Eastern Yunnan (Dissertation).Northwest University,Xi'an,175 (in Chinese with English abstract).

[20]

Edgecombe,G.D.,Paterson,J.R.,García-Bellido,D.C.,2017.A New Aglaspidid-Like Euarthropod from the Lower Cambrian Emu Bay Shale of South Australia.Geological Magazine,154(1):87-95.https://doi.org/10.1017/s0016756815001053

[21]

El-Sabbagh,A.M.,El Hedeny,M.M.,2016.A Shell Concentration of the Middle Miocene Crassostrea Gryphoides (Schlotheim,1813) from Siwa Oasis,Western Desert,Egypt.Journal of African Earth Sciences,120:1-11.https://doi.org/10.1016/j.jafrearsci.2016.04.007

[22]

Erwin,D.H.,2015.Early Metazoan Life:Divergence,Environment and Ecology.Philosophical Transactions of the Royal Society B:Biological Sciences,370(1684):20150036.https://doi.org/10.1098/rstb.2015.0036

[23]

Erwin,D.H.,2020.The Origin of Animal Body Plans:A View from Fossil Evidence and the Regulatory Genome.Development,147(4):dev182899.https://doi.org/10.1242/dev.182899

[24]

Erwin,D.H.,Tweedt,S.,2012.Ecological Drivers of the Ediacaran-Cambrian Diversification of Metazoa.Evolutionary Ecology,26(2):417-433.https://doi.org/10.1007/s10682-011-9505-7

[25]

Fu,D.J.,Tong,G.H.,Dai,T.,et al.,2019.The Qingjiang Biota:A Burgess Shale-Type Fossil Lagerstätte from the Early Cambrian of South China.Science,363(6433):1338-1342.https://doi.org/10.1126/science.aau8800

[26]

Gabriela Mángano,M.,Buatois,L.A.,2017.The Cambrian Revolutions:Trace-Fossil Record,Timing,Links and Geobiological Impact.Earth-Science Reviews,173:96-108.https://doi.org/10.1016/j.earscirev.2017.08.009

[27]

García-Ramos,D.A.,Zuschin,M.,2019.High-Frequency Cycles of Brachiopod Shell Beds on Subaqueous Delta-Scale Clinoforms (Early Pliocene,South-East Spain).Sedimentology,66(5):1486-1530.https://doi.org/10.1111/sed.12541

[28]

Han,J.,Shu,D.G.,Zhang,Z.F.,et al.,2006.Preliminary Notes on Soft-Bodied Fossil Concentrations from the Early Cambrian Chengjiang Deposits.Chinese Science Bulletin,51(20):2482-2492.https://doi.org/10.1007/s11434-005-2151-0

[29]

Harper,D.A.T.,Hammarlund,E.U.,Topper,T.P.,et al.,2019.The Sirius Passet Lagerstätte of North Greenland:A Remote Window on the Cambrian Explosion.Journal of the Geological Society,176(6):1023-1037.

[30]

Harper,D.A.T.,Stouge,S.,Christiansen,J.L.,et al.,2021.Early Cambrian Brachiopod-Dominated Shell Concentrations from North-East Greenland:Environmental and Taphonomic Implications.Global and Planetary Change,204:103560.https://doi.org/10.1016/j.gloplacha.2021.103560

[31]

Hou,X.,David,J.S.,Derek,J.S.,et al.,2017.The Cambrian Fossils of Chengjiang,China:The Flowering of Early Animal Life.Second ed..Blackwell,Oxford.https://doi.org/10.1002/9781118896372

[32]

Hu,S.X.,Steiner,M.,Zhu,M.Y.,et al.,2007.Diverse Pelagic Predators from the Chengjiang Lagerstätte and the Establishment of Modern-Style Pelagic Ecosystems in the Early Cambrian.Palaeogeography,Palaeoclimatology,Palaeoecology,254(1-2):307-316.https://doi.org/10.1016/j.palaeo.2007.03.044.

[33]

Hu,S.,2005.Taphonomy and Palaeoecology of the Early Cambrian Chengjiang Biota from Eastern Yunnan,China (Dissertation).Freie University,Berlin,197.

[34]

Hu,S.,X.,Zhu,M.,Luo,H.,L.,et al.,2013.The Guanshan Biota.Yunnan Science and Technology Press,Kunming,204(in Chinese).

[35]

Hu,S.,X.,Zhu,M.,Y.,Michael,S.,et al.,2010.Biodiversity and Taphonomy of the Early Cambrian Guanshan Biota,Eastern Yunnan.Science China:Earth Sciences,40(9):1115-1124 (in Chinese).

[36]

Kidwell,S.M.,Fursich,F.T.,Aigner,T.,1986.Conceptual Framework for the Analysis and Classification of Fossil Concentrations.Palaios,1(3):228-238.https://doi.org/10.2307/3514687

[37]

Kimmig,J.,Leibach,W.W.,Lieberman,B.S.,2020.First Occurrence of the Problematic Vetulicolian Skeemella Clavula in the Cambrian Marjum Formation of Utah,USA.Carnets de Géologie (Notebooks on Geology),20:215-221.https://doi.org/10.4267/2042/70836

[38]

Kimmig,J.,Pratt,B.R.,2015.Soft-Bodied Biota from the Middle Cambrian (Drumian) Rockslide Formation,Mackenzie Mountains,Northwestern Canada.Journal of Paleontology,89(1):51-71.https://doi.org/10.1017/jpa.2014.5

[39]

Kimmig,J.,Pratt,B.R.,2016.Taphonomy of the Middle Cambrian (Drumian) Ravens Throat River Lagerstätte,Rockslide Formation,Mackenzie Mountains,Northwest Territories,Canada.Lethaia,49(2):150-169.https://doi.org/10.1111/let.12135

[40]

Laflamme,M.,Darroch,S.A.F.,Tweedt,S.M.,et al.,2013.The End of the Ediacara Biota:Extinction,Biotic Replacement,or Cheshire Cat? Gondwana Research,23(2):558-573.https://doi.org/10.1016/j.gr.2012.11.004

[41]

Li,C.,Zhu,M.Y.,Chu,X.L.,2016.Preface:Atmospheric and Oceanic Oxygenation and Evolution of Early Life on Earth:New Contributions from China.Journal of Earth Science,27(2):167-169.https://doi.org/10.1007/s12583-016-0697-1

[42]

Li,J.S.,Liu,J.N.,Ou,Q.,2017.New Observations on Vetulicola Longbaoshanensis from the Lower Cambrian Guanshan Biota (Series 2,Stage 4),South China.Science China :Earth Sciences,60(10):1795-1804.https://doi.org/10.1007/s11430-017-9088-y

[43]

Li,X.,Droser,M.L.,1997.Nature and Distribution of Cambrian Shell Concentrations:Evidence from the Basin and Range Province of the Western United States (California,Nevada,and Utah).Palaios,12(2):111.https://doi.org/10.2307/3515301

[44]

Li,Y.J.,Williams,M.,Harvey,T.H.P.,et al.,2020.Symbiotic Fouling of Vetulicola,an Early Cambrian Nektonic Animal.Communications Biology,3(1):517.https://doi.org/10.1038/s42003-020-01244-1

[45]

Liu,B.C.,Qi,Y.A.,Dai,M.Y.,et al.,2021.Benthic Ecosystem Engineer after the Cambrian Explosion:An Example from Henan Province.Earth Science,46(1):148-161 (in Chinese with English abstract).

[46]

Liu,F.,Chen,F.Y.,Chen,Y.L.,et al.,2017.Notes on the Shipai Biota (Cambrian Series 2,Stage 4) Yielded from a New Section (Xiachazhuang) in the Maoping Town of Zigui County,Western Hubei Province,South China.Acta Palaeontologica Sinica,56(4):516-528 (in Chinese with English abstract).

[47]

Liu,F.,Skovsted,C.B.,Topper,T.P.,et al.,2021.Soft Part Preservation in Hyolithids from the Lower Cambrian (Stage 4) Guanshan Biota of South China and Its Implications.Palaeogeography,Palaeoclimatology,Palaeoecology,562:110079.https://doi.org/10.1016/j.palaeo.2020.110079

[48]

Liu,J.N.,Ou,Q.,Han,J.,et al.,2012.New Occurence of the Cambrian (Stage 4,Series 2) Guanshan Biota in Huize,Yunnan,South China.Bulletin of Geosciences,87(1):125-132.https://doi.org/10.3140/bull.geosci.1229

[49]

Liu,J.N.,Ou,Q.,Han,J.,et al.,2015.Lower Cambrian Polychaete from China Sheds Light on Early Annelid Evolution.Naturwissenschaften,102(5-6):34.https://doi.org/10.1007/s00114-015-1285-4.

[50]

Luo,H.L.,Hu,S.X.,Chen,L.Z.,et al.,1999.Early Cambrian Chengjiang Fauna from Kunming Region,China.YunnanScience and Technology Press,Kunming,129 (in Chinese).

[51]

Luo,H.L.,Li,Y.,Hu,S.X.,et al.,2008.Early Cambrian Malong Fauna and Guanshan Fauna from Eastern Yunnan,China.Yunnan Science and Technology Press,Kunming,134 (in Chinese).

[52]

Murdock,D.J.E.,2020.The ‘Biomineralization Toolkit’ and the Origin of Animal Skeletons.Biological Reviews of the Cambridge Philosophical Society,95(5):1372-1392.https://doi.org/10.1111/brv.12614

[53]

Nanglu,K.,Caron,J.B.,2021.Symbiosis in the Cambrian:Enteropneust Tubes from the Burgess Shale Co-Inhabited by Commensal Polychaetes.Proceedings Biological Sciences,288(1951):20210061.https://doi.org/10.1098/rspb.2021.0061

[54]

O’Brien,L.J.,Caron,J.B.,2012.A New Stalked Filter-Feeder from the Middle Cambrian Burgess Shale,British Columbia,Canada.PLoS One,7(1):e29233.https://doi.org/10.1371/journal.pone.0029233

[55]

Ou,Q.,Shu,D.,Han,J.,et al.,2009.A Juvenile Redlichiid Trilobite Caught on the Move:Evidence from the Cambrian (Series 2) Chengjiang Lagerstatte,Southwestern China.Palaios,24(7):473-477.https://doi.org/10.2110/palo.2008.p08-105r

[56]

Paterson,J.R.,García-Bellido,D.C.,Jago,J.B.,et al.,2016.The Emu Bay Shale Konservat-Lagerstätte:A View of Cambrian Life from East Gondwana.Journal of the Geological Society,173(1):1-11.https://doi.org/10.1144/jgs2015-083

[57]

Peng,S.C.,Yang,X.F.,Liu,Y.,et al.,2020.Fulu Biota,a New Exceptionally-Preserved Cambrian Fossil Assemblage from the Longha Formation in Southeastern Yunnan.Palaeoworld,29(3):453-461.https://doi.org/10.1016/j.palwor.2020.02.001.

[58]

Qing,G.S.,Qi,Y.A.,Yang,W.T.,et al.,2020.Bioturbated Structures and Their Geochemical Features from the Zhushadong Formation of the Cambrian Series 2 in Dengfeng Area of West Henan.Earth Science,45(4):1103-1114 (in Chinese with English abstract).

[59]

Sepkoski,J.J.,1984.A Kinetic Model of Phanerozoic Taxonomic Diversity.III.Post-Paleozoic Families and Mass Extinctions.Paleobiology,10(2):246-267.https://doi.org/10.1017/s0094837300008186

[60]

Shu,D.G.,Conway Morris,S.,Zhang,Z.F.,et al.,2010.The Earliest History of the Deuterostomes:The Importance of the Chengjiang Fossil-Lagerstätte.Proceedings of the Royal Society B:Biological Sciences,277(1679):165-174.https://doi.org/10.1098/rspb.2009.0646

[61]

Shu,D.G.,Isozaki,Y.,Zhang,X.L.,et al.,2014.Birth and Early Evolution of Metazoans.Gondwana Research,25(3):884-895.https://doi.org/10.1016/j.gr.2013.09.001

[62]

Shu,D.G.,Han,J.,2020.Core Value of the Chengjiang Fauna:Formation of the Animal Kingdom and the Birth of Basic Human Organs.Earth Science Frontiers,27(6):1-27 (in Chinese with English abstract).

[63]

Steiner,M.,Zhu,M.Y.,Zhao,Y.L.,et al.,2005.Lower Cambrian Burgess Shale-Type Fossil Associations of South China.Palaeogeography,Palaeoclimatology,Palaeoecology,220(1/2):129-152.https://doi.org/10.1016/j.palaeo.2003.06.001

[64]

Strang,K.,Armstrong,H.,Harper,D.,et al.,2016.The Sirius Passet Lagerstätte:Silica Death Masking Opens the Window on the Earliest Matground Community of the Cambrian Explosion.Lethaia,49:631-643.https://doi.org/10.1111/LET.12174

[65]

Topper,T.P.,Holmer,L.E.,Caron,J.B.,2014.Brachiopods Hitching a Ride:An Early Case of Commensalism in the Middle Cambrian Burgess Shale.Scientific Reports,4:6704.https://doi.org/10.1038/srep06704

[66]

Topper,T.P.,Zhang,Z.,Gutiérrez-Marco,J.C.,et al.,2018.The Dawn of a Dynasty:Life Strategies of Cambrian and Ordovician Brachiopods.Lethaia,51(2):254-266.https://doi.org/10.1111/let.12229

[67]

Vannier,J.,2012.Gut Contents as Direct Indicators for Trophic Relationships in the Cambrian Marine Ecosystem.PLoS One,7(12):e52200.https://doi.org/10.1371/journal.pone.0052200

[68]

Vannier,J.,Chen,J.Y.,2005.Early Cambrian Food Chain:New Evidence from Fossil Aggregates in the Maotianshan Shale Biota,SW China.Palaios,20(1):3-26.https://doi.org/10.2110/palo.2003.p03-40

[69]

Vannier,J.,Martin,E.L.O.,2017.Worm-Lobopodian Assemblages from the Early Cambrian Chengjiang Biota:Insight into the “Pre-Arthropodan Ecology”? Palaeogeography,Palaeoclimatology,Palaeoecology,468:373-387.https://doi.org/10.1016/j.palaeo.2016.12.002

[70]

Vannier,J.,Steiner,M.,Renvoisé,E.,et al.,2007.Early Cambrian Origin of Modern Food Webs:Evidence from Predator Arrow Worms.Proceedings Biological Sciences,274(1610):627-633.https://doi.org/10.1098/rspb.2006.3761

[71]

Wang,H.Z.,Zhang,Z.F.,Holmer,L.E.,et al.,2012.Peduncular Attached Secondary Tiering Acrotretoid Brachiopods from the Chengjiang Fauna:Implications for the Ecological Expansion of Brachiopods during the Cambrian Explosion.Palaeogeography,Palaeoclimatology,Palaeoecology,323:60-67.https://doi.org/10.1016/j.palaeo.2012.01.027

[72]

Whitaker,A.F.,Jamison,P.G.,Schiffbauer,J.D.,et al.,2020.Re-description of the Spence Shale Palaeoscolecids in Light of New Morphological Features with Comments on Palaeoscolecid Taxonomy and Taphonomy.PalZ,94(4):661-674.https://doi.org/10.1007/s12542-020-00516-9

[73]

Wood,R.,Ivantsov,A.Y.,Zhuravlev,A.Y.,2017.First Macrobiota Biomineralization was Environmentally Triggered.Proceedings Biological Sciences,284(1851):20170059.https://doi.org/10.1098/rspb.2017.0059

[74]

Wood,R.,Liu,A.G.,Bowyer,F.,et al.,2019.Integrated Records of Environmental Change and Evolution Challenge the Cambrian Explosion.Nature Ecology & Evolution,3(4):528-538.https://doi.org/10.1038/s41559-019-0821-6

[75]

Wu,Y.C.,Liu,J.N.,2019.Anatomy and Relationships of the Fuxianhuiid Euarthropod Guangweicaris from the Early Cambrian Guanshan Biota in Kunming,Yunnan,Southwest China Revisited.Acta Palaeontologica Polonica,64(3):543-548.https://doi.org/10.4202/app.00542.2018

[76]

Yang,J.,Ortega-Hernández,J.,Butterfield,N.J.,et al.,2013.Specialized Appendages in Fuxianhuiids and the Head Organization of Early Euarthropods.Nature,494(7438):468-471.https://doi.org/10.1038/nature11874

[77]

Yang,X.F.,Kimmig,J.,Zhai,D.Y.,et al.,2021.A Juvenile-Rich Palaeocommunity of the Lower Cambrian Chengjiang Biota Sheds Light on Palaeo-Boom or Palaeo-Bust Environments.Nature Ecology & Evolution,5(8):1082-1090.https://doi.org/10.1038/s41559-021-01490-4

[78]

Zeng,H.,Zhao,F.C.,Niu,K.C.,et al.,2020.An Early Cambrian Euarthropod with Radiodont-Like Raptorial Appendages.Nature,588:101-105.https://doi.org/10.1038/s41586-020-2883-7

[79]

Zeng,H.,Zhao,F.C.,Yin,Z.J.,et al.,2014.A Chengjiang-Type Fossil Assemblage from the Hongjingshao Formation (Cambrian Stage 3) at Chenggong,Kunming,Yunnan.Chinese Science Bulletin,59(25):3169-3175.https://doi.org/10.1007/s11434-014-0419-y

[80]

Zeng,H.,Zhao,F.C.,Yin,Z.J.,et al.,2018.A New Radiodontan Oral Cone with a Unique Combination of Anatomical Features from the Early Cambrian Guanshan Lagerstätte,Eastern Yunnan,South China.Journal of Paleontology,92(1):40-48.https://doi.org/10.1017/jpa.2017.77

[81]

Zhang,X.L.,Shu,D.G.,2021.Current Understanding on the Cambrian Explosion:Questions and Answers.PalZ,95(4):641-660.https://doi.org/10.1007/s12542-021-00568-5

[82]

Zhang,X.L.,Shu,D.G.,Han,J.,et al.,2014.Triggers for the Cambrian Explosion:Hypotheses and Problems.Gondwana Research,25(3):896-909.https://doi.org/10.1016/j.gr.2013.06.001

[83]

Zhang,X.L.,2021.Cambrian Explosion:Past,Present,and Future.Acta Palaeontologica Sinica,60(1):10-24 (in Chinese with English abstract).

[84]

Zhang,Z.F.,Brock,G.A.,2018.New Evolutionary and Ecological Advances in Deciphering the Cambrian Explosion of Animal Life.Journal of Paleontology,92(1):1-2.https://doi.org/10.1017/jpa.2017.140

[85]

Zhang,Z.F.,Chen,F.Y.,2017.Introduction:The Cambrian Radiation of Metazoans:New Advances and Fossil Discoveries from China.Acta Palaeontologica Sinica,56(4):409-414 (in Chinese with English abstract).

[86]

Zhang,Z.F.,Han,J.,Wang,Y.,et al.,2010.Epibionts on the Lingulate Brachiopod Diandongia from the Early Cambrian Chengjiang Lagerstätte,South China.Proceedings Biological Sciences,277(1679):175-181.https://doi.org/10.1098/rspb.2009.0618

[87]

Zhang,Z.F.,Holmer,L.E.,Popov,L.,et al.,2011a.An Obolellate Brachiopod with Soft-Part Preservation from the Early Cambrian Chengjiang Fauna of China.Journal of Paleontology,85(3):460-463.https://doi.org/10.1666/10-121.1

[88]

Zhang,Z.F.,Holmer,L.E.,Robson,S.P.,et al.,2011b.First Record of Repaired Durophagous Shell Damages in Early Cambrian Lingulate Brachiopods with Preserved Pedicles.Palaeogeography,Palaeoclimatology,Palaeoecology,302(3-4):206-212.https://doi.org/10.1016/j.palaeo.2011.01.010

[89]

Zhang,Z.F.,Holmer,L.E.,Ou,Q.,et al.,2011c.The Exceptionally Preserved Early Cambrian Stem Rhynchonelliform Brachiopod Longtancunella and Its Implications.Lethaia,44(4):490-495.https://doi.org/10.1111/j.1502-3931.2011.00261.x

[90]

Zhang,Z.F.,Liu,F.,Liang,Y.,et al.,2021.The Cambrian Explosion of Animals and the Evolution of Ecosystems on Earth.Journal of Northwest University (Natural Science Edition),51(6):1065-1106 (in Chinese with English abstract).

[91]

Zhang,Z.F.,Shu,D.G.,Han,J.,et al.,2006.New Data on the Rare Chengjiang (Lower Cambrian,South China) Linguloid Brachiopod Xianshanella Haikouensis.Journal of Paleontology,80(2):203-211.https://doi.org/10.1666/0022-3360(2006)080[0203:ndotrc]2.0.co;2

[92]

Zhang,Z.F.,Shu,D.G.,Han,J.,et al.,2007.A Gregarious Lingulid Brachiopod Longtancunella Chengjiangensis from the Lower Cambrian,South China.Lethaia,40(1):11-18.https://doi.org/10.1111/j.1502-3931.2006.00002.x

[93]

Zhang,Z.F.,Strotz,L.C.,Topper,T.P.,et al.,2020a.An Encrusting Kleptoparasite-Host Interaction from the Early Cambrian.Nature Communications,11(1):2625.https://doi.org/10.1038/s41467-020-16332-3

[94]

Zhang,Z.F.,Holmer,L.E.,Liang,Y.,et al.,2020b.The Oldest ‘Lingulellotreta’ (Lingulata,Brachiopoda) from China and Its Phylogenetic Significance:Integrating New Material from the Cambrian Stage 3-4 Lagerstätten in Eastern Yunnan,South China.Journal of Systematic Palaeontology,18(11):945-973.https://doi.org/10.1080/14772019.2019.1698669

[95]

Zhang,Z.L.,Zhang,Z.F.,Holmer,L.E.,et al.,2018.Post-Metamorphic Allometry in the Earliest Acrotretoid Brachiopods from the Lower Cambrian (Series 2) of South China,and Its Implications.Palaeontology,61(2):183-207.https://doi.org/10.1111/pala.12333

[96]

Zhang,Z.L.,Zhang,Z.F.,Ma,J.Y.,et al.,2021.Fossil Evidence Unveils an Early Cambrian Origin for Bryozoa.Nature,599251-255.https://doi.org/10.1038/s41586-021-04033-w

[97]

Zhang,Z.F.,Holmer,E.L.,2013.Exceptionally Preserved Brachiopods from the Chengjiang Lagerstätte (Yunnan,China):Perspectives on the Cambrian Explosion of Metazoans.Science Foundation in China,21(2):66-80.

[98]

Zhang,Z.F.,Holmer,E.L.,Brock,A.G.,et al.,2018.Paleoecological Complexities during Cambrian Explosion:Evidence from Brachiopods.Permophiles,66(Suppl.):131-132.

[99]

Zhao,F.C.,Caron,J.B.,Bottjer,D.J.,et al.,2014.Diversity and Species Abundance Patterns of the Early Cambrian (Series 2,Stage 3) Chengjiang Biota from China.Paleobiology,40(1):50-69.https://doi.org/10.1666/12056

[100]

Zhao,F.C.,Caron,J.B.,Hu,S.,et al.,2009.Quantitative Analysis of Taphofacies and Paleocommunities in the Early Cambrian Chengjiang Lagerstatte.Palaios,24(12):826-839.https://doi.org/10.2110/palo.2009.p09-004r

[101]

Zhao,F.C.,Hu,S.X.,Caron,J.B.,et al.,2012.Spatial Variation in the Diversity and Composition of the Lower Cambrian (Series 2,Stage 3) Chengjiang Biota,Southwest China.Palaeogeography,Palaeoclimatology,Palaeoecology,346:54-65.https://doi.org/10.1016/j.palaeo.2012.05.021

[102]

Zhao,F.C.,Zhu,M.Y.,Hu,S.X.,2010.Community Structure and Composition of the Cambrian Chengjiang Biota.Science China:Earth Sciences,53(12):1784-1799.https://doi.org/10.1007/s11430-010-4087-8

[103]

Zhao,J.,Guo,J.,Selden,P.A.,et al.,2022.A New Eocrinoid from the Guanshan Biota (Cambrian Series 2,Stage 4),with Implication of the Development of Different Attachment Modes in Early Cambrian.Palaeoworld,31(2):185-193.https://doi.org/10.1016/j.palwor.2021.08.001

[104]

Zhao,J.,Li,G.B.,Selden,P.A.,2018.New Well-Preserved Scleritomes of Chancelloriida from Early Cambrian Guanshan Biota,Eastern Yunnan,China.Journal of Paleontology,92(6):955-971.https://doi.org/10.1017/jpa.2018.43

[105]

Zhao,W.Y.,Liu,J.N.,Bicknell,R.,2020.Geometric Morphometric Assessment of Guanshan Trilobites (Yunnan Province,China) Reveals a Limited Diversity of Palaeolenid Taxa.Palaeontologia Electronica,23(2):a22..https://doi.org/10.26879/1062

[106]

Zhao,Y.L.,Zhu,M.Y.,Babcock,L.E.,et al.,2011.The Kaili Biota—Marine Organisms from 508 Million Years Ago.Guizhou Science and Technology Press,Guiyang,251 (in Chinese).

[107]

Zhu,M.Y.,Li,X.H.,2017.Introduction:From Snowball Earth to the Cambrian Explosion—Evidence from China.Geological Magazine,154(6):1187-1192.https://doi.org/10.1017/s0016756817000644

[108]

Zhu,M.Y.,Vannier,J.,Iten,H.V.,et al.,2004.Direct Evidence for Predation on Trilobites in the Cambrian.Proceedings Biological Sciences,271(Suppl.5):S277-S280.https://doi.org/10.1098/rsbl.2004.0194

[109]

Zhu,M.Y.,Zhang,J.M.,Li,G.X.,2001.Sedimentary Environments of the Early Cambrian Chengjiang Biota:Sedimentology of the Yu’anshan Formation in Chengjiang County,Eastern Yunnan.Acta Palaeontologica Sinica,40(Suppl.):80-105(in Chinese with English abstract).

[110]

Zhu,M.Y.,Zhao,F.C.,Yin,Z.J.,et al.,2019.The Cambrian Explosion:Advances and Perspectives from China.Science China:Earth Sciences,49(10):1455-1490 (in Chinese).

基金资助

国家自然科学基金(42202005;41720104002;41890844;41621003;4207020712;42072003)

江苏省自然科学基金青年基金(BK20221151)

中国矿业大学青年科技基金(2022-11243)

西北大学大陆动力学国家重点实验室开放课题基金(21LCD02)

AI Summary AI Mindmap
PDF (15577KB)

311

访问

0

被引

详细

导航
相关文章

AI思维导图

/