(U-Th)/He定年及影响因素研究进展
The Research Advances of (U-Th)/He Dating and Influencing Factors
(U-Th)/He同位素定年以其低温敏感性(70 ℃)为造山带隆升‒剥蚀速率的时空格架构建、油气成藏时间约束、沉积盆地埋藏历史恢复、矿床剥蚀保存研究及古地形地貌重塑等提供了精确的时间‒温度演变模型,应用前景广阔.理解矿物封闭温度、内部结构、4He扩散机制、铀‒钍分带效应等是(U-Th)/He数据解释的核心所在.本文详尽论述了(U-Th)/He技术研究,包括测年适宜对象及在不同地质领域的应用、测试方法的发展及标准矿物结果、着重归纳了造成年龄偏差的因素,并简述了主要矿物的辐射损伤机制.研究表明,我国(U-Th)/He定年技术从非稀释剂法测定发展至单颗粒激光熔融技术,再延续到准分子激光剥蚀系统RESOlution下的原位微区双定年技术,FCT锆石、Durango磷灰石及蓬莱锆石的测定结果与国际标定年龄在误差范围内一致,并自主开发了MK-1磷灰石标样,目前该技术已相对成熟.能有效保存4He的多数铀‒钍副矿物均可成为适宜定年对象,本文总结了有效规避矿物包裹体、矿物粒径、α粒子射出及植入效应、成分环带等影响因素的策略,可为国内学者在(U-Th)/He数据解释中提供帮助和参考.
(U-Th)/He / 影响因素 / 磷灰石 / 锆石 / 地球化学 / 同位素.
(U-Th)/He / influencing factors / apatite / zircon / geochemistry / isotopes
| [1] |
Aciego, S. M., Jourdan, F., DePaolo, D. J., et al., 2010. Combined U-Th/He and 40Ar/39Ar Geochronology of Post-Shield Lavas from the Mauna Kea and Kohala Volcanoes, Hawaii. Geochimica et Cosmochimica Acta, 74(5): 1620-1635. https://doi.org/10.1016/j.gca.2009.11.020 |
| [2] |
Aciego, S., Kennedy, B. M., DePaolo, D. J., et al., 2003. U-Th/He Age of Phenocrystic Garnet from the 79 AD Eruption of Mt. Vesuvius. Earth and Planetary Science Letters, 216(1-2): 209-219. https://doi.org/10.1016/s0012-821x(03)00478-3 |
| [3] |
Adams, B., Dietsch, C., Owen, L. A., et al., 2009. Exhumation and Incision History of the Lahul Himalaya, Northern India, Based on (U-Th)/He Thermochronometry and Terrestrial Cosmogenic Nuclide Methods. Geomorphology, 107(3-4): 285-299. https://doi.org/10.1016/j.geomorph.2008.12.017 |
| [4] |
Anderson, A. J., Hanchar, J. M., Hodges, K. V., et al., 2020. Mapping Radiation Damage Zoning in Zircon Using Raman Spectroscopy: Implications for Zircon Chronology. Chemical Geology, 538: 119494. https://doi.org/10.1016/j.chemgeo.2020.119494 |
| [5] |
Anderson, A. J., Hodges, K. V., van Soest, M. C., 2017. Empirical Constraints on the Effects of Radiation Damage on Helium Diffusion in Zircon. Geochimica et Cosmochimica Acta, 218: 308-322. https://doi.org/10.1016/j.gca.2017.09.006 |
| [6] |
Anderson, A. J., Hodges, K. V., van Soest, M. C., et al., 2019. Helium Diffusion in Natural Xenotime. Geochemistry, Geophysics, Geosystems, 20(1): 417-433. https://doi.org/10.1029/2018gc007849 |
| [7] |
Ault, A. K., Flowers, R. M., 2012. Is Apatite U-Th Zonation Information Necessary for Accurate Interpretation of Apatite (U-Th)/He Thermochronometry Data? Geochimica et Cosmochimica Acta, 79: 60-78. https://doi.org/10.1016/j.gca.2011.11.037 |
| [8] |
Ault, A. K., Reiners, P. W., Evans, J. P., et al., 2015. Linking Hematite (U-Th)/He Dating with the Microtextural Record of Seismicity in the Wasatch Fault Damage Zone, Utah, USA. Geology, 43(9): 771-774. https://doi.org/10.1130/g36897.1 |
| [9] |
Bargnesi, E. A., Stockli, D. F., Hourigan, J. K., et al., 2016. Improved Accuracy of Zircon (U-Th)/He Ages by Rectifying Parent Nuclide Zonation with Practical Methods. Chemical Geology, 426: 158-169. https://doi.org/10.1016/j.chemgeo.2016.01.017 |
| [10] |
Baughman, J. S., Flowers, R. M., Metcalf, J. R., et al., 2017. Influence of Radiation Damage on Titanite He Diffusion Kinetics. Geochimica et Cosmochimica Acta, 205: 50-64. https://doi.org/10.1016/j.gca.2017.01.049 |
| [11] |
Bidgoli, T. S., Tyrrell, J. P., Möller, A., et al., 2018. Conodont Thermochronology of Exhumed Footwalls of Low-Angle Normal Faults: A Pilot Study in the Mormon Mountains, Tule Springs Hills, and Beaver Dam Mountains, Southeastern Nevada and Southwestern Utah. Chemical Geology, 495: 1-17. https://doi.org/10.1016/j.chemgeo.2018.06.026 |
| [12] |
Blackburn, T. J., Stockli, D. F., Carlson, R. W., et al., 2008. (U-Th)/He Dating of Kimberlites: A Case Study from North-Eastern Kansas. Earth and Planetary Science Letters, 275(1-2): 111-120. https://doi.org/10.1016/j.epsl.2008.08.006 |
| [13] |
Blackburn, T. J., Stockli, D. F., Walker, J. D., 2007. Magnetite (U-Th)/He Dating and Its Application to the Geochronology of Intermediate to Mafic Volcanic Rocks. Earth and Planetary Science Letters, 259(3-4): 360-371. https://doi.org/10.1016/j.epsl.2007.04.044 |
| [14] |
Boyce, J. W., Hodges, K. V., 2005. U and Th Zoning in Cerro de Mercado (Durango, Mexico) Fluorapatite: Insights Regarding the Impact of Recoil Redistribution of Radiogenic 4He on (U-Th)/He Thermochronology. Chemical Geology, 219(1-4): 261-274. https://doi.org/10.1016/j.chemgeo.2005.02.007 |
| [15] |
Boyce, J. W., Hodges, K. V., Olszewski, W. J., et al., 2006. Laser Microprobe (U-Th)/He Geochronology. Geochimica et Cosmochimica Acta, 70(12): 3031-3039. https://doi.org/10.1016/j.gca.2006.03.019 |
| [16] |
Cai, C. E., Chen, H., Shang, W. L., et al., 2020a. Research Progress of Conodont (U-Th)/He Thermochronology. Advances in Earth Science, 35(9): 924-932 (in Chinese with English abstract). |
| [17] |
Cai, C. E., Qiu, N., Li, H. L., et al., 2020b. Study of the Closure Temperature of (U-Th)/He in Detrital Zircon Obtained from Natural Evolution Samples. Science in China (Series D), 50(1): 66-78 (in Chinese). |
| [18] |
Calzolari, G., Ault, A. K., Hirth, G., et al., 2020. Hematite (U-Th)/He Thermochronometry Detects Asperity Flash Heating during Laboratory Earthquakes. Geology, 48(5): 514-518. https://doi.org/10.1130/g46965.1 |
| [19] |
Calzolari, G., Rossetti, F., Ault, A. K., et al., 2018. Hematite (U-Th)/He Thermochronometry Constrains Intraplate Strike-Slip Faulting on the Kuh-E-Faghan Fault, Central Iran. Tectonophysics, 728-729: 41-54. https://doi.org/10.1016/j.tecto.2018.01.023 |
| [20] |
Chang, J., Qiu, N. S., Li, J. W., 2012. Tectono-Thermal Evolution of the Northwestern Edge of the Tarim Basin in China: Constraints from Apatite (U-Th)/He Thermochronology. Journal of Asian Earth Sciences, 61: 187-198. https://doi.org/10.1016/j.jseaes.2012.09.020 |
| [21] |
Cherniak, D. J., Watson, E. B., 2011. Helium Diffusion in Rutile and Titanite, and Consideration of the Origin and Implications of Diffusional Anisotropy. Chemical Geology, 288(3-4): 149-161. https://doi.org/10.1016/j.chemgeo.2011.07.015 |
| [22] |
Chew, D. M., Petrus, J. A., Kamber, B. S., 2014. U-Pb LA-ICPMS Dating Using Accessory Mineral Standards with Variable Common Pb. Chemical Geology, 363: 185-199. https://doi.org/10.1016/j.chemgeo.2013.11.006 |
| [23] |
Chew, D. M., Spikings, R. A., 2015. Geochronology and Thermochronology Using Apatite: Time and Temperature, Lower Crust to Surface. Elements, 11(3): 189-194. https://doi.org/10.2113/gselements.11.3.189 |
| [24] |
Cooperdock, E. H. G., Stockli, D. F., 2016. Unraveling Alteration Histories in Serpentinites and Associated Ultramafic Rocks with Magnetite (U-Th)/He Geochronology. Geology, 44(11): 967-970. https://doi.org/10.1130/g38587.1 |
| [25] |
Cooperdock, E. H. G., Stockli, D. F., 2018. Dating Exhumed Peridotite with Spinel (U-Th)/He Chronometry. Earth and Planetary Science Letters, 489: 219-227. https://doi.org/10.1016/j.epsl.2018.02.041 |
| [26] |
Copeland, P., Watson, E. B., Urizar, S. C., et al., 2007. Alpha Thermochronology of Carbonates. Geochimica et Cosmochimica Acta, 71(18): 4488-4511. https://doi.org/10.1016/j.gca.2007.07.004 |
| [27] |
Cros, A., Gautheron, C., Pagel, M., et al., 2014. 4He Behavior in Calcite Filling Viewed by (U-Th)/He Dating, 4He Diffusion and Crystallographic Studies. Geochimica et Cosmochimica Acta, 125: 414-432. https://doi.org/10.1016/j.gca.2013.09.038 |
| [28] |
Crowhurst, P. V., Green, P. F., Kamp, P. J. J., 2002. Appraisal of (U-Th)/He Apatite Thermochronology as a Thermal History Tool for Hydrocarbon Exploration: An Example from the Taranaki Basin, New Zealand. AAPG Bulletin, 86(10): 1801-1819. https://doi.org/10.1306/61eedd82-173e-11d7-8645000102c1865d |
| [29] |
Crowley, P. D., Reiners, P. W., Reuter, J. M., et al., 2002. Laramide Exhumation of the Bighorn Mountains, Wyoming: An Apatite (U-Th)/He Thermochronology Study. Geology, 30(1): 27-30. https://doi.org/10.1130/0091-7613(2002)0300027: leotbm>2.0.co;2 |
| [30] |
Crowley, Q. G., Heron, K., Riggs, N., et al., 2014. Chemical Abrasion Applied to LA-ICP-MS U-Pb Zircon Geochronology. Minerals, 4(2): 503-518. https://doi.org/10.3390/min4020503 |
| [31] |
Djimbi, D. M., Gautheron, C., Roques, J., et al., 2015. Impact of Apatite Chemical Composition on (U-Th)/He Thermochronometry: An Atomistic Point of View. Geochimica et Cosmochimica Acta, 167: 162-176. https://doi.org/10.1016/j.gca.2015.06.017 |
| [32] |
Dunai, T. J., Roselieb, K., 1996. Sorption and Diffusion of Helium in Garnet: Implications for Volatile Tracing and Dating. Earth and Planetary Science Letters, 139(3-4): 411-421. https://doi.org/10.1016/0012-821x(96)00029-5 |
| [33] |
Ehlers, T. A., Farley, K. A., 2003. Apatite (U-Th)/He Thermochronometry: Methods and Applications to Problems in Tectonic and Surface Processes. Earth and Planetary Science Letters, 206(1-2): 1-14. https://doi.org/10.1016/s0012-821x(02)01069-5 |
| [34] |
Evans, N. J., Byrne, J. P., Keegan, J. T., et al., 2005. Determination of Uranium and Thorium in Zircon, Apatite, and Fluorite: Application to Laser (U-Th)/He Thermochronology. Journal of Analytical Chemistry, 60(12): 1159-1165. https://doi.org/10.1007/s10809-005-0260-1 |
| [35] |
Evenson, N. S., Reiners, P. W., Spencer, J. E., et al., 2014. Hematite and Mn Oxide (U-Th)/He Dates from the Buckskin-Rawhide Detachment System, Western Arizona: Gaining Insights into Hematite (U-Th)/He Systematics. American Journal of Science, 314(10): 1373-1435. https://doi.org/10.2475/10.2014.01 |
| [36] |
Ewing, R. C., Meldrum, A., Wang, L., et al., 2000. Radiation-Induced Amorphization. Reviews in Mineralogy and Geochemistry, 39(1): 319-361. https://doi.org/10.2138/rmg.2000.39.12 |
| [37] |
Ewing, R. C., Meldrum, A., Wang, L., et al., 2003. Radiation Effects in Zircon. Reviews in Mineralogy and Geochemistry, 53(1): 387-425. https://doi.org/10.2113/0530387 |
| [38] |
Fanale, F. P., Kulp, J. L., 1962. The Helium Method and the Age of the Cornwall, Pennsylvania Magnetite Ore. Economic Geology, 57(5): 735-746. https://doi.org/10.2113/gsecongeo.57.5.735 |
| [39] |
Farley, K. A., 2000. Helium Diffusion from Apatite: General Behavior as Illustrated by Durango Fluorapatite. Journal of Geophysical Research: Solid Earth, 105(B2): 2903-2914. https://doi.org/10.1029/1999jb900348 |
| [40] |
Farley, K. A., 2002. (U-Th)/He Dating: Techniques, Calibrations, and Applications. Reviews in Mineralogy and Geochemistry, 47(1): 819-844. https://doi.org/10.2138/rmg.2002.47.18 |
| [41] |
Farley, K. A., 2007. He Diffusion Systematics in Minerals: Evidence from Synthetic Monazite and Zircon Structure Phosphates. Geochimica et Cosmochimica Acta, 71(16): 4015-4024. https://doi.org/10.1016/j.gca.2007.05.022 |
| [42] |
Farley, K. A., Shuster, D. L., Ketcham, R. A., 2011. U and Th Zonation in Apatite Observed by Laser Ablation ICPMS, and Implications for the (U-Th)/He System. Geochimica et Cosmochimica Acta, 75(16): 4515-4530. https://doi.org/10.1016/j.gca.2011.05.020 |
| [43] |
Farley, K. A., Stockli, D. F., 2002. (U-Th)/He Dating of Phosphates: Apatite, Monazite, and Xenotime. Reviews in Mineralogy and Geochemistry, 48(1): 559-577. https://doi.org/10.2138/rmg.2002.48.15 |
| [44] |
Farley, K. A., Wolf, R. A., Silver, L. T., 1996. The Effects of Long Alpha-Stopping Distances on (U-Th)/He Ages. Geochimica et Cosmochimica Acta, 60(21): 4223-4229. https://doi.org/10.1016/s0016-7037(96)00193-7 |
| [45] |
Feng, Q. Q., Qiu, N. S., Chang, J., et al.,2018. Tectonothermal Evolution of Fangshan Pluton: Constraints from (U-Th)/He Ages. Earth Science, 43(6): 1972-1982 (in Chinese with English abstract). |
| [46] |
Fitzgerald, P. G., Baldwin, S. L., Webb, L. E., et al., 2006. Interpretation of (U-Th)/He Single Grain Ages from Slowly Cooled Crustal Terranes: A Case Study from the Transantarctic Mountains of Southern Victoria Land. Chemical Geology, 225(1-2): 91-120. https://doi.org/10.1016/j.chemgeo.2005.09.001 |
| [47] |
Flowers, R. M., Ketcham, R. A., Enkelmann, E., et al., 2023b. (U-Th)/He Chronology: Part 2. Considerations for Evaluating, Integrating, and Interpreting Conventional Individual Aliquot Data. GSA Bulletin, 135(1-2): 137-161. https://doi.org/10.1130/b36268.1 |
| [48] |
Flowers, R. M., Ketcham, R. A., Shuster, D. L., et al., 2009. Apatite (U-Th)/He Thermochronometry Using a Radiation Damage Accumulation and Annealing Model. Geochimica et Cosmochimica Acta, 73(8): 2347-2365. https://doi.org/10.1016/j.gca.2009.01.015 |
| [49] |
Flowers, R. M., Shuster, D. L., Wernicke, B. P., et al., 2007. Radiation Damage Control on Apatite (U-Th)/He Dates from the Grand Canyon Region, Colorado Plateau. Geology, 35(5): 447-450. https://doi.org/10.1130/g23471a.1 |
| [50] |
Flowers, R. M., Wernicke, B. P., Farley, K. A., 2008. Unroofing, Incision, and Uplift History of the Southwestern Colorado Plateau from Apatite (U-Th)/He Thermochronometry. Geological Society of America Bulletin, 120(5-6): 571-587. https://doi.org/10.1130/b26231.1 |
| [51] |
Flowers, R. M., Zeitler, P. K., Danišík, M., et al., 2023a. (U-Th)/He Chronology: Part 1. Data, Uncertainty, and Reporting. GSA Bulletin, 135(1-2): 104-136. https://doi.org/10.1130/b36266.1 |
| [52] |
Foeken, J. P. T., Stuart, F. M., Dobson, K. J., et al., 2006. A Diode Laser System for Heating Minerals for (U-Th)/He Chronometry. Geochemistry, Geophysics, Geosystems, 7(4): 1-9. https://doi.org/10.1029/2005gc001190 |
| [53] |
Gautheron, C., Barbarand, J., Ketcham, R. A., et al., 2013. Chemical Influence on α-Recoil Damage Annealing in Apatite: Implications for (U-Th)/He Dating. Chemical Geology, 351: 257-267. https://doi.org/10.1016/j.chemgeo.2013.05.027 |
| [54] |
Gautheron, C., Tassan-Got, L., Ketcham, R. A., et al., 2012. Accounting for Long Alpha-Particle Stopping Distances in (U-Th-Sm)/He Geochronology: 3D Modeling of Diffusion, Zoning, Implantation, and Abrasion. Geochimica et Cosmochimica Acta, 96: 44-56. https://doi.org/10.1016/j.gca.2012.08.016 |
| [55] |
Gibbons, J. F., 1972. Ion Implantation in Semiconductors: Part II: Damage Production and Annealing. Proceedings of the IEEE, 60(9): 1062-1096. https://doi.org/10.1109/proc.1972.8854 |
| [56] |
Ginster, U., Reiners, P. W., Nasdala, L., et al., 2019. Annealing Kinetics of Radiation Damage in Zircon. Geochimica et Cosmochimica Acta, 249: 225-246. https://doi.org/10.1016/j.gca.2019.01.033 |
| [57] |
Gleadow, A., Harrison, M., Kohn, B., et al., 2015. The Fish Canyon Tuff: A New Look at an Old Low-Temperature Thermochronology Standard. Earth and Planetary Science Letters, 424: 95-108. https://doi.org/10.1016/j.epsl.2015.05.003 |
| [58] |
Groênlie, A., Harder, V., Roberts, D., 1990. Preliminary Fission-Track Ages of Fluorite Mineralisation along Fracture Zones, Inner Trondheimsfjord, Central Norway. Norsk Geologisk Tidsskrift, 70(3): 173-178. |
| [59] |
Guenthner, W. R., Reiners, P. W., Ketcham, R. A., et al., 2013. Helium Diffusion in Natural Zircon: Radiation Damage, Anisotropy, and the Interpretation of Zircon (U-Th)/He Thermochronology. American Journal of Science, 313(3): 145-198. https://doi.org/10.2475/03.2013.01 |
| [60] |
Guo, C., Zhang, Z. Y., Wu, L., et al., 2022. Mesozoic-Cenozoic Coupling Process of Tianshan Denudation and Sedimentation in the Northern Margin of the Tarim Basin: Evidence from Low-Temperature Thermochronology (Kuqa River Section, Xinjiang). Earth Science, 47(9): 3417-3430 (in Chinese with English abstract). |
| [61] |
Hart, S. R., 1984. He Diffusion in Olivine. Earth and Planetary Science Letters, 70(2): 297-302. https://doi.org/10.1016/0012-821x(84)90014-1 |
| [62] |
Heim, J. A., Vasconcelos, P. M., Shuster, D. L., et al., 2006. Dating Paleochannel Iron Ore by (U-Th)/He Analysis of Supergene Goethite, Hamersley Province, Australia. Geology, 34(3): 173-176. https://doi.org/10.1130/G22003.1 |
| [63] |
Hofmann, F., Treffkorn, J., Farley, K. A., 2020. U-Loss Associated with Laser-Heating of Hematite and Goethite in Vacuum during (U-Th)/He Dating and Prevention Using High O2 Partial Pressure. Chemical Geology, 532: 119350. https://doi.org/10.1016/j.chemgeo.2019.119350 |
| [64] |
Hourigan, J. K., Reiners, P. W., Brandon, M. T., 2005. U-Th Zonation-Dependent Alpha-Ejection in (U-Th)/He Chronometry. Geochimica et Cosmochimica Acta, 69(13): 3349-3365. https://doi.org/10.1016/j.gca.2005.01.024 |
| [65] |
House, M. A., Farley, K. A., Stockli, D. F., 2000. Helium Chronometry of Apatite and Titanite Using Nd-YAG Laser Heating. Earth and Planetary Science Letters, 183(3-4): 365-368. https://doi.org/10.1016/s0012-821x(00)00286-7 |
| [66] |
House, M. A., Wernicke, B. P., Farley, K. A., et al., 1997. Cenozoic Thermal Evolution of the Central Sierra Nevada, California, from (U-Th)/He Thermochronometry. Earth and Planetary Science Letters, 151(3-4): 167-179. https://doi.org/10.1016/s0012-821x(97)81846-8 |
| [67] |
Howie, R. A., Zussman, J., Deer, W. 1992. An Introduction to the Rock-Forming Minerals (Second Edition). Longman Scientific and Technical Press, London. |
| [68] |
Idleman, B. D., Zeitler, P. K., McDannell, K. T., 2018. Characterization of Helium Release from Apatite by Continuous Ramped Heating. Chemical Geology, 476: 223-232. https://doi.org/10.1016/j.chemgeo.2017.11.019 |
| [69] |
Jellinek, A. M., Kerr, R. C., 1999. Mixing and Compositional Stratification Produced by Natural Convection: 2. Applications to the Differentiation of Basaltic and Silicic Magma Chambers and Komatiite Lava Flows. Journal of Geophysical Research: Solid Earth, 104(B4): 7203-7218. https://doi.org/10.1029/1998jb900117 |
| [70] |
Johnson, J. E., Flowers, R. M., Baird, G. B., et al., 2017. “Inverted” Zircon and Apatite (U-Th)/He Dates from the Front Range, Colorado: High-Damage Zircon as a Low-Temperature (<50 ℃) Thermochronometer. Earth and Planetary Science Letters, 466: 80-90. https://doi.org/10.1016/j.epsl.2017.03.002 |
| [71] |
Jolivet, M., Dempster, T., Cox, R., 2003. Distribution of U and Th in Apatites: Implications for U-Th/He Thermochronology. Comptes Rendus-Academie des Sciences. Geoscience, 335(12): 899-906. https://doi.org/10.1016/j.crte.2003.08.010 |
| [72] |
Jonckheere, R., 2003. On the Densities of Etchable Fission Tracks in a Mineral and Co-Irradiated External Detector with Reference to Fission-Track Dating of Minerals. Chemical Geology, 200(1-2): 41-58. https://doi.org/10.1016/s0009-2541(03)00116-5 |
| [73] |
Jourdan, F., Eroglu, E., 2017. 40Ar/39Ar and (U-Th)/He Model Age Signatures of Elusive Mercurian and Venusian Meteorites. Meteoritics & Planetary Science, 52(5): 884-905. https://doi.org/10.1111/maps.12838 |
| [74] |
Ketcham, R. A., Gautheron, C., Tassan-Got, L., 2011. Accounting for Long Alpha-Particle Stopping Distances in (U-Th-Sm)/He Geochronology: Refinement of the Baseline Case. Geochimica et Cosmochimica Acta, 75(24): 7779-7791. https://doi.org/10.1016/j.gca.2011.10.011 |
| [75] |
Ketcham, R. A., Guenthner, W. R., Reiners, P. W., 2013. Geometric Analysis of Radiation Damage Connectivity in Zircon, and Its Implications for Helium Diffusion. American Mineralogist, 98(2-3): 350-360. https://doi.org/10.2138/am.2013.4249 |
| [76] |
Kraml, M., Pik, R., Rahn, M., et al., 2006. A New Multi-Mineral Age Reference Material for 40Ar/39Ar, (U‐Th)/He and Fission Track Dating Methods: The Limberg t3 Tuff. Geostandards and Geoanalytical Research, 30(2): 73-86. https://doi.org/10.1111/j.1751-908X.2006.tb00914.x |
| [77] |
Li, C. P., Zheng, D. W., Zhou, R. J., et al., 2021. Late Oligocene Tectonic Uplift of the East Kunlun Shan: Expansion of the Northeastern Tibetan Plateau. Geophysical Research Letters, 48(3): e91281. https://doi.org/10.1029/2020gl091281 |
| [78] |
Li, X. H., Long, W. G., Li, Q. L., et al., 2010. Penglai Zircon Megacrysts: A Potential New Working Reference Material for Microbeam Determination of Hf-O Isotopes and U-Pb Age. Geostandards and Geoanalytical Research, 34(2): 117-134. https://doi.org/10.1111/j.1751-908x.2010.00036.x |
| [79] |
Li, Y. J., Zheng, D. W., Wu, Y., et al., 2017. A Potential (U-Th)/He Zircon Reference Material from Penglai Zircon Megacrysts. Geostandards and Geoanalytical Research, 41(3): 359-365. https://doi.org/10.1111/ggr.12168 |
| [80] |
Lin, X, Wu, L., Jolivet, M., et al., 2022. Apatite (U-Th)/He Thermochronology Evidence for Two Cenozoic Denudation Events in Eastern Part of Sulu Orogenic Belt. Earth Science, 47(4): 1162-1176 (in Chinese with English abstract). |
| [81] |
Lippolt, H. J., Leitz, M., Wernicke, R. S., et al., 1994. (Uranium+Thorium)/Helium Dating of Apatite: Experience with Samples from Different Geochemical Environments. Chemical Geology, 112(1-2): 179-191. https://doi.org/10.1016/0009-2541(94)90113-9 |
| [82] |
Lippolt, H. J., Weigel, E., 1988. 4He Diffusion in 40Ar-Retentive Minerals. Geochimica et Cosmochimica Acta, 52(6): 1449-1458. https://doi.org/10.1016/0016-7037(88)90215-3 |
| [83] |
Lippolt, H. J., Wernicke, R. S., Boschmann, W., 1993. 4He Diffusion in Specular Hematite. Physics and Chemistry of Minerals, 20(6): 415-418-418. https://doi.org/10.1007/BF00203111 |
| [84] |
Liu, J., Zhang, J. Y., McPhillips, D., et al., 2018. Multiple Episodes of Fast Exhumation since Cretaceous in Southeast Tibet, Revealed by Low-Temperature Thermochronology. Earth and Planetary Science Letters, 490: 62-76. https://doi.org/10.1016/j.epsl.2018.03.011 |
| [85] |
McDannell, K. T., Zeitler, P. K., Janes, D. G., et al., 2018a. Screening Apatites for (U-Th)/He Thermochronometry via Continuous Ramped Heating: He Age Components and Implications for Age Dispersion. Geochimica et Cosmochimica Acta, 223: 90-106. https://doi.org/10.1016/j.gca.2017.11.031 |
| [86] |
McDannell, K. T., Zeitler, P. K., Schneider, D. A., 2018b. Instability of the Southern Canadian Shield during the Late Proterozoic. Earth and Planetary Science Letters, 490: 100-109. https://doi.org/10.1016/j.epsl.2018.03.012 |
| [87] |
McDowell, F. W., McIntosh, W. C., Farley, K. A., 2005. A Precise 40Ar-39Ar Reference Age for the Durango Apatite (U-Th)/He and Fission-Track Dating Standard. Chemical Geology, 214(3/4): 249-263. https://doi.org/10.1016/j.chemgeo.2004.10.002 |
| [88] |
McInnes, B. I. A., Evans, N. J., Fu, F. Q., et al., 2005. Application of Thermochronology to Hydrothermal Ore Deposits. Reviews in Mineralogy and Geochemistry, 58(1): 467-498. https://doi.org/10.2138/rmg.2005.58.18 |
| [89] |
McInnes, B. I. A., Evans, N. J., McDonald, B. J., et al., 2009. Zircon U-Th-Pb-He Bouble Dating of the Merlin Kimberlite Field, Northern Territory, Australia. Lithos, 112(S1): 592-599. https://doi.org/10.1016/j.lith-s.2009.05.006 |
| [90] |
Meesters, A. G. C. A., Dunai, T. J., 2002. Solving the Production-Diffusion Equation for Finite Diffusion Domains of Various Shapes. Chemical Geology, 186(1-2): 57-73. https://doi.org/10.1016/s0009-2541(01)00423-5 |
| [91] |
Metcalf, J. R., Flowers, R. M. 2013. Initial Development of Baddeleyite (U-Th)/He Thermochronology. The 125th Anniversary Annual Meeting of the Geological Society of America, Denver. |
| [92] |
Min, K., Farley, K. A., Renne, P. R., et al., 2003. Single Grain (U-Th)/He Ages from Phosphates in Acapulco Meteorite and Implications for Thermal History. Earth and Planetary Science Letters, 209(3-4): 323-336. https://doi.org/10.1016/s0012-821x(03)00080-3 |
| [93] |
Min, K., Reiners, P. W., Nicolescu, S., et al., 2004. Age and Temperature of Shock Metamorphism of Martian Meteorite Los Angeles from (U-Th)/He Thermochronometry. Geology, 32(8): 677-680. https://doi.org/10.1130/g20510.1 |
| [94] |
Min, K., Reiners, P. W., Shuster, D. L., 2013. (U-Th)/He Ages of Phosphates from St. Séverin LL6 Chondrite. Geochimica et Cosmochimica Acta, 100: 282-296. https://doi.org/10.1016/j.gca.2012.09.042 |
| [95] |
Min, K., Reiners, P. W., Wolff, J. A., et al., 2006. (U-Th)/He Dating of Volcanic Phenocrysts with High-U-Th Inclusions, Jemez Volcanic Field, New Mexico. Chemical Geology, 227(3-4): 223-235. https://doi.org/10.1016/j.chemgeo.2005.10.006 |
| [96] |
Monteiro, H. S., Vasconcelos, P. M., Farley, K. A., et al., 2014. (U-Th)/He Geochronology of Goethite and the Origin and Evolution of Cangas. Geochimica et Cosmochimica Acta, 131: 267-289. https://doi.org/10.1016/j.gca.2014.01.036 |
| [97] |
Moreira, M., Blusztajn, J., Curtice, J., et al., 2003. He and Ne Isotopes in Oceanic Crust: Implications for Noble Gas Recycling in the Mantle. Earth and Planetary Science Letters, 216(4): 635-643. https://doi.org/10.1016/s0012-821x(03)00554-5 |
| [98] |
Moser, A. C., Evans, J. P., Ault, A. K., et al., 2017. (U-Th)/He Thermochronometry Reveals Pleistocene Punctuated Deformation and Synkinematic Hematite Mineralization in the Mecca Hills, Southernmost San Andreas Fault Zone. Earth and Planetary Science Letters, 476: 87-99. https://doi.org/10.1016/j.epsl.2017.07.039 |
| [99] |
Naeser, C. W., Fleischer, R. L., 1975. Age of the Apatite at Cerro de Mercado, Mexico: A Problem for Fission-Track Annealing Corrections. Geophysical Research Letters, 2(2): 67-70. https://doi.org/10.1029/gl002i002p00067 |
| [100] |
Nasdala, L., Reiners, P. W., Garver, J. I., et al., 2004. Incomplete Retention of Radiation Damage in Zircon from Sri Lanka. American Mineralogist, 89(1): 219-231. https://doi.org/10.2138/am-2004-0126 |
| [101] |
Nicolescu, S., Reiners, P. W., 2005. (U-Th)/He Dating of Epidote and Andradite Garnet. The 15th Annual V.M. Goldschmidt Conference, Moscow. |
| [102] |
Orme, D. A., Guenthner, W. R., Laskowski, A. K., et al., 2016. Long-Term Tectonothermal History of Laramide Basement from Zircon-He Age-eU Correlations. Earth and Planetary Science Letters, 453: 119-130. https://doi.org/10.1016/j.epsl.2016.07.046 |
| [103] |
Pang, J. Z., Yu, J. X., Zheng, D. W., et al., 2019. Neogene Expansion of the Qilian Shan, North Tibet: Implications for the Dynamic Evolution of the Tibetan Plateau. Tectonics, 38(3): 1018-1032. https://doi.org/10.1029/2018tc005258 |
| [104] |
Parrish, R. R., 1990. U-Pb Dating of Monazite and Its Application to Geological Problems. Canadian Journal of Earth Sciences, 27(11): 1431-1450. https://doi.org/10.1139/e90-152 |
| [105] |
Peeters, F., Beyerle, U., Aeschbach-Hertig, W., et al., 2003. Improving Noble Gas Based Paleoclimate Reconstruction and Groundwater Dating Using 20Ne/22Ne Ratios. Geochimica et Cosmochimica Acta, 67(4): 587-600. https://doi.org/10.1016/s0016-7037(02)00969-9 |
| [106] |
Peppe, D. J., Reiners, P. W., 2007. Conodont (U-Th)/He Thermochronology: Initial Results, Potential, and Problems. Earth and Planetary Science Letters, 258(3-4): 569-580. https://doi.org/10.1016/j.epsl.2007.04.022 |
| [107] |
Peterman, E. M., Hourigan, J. K., Grove, M., 2014. Experimental and Geologic Evaluation of Monazite (U-Th)/He Thermochronometry: Catnip Sill, Catalina Core Complex, Tucson, AZ. Earth and Planetary Science Letters, 403: 48-55. https://doi.org/10.1016/j.epsl.2014.06.020 |
| [108] |
Petrus, J. A., Kamber, B. S., 2012. VizualAge: A Novel Approach to Laser Ablation ICP-MS U-Pb Geochronology Data Reduction. Geostandards and Geoanalytical Research, 36(3): 247-270. https://doi.org/10.1111/j.1751-908x.2012.00158.x |
| [109] |
Phillips, D., Kohn, B. P., Gleadow, A. J., et al., 2007. 4He Implantation in Natural Diamond: Implications for Apatite (U-Th)/He Thermochronometry. AGU Fall Meeting, San Francisco. |
| [110] |
Pi, T., Solé, J., Taran, Y., 2005. (U-Th)/He Dating of Fluorite: Application to the La Azul Fluorspar Deposit in the Taxco Mining District, Mexico. Mineralium Deposita, 39(8): 976-982. https://doi.org/10.1007/s00126-004-0443-y |
| [111] |
Pickering, J., Matthews, W., Enkelmann, E., et al., 2020. Laser Ablation (U-Th-Sm)/He Dating of Detrital Apatite. Chemical Geology, 548: 119683. https://doi.org/10.1016/j.chemgeo.2020.119683 |
| [112] |
Porcelli, D., Turekian, K. K., 2003. The History of Planetary Degassing as Recorded by Noble Gases. In: Holland, H. D., Turekian, K. K., eds., Treatise on Geochemistry. Elsevier, Amsterdam. https://doi.org/10.1016/b0-08-043751-6/04181-5 |
| [113] |
Powell, J. W., Schneider, D. A., Issler, D. R., 2018. Application of Multi-Kinetic Apatite Fission Track and (U-Th)/He Thermochronology to Source Rock Thermal History: A Case Study from the Mackenzie Plain, NWT, Canada. Basin Research, 30(S1): 497-512. https://doi.org/10.1111/bre.12233 |
| [114] |
Powell, J., Schneider, D., Stockli, D. F., et al., 2016. Zircon (U-Th)/He Thermochronology of Neoproterozoic Strata from the Mackenzie Mountains, Canada: Implications for the Phanerozoic Exhumation and Deformation History of the Northern Canadian Cordillera. Tectonics, 35(3): 663-689. https://doi.org/10.1002/2015tc003989 |
| [115] |
Reiners, P. W., Farley, K. A., 1999. Helium Diffusion and (U-Th)/He Thermochronometry of Titanite. Geochimica et Cosmochimica Acta, 63(22): 3845-3859. https://doi.org/10.1016/s0016-7037(99)00170-2 |
| [116] |
Reiners, P. W., Farley, K. A., 2001. Influence of Crystal Size on Apatite (U-Th)/He Thermochronology: An Example from the Bighorn Mountains, Wyoming. Earth and Planetary Science Letters, 188(3-4): 413-420. https://doi.org/10.1016/s0012-821x(01)00341-7 |
| [117] |
Reiners, P. W., Farley, K. A., Hickes, H. J., 2002. He Diffusion and (U-Th)/He Thermochronometry of Zircon: Initial Results from Fish Canyon Tuff and Gold Butte. Tectonophysics, 349(1-4): 297-308. https://doi.org/10.1016/s0040-1951(02)00058-6 |
| [118] |
Reiners, P. W., Spell, T. L., Nicolescu, S., et al., 2004. Zircon (U-Th)/He Thermochronometry: He Diffusion and Comparisons with 40Ar/39Ar Dating. Geochimica et Cosmochimica Acta, 68(8): 1857-1887. https://doi.org/10.1016/j.gca.2003.10.021 |
| [119] |
Robinson, K. H., Flowers, R. M., Metcalf, J. R., 2019. Rutile (U-Th)/He Thermochronology: Temperature Sensitivity and Radiation Damage Effects. Geochemistry, Geophysics, Geosystems, 20(11): 4737-4755. https://doi.org/10.1029/2019gc008484 |
| [120] |
Schmitt, A. K., Danišík, M., Aydar, E., et al., 2014. Identifying the Volcanic Eruption Depicted in a Neolithic Painting at Çatalhöyük, Central Anatolia, Turkey. PLoS One, 9(1): e84711. https://doi.org/10.1371/journal.pone.0084711 |
| [121] |
Schmitt, A. K., Martin, A., Stockli, D. F., et al., 2013. (U-Th)/He Zircon and Archaeological Ages for a Late Prehistoric Eruption in the Salton Trough (California, USA). Geology, 41(1): 7-10. https://doi.org/10.1130/g33634.1 |
| [122] |
Schwartz, S., Gautheron, C., Ketcham, R. A., et al., 2020. Unraveling the Exhumation History of High-Pressure Ophiolites Using Magnetite (U-Th-Sm)/He Thermochronometry. Earth and Planetary Science Letters, 543: 116359. https://doi.org/10.1016/j.epsl.2020.116359 |
| [123] |
Seman, S., Stockli, D. F., Smye, A. J., et al., 2014. Garnet (U-Th)/He Thermochronometry and Its Application to Exhumed High-pressure Low-temperature Metamorphic Rocks. 14th International Conference on Thermochronology, Chamonix. |
| [124] |
Shuster, D. L., Farley, K. A., 2009. The Influence of Artificial Radiation Damage and Thermal Annealing on Helium Diffusion Kinetics in Apatite. Geochimica et Cosmochimica Acta, 73(1): 183-196. https://doi.org/10.1016/j.gca.2008.10.013 |
| [125] |
Shuster, D. L., Flowers, R. M., Farley, K. A., 2006. The Influence of Natural Radiation Damage on Helium Diffusion Kinetics in Apatite. Earth and Planetary Science Letters, 249(3-4): 148-161. https://doi.org/10.1016/j.epsl.2006.07.028 |
| [126] |
Spiegel, C., Kohn, B., Belton, D., et al., 2009. Apatite (U-Th-Sm)/He Thermochronology of Rapidly Cooled Samples: The Effect of He Implantation. Earth and Planetary Science Letters, 285(1-2): 105-114. https://doi.org/10.1016/j.epsl.2009.05.045 |
| [127] |
Stanley, J. R., Flowers, R. M., 2016. Dating Kimberlite Emplacement with Zircon and Perovskite (U-Th)/He Geochronology. Geochemistry, Geophysics, Geosystems, 17(11): 4517-4533. https://doi.org/10.1002/2016gc006519 |
| [128] |
Stockli, D. F., Farley, K. A., 2004. Empirical Constraints on the Titanite (U-Th)/He Partial Retention Zone from the KTB Drill Hole. Chemical Geology, 207(3-4): 223-236. https://doi.org/10.1016/j.chemgeo.2004.03.002 |
| [129] |
Stockli, D. F., Wolfe, M. R., Blackburn, T. J., et al., 2007. He Diffusion and (U-Th)/He Thermochronometry of Rutile. AGU Fall Meeting, San Francisco. |
| [130] |
Sun, J. B., Chen, W., Yu, S., et al., 2017. Study on Zircon (U-Th)/He Dating Technique. Acta Petrologica Sinica, 33(6): 1947-1956 (in Chinese with English abstract). |
| [131] |
Tagami, T., Farley, K. A., Stockli, D. F., 2003. (U-Th)/He Geochronology of Single Zircon Grains of Known Tertiary Eruption Age. Earth and Planetary Science Letters, 207(1-4): 57-67. https://doi.org/10.1016/ s0012-821x(02)01144-5 |
| [132] |
Tao, N., Li, Z. X., Danišík, M., et al., 2019. Post-250 Ma Thermal Evolution of the Central Cathaysia Block (SE China) in Response to Flat-Slab Subduction at the Proto-Western Pacific Margin. Gondwana Research, 75: 1-15. https://doi.org/10.1016/j.gr.2019.03.019 |
| [133] |
Tian, Y. T., Qiu, N. S., Kohn, B. P., et al., 2012. Detrital Zircon (U-Th)/He Thermochronometry of the Mesozoic Daba Shan Foreland Basin, Central China: Evidence for Timing of Post-Orogenic Denudation. Tectonophysics, 570-571: 65-77. https://doi.org/10.1016/j.tecto.2012.08.010 |
| [134] |
Tian, Y. T., Vermeesch, P., Danišík, M., et al., 2017. LGC-1: A Zircon Reference Material for In-Situ (U-Th)/He Dating. Chemical Geology, 454: 80-92. https://doi.org/10.1016/j.chemgeo.2017.02.026 |
| [135] |
Tripathy-Lang, A., Hodges, K. V., Monteleone, B. D., et al., 2013. Laser (U-Th)/He Thermochronology of Detrital Zircons as a Tool for Studying Surface Processes in Modern Catchments. Journal of Geophysical Research: Earth Surface, 118(3): 1333-1341. https://doi.org/10.1002/jgrf.20091 |
| [136] |
Trull, T. W., Kurz, M. D., 1993. Experimental Measurements of 3He and 4He Mobility in Olivine and Clinopyroxene at Magmatic Temperatures. Geochimica et Cosmochimica Acta, 57(6): 1313-1324. https://doi.org/10.1016/0016-7037(93)90068-8 |
| [137] |
Tyrrell, J. P., Bidgoli, T. S., Möller, A., et al., 2016. Challenges Associated with the Conodont (U-Th)/He Method: A Case Study from the Mormon Mountains, Tule Spring Hills, and Beaver Dam Mountains, Southeastern Nevada and Southwestern Utah. GSA Annual Meeting, Denver. https://doi.org/10.1130/abs/2016am-286505 |
| [138] |
van Soest, M. C., Hodges, K. V., Wartho, J. A., et al., 2011. (U-Th)/He Dating of Terrestrial Impact Structures: The Manicouagan Example. Geochemistry, Geophysics, Geosystems, 12(5): Q0AA16. https://doi.org/10.1029/2010gc003465 |
| [139] |
van Soest, M. C., Monteleone, B. D., Boyce, J. W., et al., 2008. Advances in Laser Microprobe (U-Th)/He Geochronology. AGU Fall Meeting, San Francisco. |
| [140] |
Vasconcelos, P. M., Heim, J. A., Farley, K. A., et al., 2013. 40Ar/39Ar and (U-Th)/He-4He/3He Geochronology of Landscape Evolution and Channel Iron Deposit Genesis at Lynn Peak, Western Australia. Geochimica et Cosmochimica Acta, 117: 283-312. https://doi.org/10.1016/j.gca.2013.03.037 |
| [141] |
Vermeesch, P., Seward, D., Latkoczy, C., et al., 2007. Α-Emitting Mineral Inclusions in Apatite, Their Effect on (U-Th)/He Ages, and How to Reduce It. Geochimica et Cosmochimica Acta, 71(7): 1737-1746. https://doi.org/10.1016/j.gca.2006.09.020 |
| [142] |
Wang, F., Feng, H. L., Shi, W. B., et al., 2016. Relief History and Denudation Evolution of the Northern Tibet Margin: Constraints from 40Ar/39Ar and (U-Th)/He Dating and Implications for Far-Field Effect of Rising Plateau. Tectonophysics, 675: 196-208. https://doi.org/10.1016/j.tecto.2016.03.001 |
| [143] |
Wang, W. T., Zheng, D. W., Li, C. P., et al., 2020. Cenozoic Exhumation of the Qilian Shan in the Northeastern Tibetan Plateau: Evidence from Low-Temperature Thermochronology. Tectonics, 39(4): e2019TC005705. https://doi.org/10.1029/2019tc005705 |
| [144] |
Wang, Y. Z., Li, C. P., Hao, Y. Q., et al., 2022. Multi-Stage Growth in the North Margin of the Qinling Orogen, Central China, Revealed by both Low-Temperature Thermochronology and River Profile Inversion. Tectonics, 41(4): e2021TC007029. https://doi.org/10.1029/2021TC007029 |
| [145] |
Wang, Y., Zheng, D. W., Li, Y. J., et al., 2019. (U-Th)/He Dating of International Standard Fish Canyon Tuff Zircon. Seismology and Geology, 41(5): 1302-1315 (in Chinese with English abstract). |
| [146] |
Wang, Y., Zheng, D. W., Wu, Y., et al., 2017. Measurement Procedure of Single-Grain Apatite (U-Th)/He Dating and Its Validation by Durango Apatite Standard. Seismology and Geology, 39(6): 1143-1157 (in Chinese with English abstract). |
| [147] |
Willett, C. D., Fox, M., Shuster, D. L., 2017. A Helium-Based Model for the Effects of Radiation Damage Annealing on Helium Diffusion Kinetics in Apatite. Earth and Planetary Science Letters, 477: 195-204. https://doi.org/10.1016/j.epsl.2017.07.047 |
| [148] |
Wolf, R. A., Farley, K. A., Kass, D. M., 1998. Modeling of the Temperature Sensitivity of the Apatite (U-Th)/He Thermochronometer. Chemical Geology, 148(1-2): 105-114. https://doi.org/10.1016/s0009-2541(98)00024-2 |
| [149] |
Wolf, R. A., Farley, K. A., Silver, L. T., 1996. Helium Diffusion and Low-Temperature Thermochronometry of Apatite. Geochimica et Cosmochimica Acta, 60(21): 4231-4240. https://doi.org/10.1016/s0016-7037(96)00192-5 |
| [150] |
Wolff, R., Dunkl, I., Kempe, U., et al., 2016. Variable Helium Diffusion Characteristics in Fluorite. Geochimica et Cosmochimica Acta, 188: 21-34. https://doi.org/10.1016/j.gca.2016.05.029 |
| [151] |
Wu, L. Q., Jiao, Y. Q., Wang, G. R., et al., 2022. Response of Uranium Mineralization in Kuqa Depression Driven by Basin-Mountain Coupling Mechanism. Earth Science, 47(9): 3174-3191 (in Chinese with English abstract). |
| [152] |
Wu, L., Shi, G. H., Danišík, M., et al., 2019. MK-1 Apatite: A New Potential Reference Material for (U-Th)/He Dating. Geostandards and Geoanalytical Research, 43(2): 301-315. https://doi.org/10.1111/ggr.12258 |
| [153] |
Yang, J., Zheng, D. W., Chen, W., et al., 2014. Apatite 4He/3He Thermoehronometry: A New Method of Low Temperature Thermochronometry. Seismology and Geology, 36(4): 1009-1019 (in Chinese with English abstract). |
| [154] |
Yang, L., Yuan, W. M., Wang, K., 2018. Research Advances of Thermochronology in Mineral Deposits. Earth Science, 43(6): 1887-1902 (in Chinese with English abstract). |
| [155] |
Yang, L., Yuan, W. M., Zhu, C. B., et al., 2021. Mesozoic Uplift Exhumation History of East Kunlun. Acta Petrologica Sinica, 37(12): 3781-3796 (in Chinese with English abstract). |
| [156] |
Yu, J. X., Zheng, D. W., Pang, J. Z., et al., 2019. Miocene Range Growth along the Altyn Tagh Fault: Insights from Apatite Fission Track and (U-Th)/He Thermochronometry in the Western Danghenan Shan, China. Journal of Geophysical Research: Solid Earth, 124(8): 9433-9453. https://doi.org/10.1029/2019jb017570 |
| [157] |
Yu, J. X., Zheng, D. W., Zhang, H. P., et al., 2022. Initial Cenozoic Exhumation of the Northern Chinese Tian Shan Deduced from Apatite (U-Th)/He Thermochronological Data. Lithosphere, 2022(1): 8099539. https://doi.org/10.2113/2022/8099539 |
| [158] |
Yu, S., Chen, W., Sun, J. B., 2019. Diffusion of Helium in FCT Zircon. Science in China (Series D), 49(4): 656-670 (in Chinese with English abstract). |
| [159] |
Yu, S., Sun, J. B., Evans, N. J., et al., 2020. Further Evaluation of Penglai Zircon Megacrysts as a Reference Material for (U-Th)/He Dating. Geostandards and Geoanalytical Research, 44(4): 763-783. https://doi.org/10.1111/ggr.12331 |
| [160] |
Yu, S., Tian, Y. T., 2023. Helium Diffusion and (U-Th)/He Thermochronology on Fish Canyon Tuff Titanite. Acta Geologica Sinica, 97(1): 278-290 (in Chinese with English abstract). |
| [161] |
Yu, Y., Xu, X. S., Chen, X. M., 2010. Genesis of Zircon Megacrysts in Cenozoic Alkali Basalts and the Heterogeneity of Subcontinental Lithospheric Mantle, Eastern China. Mineralogy and Petrology, 100(1-2): 75-94. https://doi.org/10.1007/s00710-010-0120-z |
| [162] |
Yuan, W. M., 2016. Thermochronological Method of Revealing Conservation and Changes of Mineral Deposits. Acta Petrologica Sinica, 32(8): 2571-2578 (in Chinese with English abstract). |
| [163] |
Zeitler, P. K., Herczeg, A. L., McDougall, I., et al., 1987. U-Th-He Dating of Apatite: A Potential Thermochronometer. Geochimica et Cosmochimica Acta, 51(10): 2865-2868. https://doi.org/10.1016/0016-7037(87)90164-5 |
| [164] |
Zhang, B., Chen, W., Liu, J. Q., et al., 2020. Thermochronological Insights into the Intracontinental Orogeny of the Chinese Western Tianshan Orogen. Journal of Asian Earth Sciences, 194: 103927. https://doi.org/10.1016/j.jseaes.2019.103927 |
| [165] |
Zheng, D. W., Wu, Y., Pang, J. Z., et al., 2016. Fundamentals, Dating and Application of U-Th/He Thermochronology. Quaternary Sciences, 36(5): 1027-1036 (in Chinese with English abstract). |
| [166] |
Zheng, D. W., Zhang, P. Z., Wan, J. L., et al., 2006. Rapid Exhumation at ~8 Ma on the Liupan Shan Thrust Fault from Apatite Fission-Track Thermochronology: Implications for Growth of the Northeastern Tibetan Plateau Margin. Earth and Planetary Science Letters, 248(1-2): 198-208. https://doi.org/10.1016/j.epsl.2006.05.023 |
国家自然科学基金项目(41873063;92062217;42241161)
中国地质调查局地质调查项目(DD20221644)
2021年度中国地质大学(北京)研究生创新资助项目(YB2021YC021)
/
| 〈 |
|
〉 |