二氧化碳地质封存及提高油气和地热采收率技术进展与展望

蒋恕 ,  张凯 ,  杜凤双 ,  崔国栋

地球科学 ›› 2023, Vol. 48 ›› Issue (07) : 2733 -2749.

PDF (1870KB)
地球科学 ›› 2023, Vol. 48 ›› Issue (07) : 2733 -2749. DOI: 10.3799/dqkx.2023.084

二氧化碳地质封存及提高油气和地热采收率技术进展与展望

作者信息 +

Progress and Prospects of CO2 Storage and Enhanced Oil, Gas and Geothermal Recovery

Author information +
文章历史 +
PDF (1914K)

摘要

国内外碳捕集、利用与封存(CCUS)技术已取得初步进展.通过系统调研及研究实践,总结了二氧化碳地质封存及提高油气和地热采收率的技术进展,并对下一阶段的研究趋势进行了展望.研究表明:二氧化碳提高油气采收率是目前CCUS的主流应用方向,并且CCUS项目主要应用于常规油气藏,每注入1 t二氧化碳可采出原油0.1~0.6 t.如何应对二氧化碳气窜是二氧化碳提高油气采收率面临的关键问题.下一阶段的研究主要围绕二氧化碳提高非常规油气藏的采收率,如何使注入的二氧化碳能够有效地进入页岩或煤层基质仍是该类油气藏提高采收率的研发重点方向.除了二氧化碳提高油气采收率之外,二氧化碳还可用于提高地热采收率,目前的研究主要围绕二氧化碳与水作为工质开发地热的效果对比,温度场、应力场、渗流场、化学场的耦合作用对二氧化碳开发地热过程的影响仍有待进一步的研究.在同一个油气藏中利用二氧化碳作为工作流体先后开展提高油气采收率、提高地热采收率和二氧化碳地质封存一体化可能成为CCUS的发展趋势.该研究对加速CCUS部署以及油气和地热的协同开发及实施双碳战略有重要意义.

关键词

碳捕集利用与封存 / 二氧化碳提高油气采收率 / 二氧化碳开发地热 / 二氧化碳压裂 / 页岩油气 / 煤层气

Key words

carbon capture / utilization and storage (CCUS) / CO2 enhanced oil and gas recovery / CO2 enhanced geothermal recovery / hydraulic fracturing by CO2 / shale oil and gas / coalbed methane

引用本文

引用格式 ▾
蒋恕,张凯,杜凤双,崔国栋. 二氧化碳地质封存及提高油气和地热采收率技术进展与展望[J]. 地球科学, 2023, 48(07): 2733-2749 DOI:10.3799/dqkx.2023.084

登录浏览全文

4963

注册一个新账户 忘记密码

气候变化是21世纪全世界关注的焦点问题.碳达峰、碳中和是应对气候变化的必然之路.我国也正在采取更加有力的政策和措施,争取实现二氧化碳排放于2030年达到峰值、2060年实现碳中和 (蔡博峰等,2020).碳捕集、利用与封存(CCUS)技术是实现碳中和不可或缺的重要途径,同时CCUS技术也是实现化石能源大规模低碳利用的唯一途径(IEA, 2020Zhang and Lau, 2022a).
CCUS封存介质包括油气藏、咸水层、煤层等,油藏如巴西深水Pre-Salt油田、加拿大Clive油田,我国大庆、胜利、长庆等油田;气藏如荷兰K12-B项目Rotliegende气藏、法国Lacq项目Rousse气藏等;咸水层如挪威Sleipner、Snøhvit咸水层,加拿大Quest咸水层等;煤层如中国柿庄、柳林煤层气等(Global CCS Institute, 2020Zhang et al., 2022a).CCUS在油田和咸水层已实现商业应用,在气田和煤层中开展CCUS依然处于试验探索阶段.CCUS在油气藏和咸水层中的封存机理如图1所示,包括构造和地层封存、残余二氧化碳封存、溶解封存和矿化封存.构造封存是自由态二氧化碳的主要封存机理;残余二氧化碳封存机理类似于油气藏中不可动用的残余油气;溶解封存机理是指二氧化碳溶于地层水;矿化封存机理是指二氧化碳与地层水中离子反应生成矿物质,然而二氧化碳矿化封存往往需要几百年甚至千年的时间(Metz et al., 2005张舟和张宏福, 2012Harrison et al., 2019姜平等,2022饶松等, 2022).除此之外,在煤层和页岩中二氧化碳以吸附的方式实现封存(Global CCS Institute, 2015).受经济成本的制约,目前利用二氧化碳提高油气的采收率依然是开展CCUS的主流方向,也是油气田实现温室气体减排和能源产业可持续发展的必然选择.
在二氧化碳提高原油采收率过程中,二氧化碳通过与原油多次接触降低气液之间界面张力,并与原油的组分之间发生萃取和凝析的作用,从而实现二氧化碳与原油的混相以及提高原油采收率(Metcalfe and Yarborough, 1979).除此之外,二氧化碳开发地热的研究受到广泛关注.二氧化碳开采地热的过程中二氧化碳的强化地热开采井实现了部份二氧化碳的地质封存.本文通过总结分析二氧化碳地质封存及提高油气和地热采收率技术进展,指出了二氧化碳地质封存及提高油气和地热采收率的下一阶段的研究方向,为我国跨越式推进CCUS和油气、地热开发利用相结合提供借鉴.

1 CCUS部署进展

截至2020年底,全球共有28个处于运行阶段的大规模CCUS项目共实现每年4×107 t二氧化碳封存.如图2所示,这些CCUS项目中有14个分布在美国,4个分布在加拿大,3个分布在中国,2个分布在挪威,巴西、沙特阿拉伯、阿拉伯联合酋长国、卡塔尔、澳大利亚各有1个CCUS项目.此外,全球有37个大规模CCUS项目处于在建或开发阶段(Global CCS Institute, 2020).

我国CCUS项目已取得初步进展.如图3所示,我国先后在吉林油田(30×104 t/a)、大庆油田(20×104 t/a)、中原油田(10×104 t/a)、江苏油田(10×104 t/a)、长庆油田(10×104 t/a)、延长油田(5×104 t/a)、胜利油田(4×104 t/a)、新疆油田(2×104 t/a)等开展CCUS,截至2019年我国CCUS实现碳封存量每年100×104 t.除此之外,我国曾在柿庄(1 000 t/a)、柳林(1 000 t/a)等煤层气田以及鄂尔多斯盆地咸水层(10×104 t/a)开展CCUS试验探索(Zhang et al., 2022b).经济成本依然是制约我国CCUS发展的重要因素.CCUS项目全流程成本在每吨120~800元之间.因此利用二氧化碳提高原油采收率技术可以有效补偿CCUS的成本.当原油价格达到3 000元/吨以上,CCUS项目采出原油取得的收益可以平衡其成本(蔡博峰等,2020).

2022年3月我国中石油在长庆油田‒姬塬区块取得低渗透油藏CCUS零的突破.该CCUS项目的长庆油田姬塬区块砂岩储层渗透率为0.002~23.430 mD.截至目前,长庆油田黄3区CCUS国家示范工程已经累计注入液态二氧化碳15.59×104 t(李坤全等,2021).2021年7月中石化胜利油田‒纯梁油区启动我国首个每年百万吨级CCUS项目,该项目是目前国内最大的CCUS全产业链示范基地和标杆工程,该项目每年可减排二氧化碳100×104 t,预计未来15年可实现增油296.5×104 t(黄晟等, 2022).2021年8月中海油启动我国首个海上CCUS项目实现碳封存30×104 t/a,预计该CCUS项目在南海珠江口盆地恩平15-1油田群海底储层中可永久封存二氧化碳超146×104 t(李春峰等,2023).

2 二氧化碳地质封存及提高油气和地热采收率技术进展

2.1 二氧化碳地质封存及提高油气采收率

CCUS提高油气采收率技术需要综合考虑不同油气藏地质特征、储层流体特征、以及开发方式特征,提出相应的应对思路用以提高二氧化碳驱油效率、扩大波及体积.适合开展二氧化碳封存的储层需要埋深大于800 m,储层上覆岩层存在多套盖层,每套盖层均不低于20 m厚度.在不同油田开展CCUS每注入1 t二氧化碳可得到0.1~0.6 t原油.然而实际油藏非均质性强,二氧化碳由于其自身的密度小和黏度低,二氧化碳提高油气采收率过程中需要解决二氧化碳在生产井中的气窜问题,在以往的CCUS项目中通常采用二氧化碳与水交替注入的方式延缓二氧化碳在生产井的气窜(Petroleum Technology Research Centre, 2004Enhance Energy, 2019Olukoga and Feng, 2022Zhang et al., 2022c).如何延缓二氧化碳的气窜以及注入每吨二氧化碳产出更多的原油仍是二氧化碳提高油气采收率的研发重点方向.

针对常规油藏CCUS案例均采用二氧化碳与水交替注入的方式有效缓解二氧化碳的气窜.如图4所示,二氧化碳注入后会向上运移而水注入后会向下运移从而扩大了波及系数,同时二氧化碳与水交替注入增大了油藏的压力有助于二氧化碳与原油的混相.结合地震、测井、岩心数据等资料以及油藏数值模拟手段,可以优化设计二氧化碳与水交替注入的比例以及交替的周期,从而实现最大化二氧化碳提高油气采收率以及二氧化碳封存量.除此之外,在二氧化碳注入初期纯度高,随着后期二氧化碳与原油的传质效果逐渐减弱,通过掺入杂质气体如油田伴生气可以改善二氧化碳与原油的混相效果等(Ren and Duncan, 2021Heagle and Ryan, 2022).

近年来,二氧化碳提高油气采收率的研究从常规油气藏逐步扩展到非常规油气藏.针对低渗透致密砂岩油藏CCUS案例研究发现,由于该类油气藏渗透率较低,注水条件往往不佳,水平井分段压裂结合二氧化碳注入是提高油气采收率的常用手段(Luo et al., 2022).可以采用二氧化碳驱替或是吞吐的方式来提高采收率.如何使注入的二氧化碳有效地进入基质仍是该类油气藏提高采收率的研发重点方向.

延长油田位于中国西北部的鄂尔多斯盆地,以低压、致密砂岩储层为主.为了降低石油工业用水量,承担环保责任,延长油田集团积极开展了一系列试点试验.其中在靖边乔家洼和吴起油田分别进行了2次二氧化碳提高原油采收率试验.乔家洼地区的试验位于203井,测试于2012年9月开始.该地区有5口CO2注入井和34口生产井.截至2016年2月,累计CO2注入量达到59 400 t,单井日注入量为18.76 t.在先导试验初期,井口注入压力仅为2.0~3.0 MPa,但随着时间的推移,井口注入压力上升至8.2 MPa.与此同时,单井产油量也增加了50%.截至2016年2月,累计产油量达到 2 200 t.2014年10月开始对吴起油田5个井组开展注CO2先导试验.截至2016年2月,在CO2注入速度为21 t/d、注入压力为10.3 MPa的条件下,CO2累计注入量为12 100 t.CO2注入1个月后,平均产液速率提高了14%,平均产油速率提高了23.2%,含水率降低了5.5%,累计产油量增加 1 172.5 t.这些现场数据表明,CO2注入技术已成功应用于上述两个试点地区,也验证了CO2注入技术在鄂尔多斯盆地致密油提高采收率方面具有巨大潜力(Wang et al., 2017齐春民等,2019).

大庆榆树林油藏具有超低渗透率特征,大部分未动用油层天然裂缝发育不良.开发初期水驱技术的动态特征表现为注水效率低、产量递减快、原油采收率不高.为了提高原油的采收率,进行了CO2注入测试.Y101区块的渗透率为1.061 mD,初始地层压力为22.1 MPa.通过室内实验测量原油和注入CO2的最小混相压力为32.2 MPa.由于难以达到混相压力,在实际作业中采用了近混相驱.2007年12月和2008年7月,7口注入井分两批进行CO2注入,注CO2气体180 d后分批投产.截至2013年12月,累计注入CO2为11.06×104 t,累计产油量为5.53×104 t,采收率为4.65%.试验区地层压力为原始地层压力的1.3倍,试验结果表明了CO2驱油技术在致密砂岩油藏应用的前景(汪艳勇,2015).

除低渗透率的油气藏外,页岩油气藏由于低孔隙度低渗透率导致其开采难度大,水平井分段压裂技术的采收率依然不高,亟需其他方式提高页岩油气储层油气产量.并且页岩油气藏水驱开采效率低,注水难度大,二氧化碳驱在页岩油气田中的推广具有良好前景(张臣等,2019李坤全等,2021).二氧化碳提高页岩油气采收率机理主要可分为几个步骤:首先二氧化碳在高压的作用下迅速穿过裂缝.然后,当二氧化碳与基质接触时,二氧化碳可以在压差的作用下渗透进入基质中.在这个过程中,进入基质的二氧化碳会发生膨胀,迫使部分油气从基质中流出进入裂缝,但同时部分二氧化碳也会携带油气进入基质.当基质和裂缝的压力系统达到平衡的时候,油气分子在扩散作用下从基质中进入裂缝.针对页岩基质,二氧化碳相较于甲烷分子具有更强的吸附能力.

北美率先就循环注气提高致密油气/页岩油气藏采收率开展了广泛深入研究.美国EOG能源、能源与环境研究中心、XTO能源、必和必拓、马拉松石油、岩心实验室等公司和研究机构非常重视注气技术的开发和利用,并很早开展了实验室分析和现场试验.EOG能源公司最早于2012年开始在美国得克萨斯州的Eagle Ford页岩油藏展开循环注气的现场试验,并于2016年第一次公开宣布Eagle Ford页岩油注气提高采收率获得成功,原油采收率提高了30%~50% (Jacobs, 2019).此后,陆续有6个能源公司在Eagle Ford页岩油藏的30个区块上展开对266口井的注气提高采收率的现场试验,部分油公司宣布已取得良好效果(Hoffman, 2018).美国田纳西州Chattanooga页岩气田2014年开展CCUS小型现场试验.累计约510 tCO2注入到777~1 120 m深的6个水平井中,焖井4个月后再生产,产气量在第一个月增加了8倍,更多天然气液(NGL)随甲烷产出,在17个月的返排阶段中累积41%的CO2被产出,59%的CO2成功封存在地层中(Louk et al.,2017).Bakken致密/页岩油田曾先后进行二氧化碳吞吐试验.尽管试验没有取得大规模商业推广,然而该试验证明二氧化碳吞吐能够有效提高页岩油藏的采收率.二氧化碳提高页岩油气面临的挑战主要包括注入的二氧化碳不能有效地进入页岩基质驱替出基质中的油气,大部分注入的二氧化碳会存在于裂缝中.另外气窜问题严重影响二氧化碳提高页岩油气的采收率(Billemont et al., 2013Hawthorne et al., 2013Todd and Evans, 2016李一波等,2021黄兴等,2022).研究表明可以通过掺入氮气与二氧化碳混注,氮气有助于降低甲烷分压,加速基质中甲烷的解析.由于氮气在页岩中吸附量较小,这样既能提高页岩油气采收率,同时也可以保障二氧化碳的封存量不会受到显著影响(Ma et al., 2022).此外,对区块进行注CO2提高采收率时混相开采效果要好于非混相开采,但是在实际开采过程中,仍有部分区块不能够进行混相开采,为进一步提高CO2吞吐开发的效果,可以通过在超临界CO2添加少量的助溶剂(例如乙醇、异丙醇、乙酸乙酯、丙酮等)的方式对流体性质进行改进.一方面添加助溶剂可以降低超临界CO2与原油之间的混相压力,另一方面可以提高CO2在多孔介质中的扩散能力及与原油的溶解力,进而增强CO2在油藏中的注入性,提高油藏最终采收率(Mahdaviara et al., 2021).采用鄂尔多斯盆地页岩样品的CO2-助溶剂吞吐实验表明,CO2-助溶剂能够提高基质和裂缝中的页岩油采收率,其中CO2-乙醇混合液在3次吞吐循环后,采收率可达到80.7%(Gong et al.,2020).

除此之外,研究人员就注气提高页岩油/致密油采收率开展了大量物模实验(表2)及数值模拟(表3)研究.注气开采一般分为气驱和循环注气(又称为吞吐注气),注入的气体可以是二氧化碳、氮气和采出气(甲烷为主及其他轻烃组分)等.研究发现,注气补能是提高页岩油采收率的重要机制之一,页岩油藏枯竭式开采3~5 a后,储层压力亏空严重,原油流动性变差;在注气阶段,气体注入井筒,通过水力裂缝缝网进入储层改造体积(SRV)区域,并通过对流扩散等传质作用渗透到基质中与原油接触,通过轻质组分抽提、扩散传质、多次接触混相等作用,实现原油膨胀降黏,提高原油流动性及驱油效率.室内实验及数值模拟过程中,对注气类型、注气方式、注气参数(吞吐次数、焖井时长、注气压力、注气速度等)展开研究,优化注气参数并分析提高页岩油采收率机理.此外,页岩储层存在大量的纳米孔隙,孔道壁面和流体分子的相互作用十分强烈,孔隙中流体相态会发生显著变化,即存在纳米限域效应.在生产模拟过程中考虑纳米限域效应,也会影响页岩油气采收率.另一方面,页岩气储层注CO2吞吐及CO2驱数值模拟研究表明,注入到页岩气储层的CO2除了通过表面扩散、解吸附等作用提高页岩气采收率,同时还可以实现一定比例的CO2地质封存(图5)(Du and Nojabaei, 2019).

除了页岩油气,CCUS也可应用于煤层气中.利用煤对二氧化碳比对甲烷有更强的吸附作用,可以吸附更多的二氧化碳从而置换出甲烷/煤层气,达到提高煤层气采收率并同时封存二氧化碳的目的.我国拥有大量的煤层气资源.我国在柿庄、柳林煤层气田开展的CCUS项目表明,在深部煤层中注入二氧化碳以提高煤层气采收率,并实现二氧化碳的有效埋藏,可达到减少温室气体排放的目标.注入二氧化碳后,煤层会发生收缩作用,二氧化碳在煤层的吸附能力比甲烷强,随着越来越多的二氧化碳在煤层中吸附,煤层又会发生膨胀,因而会导致煤层渗透率下降.在实际作业中,宜采用低速高压注入泵,控制二氧化碳注入排量,同时最高注入压力不应超过煤层的破裂压力,保障二氧化碳安全封存(Stevens et al., 1998Clarkson and Bustin, 2000叶建平等, 2007刘世奇等,2022).下一阶段的研究可围绕深部煤层地下气化作为煤炭资源清洁开采的方式.同时,深部煤层煤炭地下气化后的储层空间可以用来安全封存二氧化碳(Jiang et al., 2019Shi et al., 2022).

2.2 二氧化碳地质封存及提高地热采收率

由于超临界二氧化碳的密度与液态相近,黏度与气态相近,兼具气液两相的特性,使得二氧化碳除了应用于提高油气采收率之外,二氧化碳替代水作为工质对于地热开发具有重要意义及应用前景.干热岩储层往往需要进行储层改造用于建立增强型地热系统,超临界二氧化碳可以作为压裂液进行储层改造(杜玉昆等,2019).相比于水作为压裂液,二氧化碳压裂所需要的破岩压力低,并且在主破裂面上形成的微裂纹分支更多.除此之外,超临界CO2压裂后能够迅速地返排,生产效率高的同时对储层的伤害也小.二氧化碳用于压裂的相关研究如表4所示,温度场、应力场、渗流场、化学场的耦合作用对二氧化碳压裂过程的影响是下一阶段的研究方向.

在增强型地热系统中,相较于水,同样压差下二氧化碳取热的质量流量更大,取热效率更高.与此同时,二氧化碳采热过程中的流失实现了CO2的地质封存,尤其适用于水资源匮乏的地区开发地热.二氧化碳提高地热采收率的相关研究如表5所示,目前的研究主要集中在二氧化碳开发地热与水作为工质开发地热的对比以及不同井型对二氧化碳开发地热的影响,温度场、应力场、渗流场、化学场的耦合作用对二氧化碳开发地热过程的影响是下一阶段的研究方向.

3 二氧化碳地质封存及协同提高油气和地热采收率技术展望

表6所示,目前油气田地热的开发利用在逐步推广.油气田生产过程中产出的热水可用于地热供暖或发电.近年来,随着油气田勘探开发技术逐渐用于地热勘探开发,二氧化碳利用及封存与油气田地热开发的研究正在受到广泛关注.油气田拥有详细的地质资料,可以为CCUS开展提供重要的基础数据,此外油气田还含有大量的地热资源,可直接改造为地热井予以开发利用,从而可以节省大量费用,变废为宝.该方法如图6所示,第一阶段为油田一次采油,第二阶段利用注入二氧化碳补充地层压力及二氧化碳与油气流体的重力分异作用及混相提高流动性,开展提高油气采收率.第三阶段开展二氧化碳封存.第四阶段,待油气藏压力恢复后,油气藏中存在大量的二氧化碳并和地层充分换热成为地热田,循环注入从生产井中采出的二氧化碳实现地热开发,从而依次实现提供油气采收率、二氧化碳封存、提高地热采收率及二氧化碳封存.如果采出液温度高于100 ℃可用于发电,如果采出液温度低于100 ℃可用于生活采暖、输油伴热、管道清洗等.利用油气田现有的基础设施、生产技术、开发经验和储层地质数据,通过CCUS与油气田地热协同开发技术,可实现油气田的低碳转型和新能源的高效利用(刘均荣等, 2013王社教等, 20142020汪集暘等, 2017Zhang et al., 2017cWang et al., 2018a).

除此之外,在东南亚陆上最大的轻质油田Arun也曾开展CCUS研究.该油藏为碳酸盐岩,拥有8亿桶凝析油储量,油藏埋藏深度为 3 063 m,然而该油藏的初始压力高达49 MPa,油藏的温度更是高达180 ℃.原油重度API为55,油藏厚度为150 m,平均渗透率为52 mD,孔隙度为16%.该油藏开展CCUS面临的挑战包括非均质性强如裂缝分布,油藏温度高可加剧二氧化碳的气窜等.通过对Arun油田的12口注入井、65口生产井的注采历史拟合和动态分析发现,该废弃油田仍有1亿桶凝析油.该CCUS的研究设计思路为首先在12口注入井中实施二氧化碳提高原油采收率,待凝析油资源枯竭后将Arun凝析油田改造为地热开发用于地热发电,待地热资源枯竭后再用于二氧化碳封存.研究表明通过采用“构造低部位注二氧化碳+构造体内封存二氧化碳+构造高部位生产地热以及原油”的技术思路,预测该CCUS项目每注入1 t二氧化碳可得0.8 t凝析油.除此之外,待凝析油资源枯竭后注入1 t二氧化碳还可得地热发电400 kW•h的电力.利用二氧化碳开发地热以及凝析油取得的收益在Arun油田可累计封存6×107 t二氧化碳(Zhang and Lau, 2022b).

除了二氧化碳封存及协同油气和地热开采以外,在枯竭油气藏和咸水层也可以实现CO2提高地热采收率和封存一体化(Uliasz-Misiak et al., 2021):对于低渗储层,由于CO2具有较高的可注性和流动性,其采热速率和能力高于水,应优先考虑;当储层渗透率大、边底水能量强、储层温度高及水侵严重时,可考虑注水开发气藏地热.但CO2注入含水储层时,发生的复杂岩石流体作用需要着重分析.CO2注入会导致地层水蒸发,但当地层水饱和度较低时,盐析对储层物性(孔隙度和渗透率)和采热速率的影响较小;而当地层水饱和度和矿化度较高时,会发生较为严重的盐析,造成注入井附近储层堵塞,降低CO2采热速率(降幅可达24%).对于以石英和硅酸盐为主的典型砂岩储层CO2-地层水‒岩石地化反应对储层物性和CO2采热速率影响不大;对于典型的碳酸盐岩储层,CO2注入引起的地化反应,会导致储层中碳酸盐(白云石)大量溶解,增加储层渗透率,提高CO2采热速率(图7).总体而言,地化反应对砂岩储层物性影响较小,对碳酸盐岩储层影响较大,且以溶解为主,有利于CO2采热.

4 结论

本文通过系统分析二氧化碳地质封存及提高油气和地热采收率技术进展,总结了二氧化碳提高油气采收率与提高地热采收率过程中遇到的问题,揭示了未来二氧化碳地质封存及协同提高油气和地热采收率的研究方向.

(1)二氧化碳提高油气采收率是目前碳捕集、利用与封存(CCUS)的主流应用方向,每注入1 t二氧化碳可以产出0.1~0.6 t的原油.在实际生产过程中通常采用水与二氧化碳交替注入的方式应对二氧化碳的气窜.下一阶段二氧化碳提高油气采收率的研究将逐步从常规油气藏向非常规油气藏包括页岩油气藏和煤层气跨越.

(2)相较于水作为工作流体,二氧化碳压裂所需要的破岩压力低,并且在干热岩储层改造中主破裂面上形成的微裂纹分支更多.除此之外,同样压差下二氧化碳取热的质量流量更大,取热效率更高,二氧化碳采热过程中还可以实现部分CO2的地质封存.温度场、应力场、渗流场、化学场的热流固化耦合作用下二氧化碳开发地热的研究仍有待进一步的加强.

(3)CCUS与油气田地热协同开发包括二氧化碳提高油气采收率、提高地热采收率和二氧化碳地质封存一体化是未来CCUS的发展趋势.

参考文献

[1]

Adel, I.A., Tovar, F. D., Zhang, F., et al., 2018. The Impact of MMP on Recovery Factor during CO2-EOR in Unconventional Liquid Reservoirs. SPE Annual Technical Conference and Exhibition, Dallas, Texas. https://doi.org/10.2118/191752-MS

[2]

Atrens, A. D., Gurgenci, H., Rudolph, V., 2009. CO2 Thermosiphon for Competitive Geothermal Power Generation. Energy & Fuels, 23(1): 553-557. https://doi.org/10.1021/ef800601z

[3]

Atrens, A. D., Gurgenci, H., Rudolph, V., 2010. Electricity Generation Using a Carbon-Dioxide Thermosiphon. Geothermics, 39(2): 161-169. https://doi.org/10.1016/j.geothermics.2010.03.001

[4]

Billemont, P., Coasne, B., De Weireld, G., 2013. Adsorption of Carbon Dioxide, Methane, and Their Mixtures in Porous Carbons: Effect of Surface Chemistry, Water Content, and Pore Disorder. Langmuir, 29(10): 3328-3338. https://doi.org/10.1021/la3048938

[5]

Brown, D. W., 2000. A Hot Dry Rock Geothermal Energy Concept Utilizing Supercritical CO2 Instead of Water. Proceedings of 25th Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California.

[6]

Cai, B. F., Li, Q., Lin Q. G., et al., 2020. China Status of CO2 Capture Utilization and Storage (CCUS) 2019. Center for Climate Change and Environmental Policy of Chinese Academy of Environmental Planning, Beijing (in Chinese).

[7]

Cao, W. J., Huang, W. B., Jiang, F. M., 2016. Numerical Study on Variable Thermophysical Properties of Heat Transfer Fluid Affecting EGS Heat Extraction. International Journal of Heat and Mass Transfer, 92: 1205-1217. https://doi.org/10.1016/j.ijheatmasstransfer.2015.09.081

[8]

Chen, Y., Ma, G. W., Wang, H. D., et al., 2019. Application of Carbon Dioxide as Working Fluid in Geothermal Development Considering a Complex Fractured System. Energy Conversion and Management, 180: 1055-1067. https://doi.org/10.1016/j.enconman.2018.11.046

[9]

Chen, Y. Q., Nagaya, Y., Ishida, T., 2015. Observations of Fractures Induced by Hydraulic Fracturing in Anisotropic Granite. Rock Mechanics and Rock Engineering, 48(4): 1455-1461. https://doi.org/10.1007/s00603-015-0727-9

[10]

Clarkson, C. R., Bustin, R. M., 2000. Binary Gas Adsorption/Desorption Isotherms: Effect of Moisture and Coal Composition Upon Carbon Dioxide Selectivity over Methane. International Journal of Coal Geology, 42(4): 241-271. https://doi.org/10.1016/S0166-5162(99)00032-4

[11]

Cui, G. D., Ren, S. R., Rui, Z. H., et al., 2018. The Influence of Complicated Fluid-Rock Interactions on the Geothermal Exploitation in the CO2 Plume Geothermal System. Applied Energy, 227: 49-63. https://doi.org/10.1016/j.apenergy.2017.10.114

[12]

Du, F. S., Nojabaei, B., 2019. A Review of Gas Injection in Shale Reservoirs: Enhanced Oil/Gas Recovery Approaches and Greenhouse Gas Control. Energies, 12(12): 2355. https://doi.org/10.3390/en12122355

[13]

Du, Y.K., Pang, F., Chen, K., et al., 2019. Experiment of Breaking Shale Using Supercritical Carbon Dioxide Jet. Earth Science, 44(11):3749-3756 (in Chinese with English abstract).

[14]

Enhance Energy, 2019. Clive Leduc Field Monitor, Measurement & Verification Plan. Government of Alberta, Edmonton.

[15]

Gamadi, T. D., Elldakli, T. F., Sheng, J. J., 2014. Compositional Simulation Evaluation of EOR Potential in Shale Oil Reservoirs by Cyclic Natural Gas Injection. Unconventional Resources Technology Conference, Denver, Colorado.

[16]

Gan, Q., Candela, T., Wassing, B., et al., 2021. The Use of Supercritical CO2 in Deep Geothermal Reservoirs as a Working Fluid: Insights from Coupled THMC Modeling. International Journal of Rock Mechanics and Mining Sciences, 147: 104872. https://doi.org/10.1016/j.ijrmms.2021.104872

[17]

Ghahfarokhi, R. B., Pennell, S., Matson, M., et al., 2016. Overview of CO2 Injection and WAG Sensitivity in SACROC. SPE Improved Oil Recovery Conference, Tulsa, Oklahoma.

[18]

Global CCS Institute, 2015. Brazilian Atlas of CO2 Capture and Geological Storage. Global CCS Institute, Melbourne.

[19]

Global CCS Institute, 2020. CCS Talks: All You Need to Know about CO2 Storage. Global CCS Institute, Melbourne.

[20]

Gong, H. J., Qin, X. J., Shang, S. X., et al., 2020. Enhanced Shale Oil Recovery by the Huff and Puff Method Using CO2 and Cosolvent Mixed Fluids. Energy & Fuels, 34(2): 1438-1446. https://doi.org/10.1021/acs.energyfuels.9b03423

[21]

Guo, J.C., Zeng, J., 2015.A Coupling Model for Wellbore Transient Temperature and Pressure of Fracturing with Supercritical Carbon Dioxide. Acta Petrolei Sinica, 36(2): 203-209 (in Chinese with English abstract).

[22]

Guo, T. K., Gong, F. C., Wang, X. Z., et al., 2019. Performance of Enhanced Geothermal System (EGS) in Fractured Geothermal Reservoirs with CO2 as Working Fluid. Applied Thermal Engineering, 152: 215-230. https://doi.org/10.1016/j.applthermaleng.2019.02.024

[23]

Habibi, A., Yassin, M. R., Dehghanpour, H., et al., 2017. Experimental Investigation of CO2-Oil Interactions in Tight Rocks: A Montney Case Study. Fuel, 203: 853-867. https://doi.org/10.1016/j.fuel.2017.04.077

[24]

Han, C., Li, H., Duan, Y., 2023. Southwest Oil and Gas Field Fully Promotes Green and Low-Carbon Development. China Petroleum News, Beijing (in Chinese).

[25]

Harrison, A. L., Tutolo, B. M., DePaolo, D. J., 2019. The Role of Reactive Transport Modeling in Geologic Carbon Storage. Elements, 15(2): 93-98. https://doi.org/10.2138/gselements.15.2.93

[26]

Hawthorne, S. B., Gorecki, C. D., Sorensen, J. A., et al., 2013. In Hydrocarbon Mobilization Mechanisms from Upper, Middle, and Lower Bakken Reservoir Rocks Exposed to CO2. SPE Canada Unconventional Resources Conference, Calgary, Alberta.

[27]

He, K., 2018. Prospects for Developing Hot Dry Rock by Carbon Dioxide. Modern Chemical Industry, 38(6): 56-58, 60 (in Chinese with English abstract).

[28]

Heagle, D. J., Ryan, D., 2022. Experimental Determination of the Interfacial Tension and Swelling Factors of Bakken and Duvernay Oils with CO2, Impure CO2, Methane, Ethane, and Propane. Energy & Fuels, 36(2): 806-817. https://doi.org/10.1021/acs.energyfuels.1c02719

[29]

Hoffman, B.T., 2018. Huff-n-Puff gas injection pilots projects in the Eagle Ford. SPE Canada Unconventional Resources Conference, Calgary, Alberta.

[30]

Huang, S., Wang, J.Y., Li, Z.Y., 2022. Analysis of Green and Low-Carbon Development Path of Petroleum and Chemical Industry under the Goal of Carbon Neutrality. Chemical Industry and Engineering Progress, 41(4): 1689-1703 (in Chinese with English abstract).

[31]

Huang, X., Li, X., Zhang, Y., et al., 2022. Microscopic Production Characteristics of Crude Oil in Nano-Pores of Shale Oil Reservoirs during CO2 Huff and Puff. Petroleum Exploration and Development, 49(3):557-564 (in Chinese with English abstract).

[32]

International Energy Agency (IEA), 2020. Special Report on Carbon Capture Utilisation and Storage-CCUS in Clean Energy Transitions. International Energy Agency, Paris.

[33]

Ishida, T., Aoyagi, K., Niwa, T., et al., 2012. Acoustic Emission Monitoring of Hydraulic Fracturing Laboratory Experiment with Supercritical and Liquid CO2. Geophysical Research Letters, 39(16):440-453. https://doi.org/10.1029/2012 GL052788

[34]

Jia, B., Tsau, J. S., Barati, R., 2018. Role of Molecular Diffusion in Heterogeneous, Naturally Fractured Shale Reservoirs during CO2 Huff-n-Puff. Journal of Petroleum Science and Engineering, 164: 31-42. https://doi.org/10.1016/j.petrol.2018.01.032

[35]

Jin, L., Hawthorne, S., Sorensen, J., et al., 2017a. Utilization of Produced Gas for Improved Oil Recovery and Reduced Emissions from the Bakken Formation. SPE Health, Safety, Security, Environment, & Social Responsibility Conference, New Orleans, LA.https://doi.org/10.2118/184414-MS

[36]

Jin, L., Hawthorne, S., Sorensen, J., et al., 2017b. Extraction of Oil from the Bakken Shales with Supercritical CO2. SPE/AAPG/SEG Unconventional Resources Technology Conference, Austin, TX.https://doi.org/10.15530/URTEC-2017-2671596

[37]

Jiang, L. L., Chen, Z. X., Farouq Ali, S. M., 2019. Feasibility of Carbon Dioxide Storage in Post-Burn Underground Coal Gasification Cavities. Applied Energy, 252: 113479. https://doi.org/10.1016/j.apenergy.2019.113479

[38]

Jiang, P., He, S.L., Yang, Z.Q., et al., 2022. High CO2 Natural Gas Charging Events, Timing and Accumulation Pattern in LD10 Area of Yinggehai Basin. Earth Science, 47(5): 1569-1585 (in Chinese with English abstract).

[39]

Jacobs, T., 2019. Shale EOR Delivers, So Why Won’t the Sector Go Big? Journal of Petroleum Technology, 71(5): 37-41. https://doi.org/10.2118/0519-0037-JPT

[40]

Kizaki, A., Tanaka, H., Ohashi, K., et al., 2012. Hydraulic Fracturing in Inada Granite and Ogino Tuff with Supercritical Carbon Dioxide. ISRM Regional Symposium-7th Asian Rock Mechanics Symposium, Seoul.

[41]

Kong, S. Q., Feng, G., Liu, Y. L., et al., 2021. Potential of Dimethyl Ether as an Additive in CO2 for Shale Oil Recovery. Fuel, 296: 120643. https://doi.org/10.1016/j.fuel.2021.120643

[42]

Li, C.F., Zhao, X.T., Duan, W., et al., 2023. Strategic and Geodynamic Analyses of Geo-Sequestration of CO2 in China Offshore Sedimentary Basins. Chinese Journal of Theoretical and Applied Mechanics, 55(3): 719-731 (in Chinese with English abstract).

[43]

Li, K.Q., Li, P., Wei, M.Z., et al., 2021. A Pilot Project of CO2 Enhanced Oil Recovery and Storage in Chang 8 Extra-Low Permeability Reservoir in Huang 3 District of Changqing Oilfield. Journal of Engineering Geology, 29(5): 1488-1496 (in Chinese with English abstract).

[44]

Li, L., Su, Y. L., Hao, Y. M., et al., 2019a. A Comparative Study of CO2 and N2 Huff-n-Puff EOR Performance in Shale Oil Production. Journal of Petroleum Science and Engineering, 181: 106174. https://doi.org/10.1016/j.petrol.2019.06.038

[45]

Li, L., Su, Y. L., Sheng, J. J., et al., 2019b. Experimental and Numerical Study on CO2 Sweep Volume during CO2 Huff-n-Puff Enhanced Oil Recovery Process in Shale Oil Reservoirs. Energy & Fuels, 33(5): 4017-4032. https://doi.org/10.1021/acs.energyfuels.9b00164

[46]

Li, L., Zhang, Y., Sheng, J. J., 2017. Effect of the Injection Pressure on Enhancing Oil Recovery in Shale Cores during the CO2 Huff-n-Puff Process When It Is above and below the Minimum Miscibility Pressure. Energy & Fuels, 31(4): 3856-3867. https://doi.org/10.1021/acs.energyfuels.7b00031

[47]

Li, Y.B., He, T.S., Hu, Z.M., et al., 2021. A Comprehensive Review of Enhanced Oil Recovery Technologies for Shale Oil. Journal of Southwest Petroleum University (Science & Technology Edition), 43(3):101-110 (in Chinese with English abstract).

[48]

Liu, J.R., Yu, W.Q., Li, R.Q., 2013. Discussion on Technology for Development and Utilization of Geothermal Resources in Oilfields. China Petroleum Exploration, 18(5):68-73 (in Chinese with English abstract).

[49]

Liu, S.Q., Fang, H.H., Sang, S.X., et al., 2022. Numerical Simulation of Gas Production for Multilayer Drainage Coalbed Methane Vertical Wells in Southern Qinshui Basin. Coal Geology & Exploration, 50(6):20-31 (in Chinese with English abstract).

[50]

Liu, S.Z., Wei, J.G., Ma, Y.Y., et al., 2020. Research Progress on Application of Supercritical Carbon Dioxide in Geothermal Exploitation. Applied Chemical Industry, 49(6): 1537-1540 (in Chinese with English abstract).

[51]

Louk, K., Ripepi, N., Luxbacher, K., et al., 2017. Monitoring CO2 Storage and Enhanced Gas Recovery in Unconventional Shale Reservoirs: Results from the Morgan County, Tennessee Injection Test. Journal of Natural Gas Science and Engineering, 45: 11-25. https://doi.org/10.1016/j.jngse.2017.03.025

[52]

Lu, Y.L., Wang, S.Z., Shen, L.H., et al., 2008. Numerical Simulation on the Initial Unstable Stages of Liquid CO2 Fracturing. Natural Gas Industry, 28(11):93-95 (in Chinese with English abstract).

[53]

Luo, F., Xu, R. N., Jiang, P. X., 2014. Numerical Investigation of Fluid Flow and Heat Transfer in a Doublet Enhanced Geothermal System with CO2 as the Working Fluid (CO2-EGS). Energy, 64: 307-322. https://doi.org/10.1016/j.energy.2013.10.048

[54]

Luo, Y. C., Zheng, T. Y., Xiao, H. M., et al., 2022. Identification of Distinctions of Immiscible CO2 Huff and Puff Performance in Chang-7 Tight Sandstone Oil Reservoir by Applying NMR, Microscope and Reservoir Simulation. Journal of Petroleum Science and Engineering, 209: 109719. https://doi.org/10.1016/j.petrol.2021.109719

[55]

Ma, H. M., Yang, Y., Zhang, Y. M., et al., 2022. Optimized Schemes of Enhanced Shale Gas Recovery by CO2-N2 Mixtures Associated with CO2 Sequestration. Energy Conversion and Management, 268: 116062. https://doi.org/10.1016/j.enconman.2022.116062

[56]

Mahzari, P., Oelkers, E., Mitchell, T., et al., 2019. An Improved Understanding about CO2 EOR and CO2 Storage in Liquid-Rich Shale Reservoirs. SPE Europec Featured at 81st EAGE Conference and Exhibition, London. https://doi.org/10.2118/195532-MS

[57]

Mahdaviara, M., Nait Amar, M., Hemmati-Sarapardeh, A., et al., 2021. Toward Smart Schemes for Modeling CO2 Solubility in Crude Oil: Application to Carbon Dioxide Enhanced Oil Recovery. Fuel, 285: 119147. https://doi.org/10.1016/j.fuel.2020.119147

[58]

Metcalfe, R. S., Yarborough, L., 1979. The Effect of Phase Equilibria on the CO2 Displacement Mechanism. SPE Journal, 19(4): 242-252. https://doi.org/10.2118/7061-PA

[59]

Metz, B. O., Davidson, H. C., Coninck, D., et al., 2005. Intergovernmental on Climate Change (IPCC) Special Report on Carbon Dioxide Capture and Storage. Cambridge University Press, Cambridge.

[60]

Middleton, R. S., Carey, J. W., Currier, R. P., et al., 2015. Shale Gas and Non-Aqueous Fracturing Fluids: Opportunities and Challenges for Supercritical CO2. Applied Energy, 147: 500-509. https://doi.org/10.1016/j.apenergy.2015.03.023

[61]

National Energy Technology Laboratory (NETL), 2010. Carbon Dioxide Enhanced Oil Recovery. U.S. Department of Energy, Washington, D.C..

[62]

Ning, Y. R., Kazemi, H., 2018. Ethane-Enriched Gas Injection EOR in Niobrara and Codell: A Dual-Porosity Compositional Model. SPE Improved Oil Recovery Conference, Tulsa, Oklahoma. https://doi.org/10.2118/190226-MS

[63]

Olukoga, T. A., Feng, Y., 2022. Determination of Miscible CO2 Flooding Analogue Projects with Machine Learning. Journal of Petroleum Science and Engineering, 209: 109826. https://doi.org/10.1016/j.petrol.2021.109826

[64]

Pan, L. H., Freifeld, B., Doughty, C., et al., 2015. Fully Coupled Wellbore-Reservoir Modeling of Geothermal Heat Extraction Using CO2 as the Working Fluid. Geothermics, 53: 100-113. https://doi.org/10.1016/j.geothermics.2014.05.005

[65]

Pankaj, P., Mukisa, H., Solovyeva, I., et al., 2018. Enhanced Oil Recovery in Eagle Ford: Opportunities Using Huff-n-Puff Technique in Unconventional Reservoirs. SPE Liquids-Rich Basins Conference-North America, Midland, Texas. https://doi.org/10.2118/191780-MS

[66]

Petroleum Technology Research Centre, 2004. IEA GHG Weyburn CO2 Monitoring & Storage Project Summary Report 2000-2004. 7th International Conference on Greenhouse Gas Control Technologies, Vancouver.

[67]

Pranesh, V., 2018. Subsurface CO2 Storage Estimation in Bakken Tight Oil and Eagle Ford Shale Gas Condensate Reservoirs by Retention Mechanism. Fuel, 215: 580-591. https://doi.org/10.1016/j.fuel.2017.11.049

[68]

Pruess, K., 2006. Enhanced Geothermal Systems (EGS) Using CO2 as Working Fluid—A Novel Approach for Generating Renewable Energy with Simultaneous Sequestration of Carbon. Geothermics, 35(4): 351-367. https://doi.org/10.1016/j.geothermics.2006.08.002

[69]

Pruess, K., 2008. On Production Behavior of Enhanced Geothermal Systems with CO2 as Working Fluid. Energy Conversion and Management, 49(6): 1446-1454. https://doi.org/10.1016/j.enconman.2007.12.029

[70]

Qi, C.M., Li, R.D., Zhu, S.D., et al., 2019. Pilot Test on CO2 Flooding of Chang 4+51 Oil Reservoir in Yougou Region of the Ordos Basin. Oil Drilling & Production Technology, 41(2): 249-253 (in Chinese with English abstract).

[71]

Rao, S., Yang, Y.N., Hu, S.B., et al., 2022. Thermal Evolution History and Shale Gas Accumulation Significance of Lower Cambrian Qiongzhusi Formation in Southwest Sichuan Basin. Earth Science, 47(11):4319-4335 (in Chinese with English abstract).

[72]

Ren, B., Duncan, I. J., 2021. Maximizing Oil Production from Water Alternating Gas (CO2) Injection into Residual Oil Zones: The Impact of Oil Saturation and Heterogeneity. Energy, 222: 119915. https://doi.org/10.1016/j.energy.2021.119915

[73]

Settari, A., Bachman, R. C., Morrison, D. C., 1987. Numerical Simulation of Hydraulic Fracturing Treatments with Low-Viscosity Fluids. Journal of Canadian Petroleum Technology, 26(5): 1-11. https://doi.org/10.2118/87-05-02

[74]

Sheng, J. J., 2013. Surfactant Enhanced Oil Recovery in Carbonate Reservoirs. In: Enhanced Oil Recovery Field Case Studies. Elsevier, Amsterdam, 281-299. https://doi.org/10.1016/b978-0-12-386545-8.00012-9

[75]

Shi, Q. M., Cui, S. D., Wang, S. M., et al., 2022. Experiment Study on CO2 Adsorption Performance of Thermal Treated Coal: Inspiration for CO2 Storage after Underground Coal Thermal Treatment. Energy, 254: 124392. https://doi.org/10.1016/j.energy.2022.124392

[76]

Shi, Y., 2014. The Operating Mechanism and Optimization Research on Carbon Dioxide Plume Geothermal System (Dissertation). Jilin University, Changchun (in Chinese with English abstract).

[77]

Shi, Y., 2020. Study on Mechanism and Parameters of Geothermal Exploitation Using Multilateral Wells with CO2 as Working Fluid (Dissertation). China University of Petroleum, Beijing (in Chinese with English abstract).

[78]

Stevens, S. H., Spector, D., Riemer, P., 1998. Enhanced Coalbed Methane Recovery Using CO2 Injection: Worldwide Resource and CO2 Sequestration Potential. SPE International Oil and Gas Conference and Exhibition in China, Beijing. https://doi.org/10.2118/48881-MS

[79]

Sun, F. R., Yao, Y. D., Li, G. Z., et al., 2018a. Geothermal Energy Development by Circulating CO2 in a U-Shaped Closed Loop Geothermal System. Energy Conversion and Management, 174: 971-982. https://doi.org/10.1016/j.enconman.2018.08.094

[80]

Sun, F. R., Yao, Y. D., Li, G. Z., et al., 2018b. Performance of Geothermal Energy Extraction in a Horizontal Well by Using CO2 as the Working Fluid. Energy Conversion and Management, 171: 1529-1539. https://doi.org/10.1016/j.enconman.2018.06.092

[81]

Sun, R. X., Pu, H., Yu, W., et al., 2019. Simulation-Based Enhanced Oil Recovery Predictions from Wettability Alteration in the Middle Bakken Tight Reservoir with Hydraulic Fractures. Fuel, 253: 229-237. https://doi.org/10.1016/j.fuel.2019.05.016

[82]

Sun, Z.X., Xu, Y., et al., 2016. A Thermo-Hydro-Mechanical Coupling Model for Numerical Simulation of Enhanced Geothermal Systems. Journal of China University of Petroleum (Edition of Natural Science), 40(6):109-117 (in Chinese with English abstract).

[83]

Tan, J., 2011. The Study of Increased Permeability Law with Supercritical Carbon Dioxide Injected into the Low Permeability Coal Seam (Dissertation). Liaoning Technical University, Fuxin (in Chinese with English abstract).

[84]

Todd, H. B., Evans, J. G., 2016. Improved Oil Recovery IOR Pilot Projects in the Bakken Formation. SPE Low Perm Symposium, Denver, Colorado.https://doi.org/10.2118/180270-MS

[85]

Uliasz-Misiak, B., Lewandowska-Śmierzchalska, J., Matuła, R., 2021. Criteria for Selecting Sites for Integrated CO2 Storage and Geothermal Energy Recovery. Journal of Cleaner Production, 285: 124822. https://doi.org/10.1016/j.jclepro.2020.124822

[86]

Verdon, J. P., Kendall, J. M., Maxwell, S. C., 2010. A Comparison of Passive Seismic Monitoring of Fracture Stimulation from Water and CO2 Injection. Geophysics, 75(3): MA1-MA7. https://doi.org/10.1190/1.3377789

[87]

Wang, C. L., Cheng, W. L., Nian, Y. L., et al., 2018a. Simulation of Heat Extraction from CO2-Based Enhanced Geothermal Systems Considering CO2 Sequestration. Energy, 142: 157-167. https://doi.org/10.1016/j.energy.2017.09.139

[88]

Wang, K., Yuan, B., Ji, G. M., et al., 2018b. A Comprehensive Review of Geothermal Energy Extraction and Utilization in Oilfields. Journal of Petroleum Science and Engineering, 168: 465-477. https://doi.org/10.1016/j.petrol.2018.05.012

[89]

Wang, H.Z., Li, G.S., He, Z.G., et al., 2018. Analysis of Mechanisms of Supercritical CO2 Fracturing. Rock and Soil Mechanics, 39(10): 3589-3596 (in Chinese with English abstract).

[90]

Wang, J.Y., Qiu, N.S., Hu, S.B., et al., 2017. Advancement and Developmental Trend in the Geothermics of Oil Fields in China. Earth Science Frontiers, 24(3): 1-12 (in Chinese with English abstract).

[91]

Wang, S.J., Li, F., Yan, J.H., et al., 2020. Evaluation Methods and Application of Geothermal Resources in Oilfields. Acta Petrolei Sinica, 41(5): 553-564 (in Chinese with English abstract).

[92]

Wang, S.J., Yan, J. H., Li, M., et al., 2014. New Advances in the Study of Oilfield Geothermal Resources Evaluation. Chinese Journal of Geology (Scientia Geologica Sinica), 49(3):771-780 (in Chinese with English abstract).

[93]

Wang, X. Z., Zeng, F. H., Gao, R. M., et al., 2017. Cleaner Coal and Greener Oil Production: An Integrated CCUS Approach in Yanchang Petroleum Group. International Journal of Greenhouse Gas Control, 62: 13-22. https://doi.org/10.1016/j.ijggc.2017.04.001

[94]

Wang, Y.Y., 2015.CO2 Flooding Test of Fuyang Reservoirs in Daqing Yushulin Oilfield. Petroleum Geology & Oilfield Development in Daqing, 34(1): 136-139 (in Chinese with English abstract).

[95]

Xiao, Y., 2017. Study on THMC Coupling of Hydro-Shearing in Hot Dry Rock in Enhanced Geothermal System (Dissertation). Southwest Petroleum University, Chengdu (in Chinese with English abstract).

[96]

Ye, J.P., Feng, S.L., Fan, Z.Q., et al., 2007. Micro-Pilot Test for Enhanced Coalbed Methane Recovery by Injecting Carbon Dioxide in South Part of Qinshui Basin. Acta Petrolei Sinica, 28(4):77-80 (in Chinese with English abstract).

[97]

Yu, W., Zhang, Y. A., Varavei, A., et al., 2019. Compositional Simulation of CO2 Huff-n-Puff in Eagle Ford Tight Oil Reservoirs with CO2 Molecular Diffusion, Nanopore Confinement, and Complex Natural Fractures. SPE Reservoir Evaluation & Engineering, 22(2): 492-508. https://doi.org/10.2118/190325-pa https://doi.org/10.2118/190325-PA

[98]

Zhang, C., Zhou, S.X., Chen, K., et al., 2019. Impact on Microscopic Pore Structure and Adsorption Behavior of Carbon Dioxide on Shale under High Pressure Condition. Earth Science, 44(11): 3773-3782 (in Chinese with English abstract).

[99]

Zhang, K., Lau, H. C., 2022a. Sequestering CO2 as CO2 Hydrate in an Offshore Saline Aquifer by Reservoir Pressure Management. Energy, 239: 122231. https://doi.org/10.1016/j.energy.2021.122231

[100]

Zhang, K., Lau, H. C., 2022b. Utilization of a High-Temperature Depleted Gas Condensate Reservoir for CO2 Storage and Geothermal Heat Mining: A Case Study of the Arun Gas Reservoir in Indonesia. Journal of Cleaner Production, 343: 131006. https://doi.org/10.1016/j.jclepro.2022.131006

[101]

Zhang, K., Lau, H. C., Chen, Z. X., 2022a. CO2 Enhanced Gas Recovery and Sequestration as CO2 Hydrate in Shallow Gas Fields in Alberta, Canada. Journal of Natural Gas Science and Engineering, 103: 104654. https://doi.org/10.1016/j.jngse.2022.104654

[102]

Zhang, K., Lau, H. C., Liu, S. Y., et al., 2022b. Carbon Capture and Storage in the Coastal Region of China between Shanghai and Hainan. Energy, 247: 123470. https://doi.org/10.1016/j.energy.2022.123470

[103]

Zhang, K., Lau, H. C., Chen, Z. X., 2022c. Regional Carbon Capture and Storage Opportunities in Alberta, Canada. Fuel, 322: 124224. https://doi.org/10.1016/j.fuel.2022.124224

[104]

Zhang, L., Li, X., Zhang, Y., et al., 2017a. CO2 Injection for Geothermal Development Associated with EGR and Geological Storage in Depleted High-Temperature Gas Reservoirs. Energy, 123: 139-148. https://doi.org/10.1016/j.energy.2017.01.135

[105]

Zhang, X. W., Lu, Y. Y., Tang, J. R., et al., 2017b. Experimental Study on Fracture Initiation and Propagation in Shale Using Supercritical Carbon Dioxide Fracturing. Fuel, 190: 370-378. https://doi.org/10.1016/j.fuel.2016.10.120

[106]

Zhang, Y., Lashgari, H. R., Di, Y., et al., 2017c. Capillary Pressure Effect on Phase Behavior of CO2/Hydrocarbons in Unconventional Reservoirs. Fuel, 197: 575-582. https://doi.org/10.1016/j.fuel.2017.02.021

[107]

Zhang, X.W., 2018. The Formation Mechanism of Supercritical CO2-Induced Complex Fracture in Shale and the Equivalent Seepage Model (Dissertation). Chongqing University, Chongqing (in Chinese with English abstract).

[108]

Zhang, Z., Zhang, H., 2012. Carbonation of Mafic-Ultramafic Rocks: A New Approach to Carbon Dioxide Geological Sequestration. Earth Science, 37(1): 156-162 (in Chinese with English abstract).

[109]

Zhao, Z. H., Li, X., He, J. M., et al., 2018. A Laboratory Investigation of Fracture Propagation Induced by Supercritical Carbon Dioxide Fracturing in Continental Shale with Interbeds. Journal of Petroleum Science and Engineering, 166: 739-746. https://doi.org/10.1016/j.petrol.2018.03.066

[110]

Zuloaga, P., Yu, W., Miao, J. J., et al., 2017. Performance Evaluation of CO2 Huff-n-Puff and Continuous CO2 Injection in Tight Oil Reservoirs. Energy, 134: 181-192. https://doi.org/10.1016/j.energy.2017.06.028

[111]

蔡博峰,李琦,林千果,等,2020. 中国二氧化碳捕集、利用与封存(CCUS)报告2019. 北京:生态环境部环境规划院气候变化与环境政策研究中心.

[112]

杜玉昆, 庞飞, 陈科, 等, 2019. 超临界二氧化碳喷射破碎页岩试验. 地球科学, 44(11):3749-3756.

[113]

郭建春, 曾冀, 2015.超临界二氧化碳压裂井筒非稳态温度‒压力耦合模型. 石油学报, 36(2): 203-209.

[114]

韩超,李和,段宇,2023. 西南油气田全面发力绿色低碳发展. 北京:中国石油报.

[115]

贺凯, 2018. 二氧化碳开发干热岩技术展望. 现代化工, 38(6): 56-58, 60.

[116]

黄晟, 王静宇, 李振宇, 2022. 碳中和目标下石油与化学工业绿色低碳发展路径分析. 化工进展, 41(4): 1689-1703.

[117]

黄兴, 李响, 张益, 等, 2022. 页岩油储集层二氧化碳吞吐纳米孔隙原油微观动用特征. 石油勘探与开发, 49(3):557-564.

[118]

姜平, 何胜林, 杨朝强, 等, 2022. 莺歌海盆地LD10区高含CO2天然气充注期次精细厘定与成藏模式. 地球科学, 47(5): 1569-1585.

[119]

李春峰, 赵学婷, 段威, 等, 2023. 中国海域盆地CO2地质封存选址方案与构造力学分析. 力学学报, 55(3): 719-731.

[120]

李坤全, 黎平, 魏敏章, 等, 2021. 长庆油田黄3区长8特低渗油藏二氧化碳驱油与埋存先导试验. 工程地质学报, 29(5): 1488-1496.

[121]

李一波, 何天双, 胡志明, 等, 2021. 页岩油藏提高采收率技术及展望. 西南石油大学学报(自然科学版), 43(3):101-110.

[122]

刘均荣, 于伟强, 李荣强, 2013. 油田地热资源开发利用技术探讨. 中国石油勘探, 18(5):68-73.

[123]

刘世奇, 方辉煌, 桑树勋, 等, 2022. 沁水盆地南部煤层气直井合层排采产气效果数值模拟. 煤田地质与勘探, 50(6):20-31.

[124]

刘松泽, 魏建光, 马媛媛, 等, 2020. 超临界二氧化碳在地热开发中的应用研究进展. 应用化工, 49(6): 1537-1540.

[125]

陆友莲, 王树众, 沈林华, 等, 2008. 纯液态CO2压裂非稳态过程数值模拟. 天然气工业, 28(11):93-95.

[126]

齐春民, 李瑞冬, 朱世东, 等, 2019. 鄂尔多斯盆地油沟区长4+51低渗透油藏二氧化碳驱先导试验. 石油钻采工艺, 41(2): 249-253.

[127]

饶松, 杨轶南, 胡圣标, 等, 2022. 川西南地区下寒武统筇竹寺组页岩热演化史及页岩气成藏意义. 地球科学, 47(11):4319-4335.

[128]

石岩, 2014. 二氧化碳羽流地热系统运行机制及优化研究(博士学位论文). 吉林: 吉林大学.

[129]

石宇, 2020. 多分支井循环二氧化碳开采地热机理与参数研究(博士学位论文). 北京:中国石油大学.

[130]

孙致学, 徐轶, 吕抒桓, 等, 2016. 增强型地热系统热流固耦合模型及数值模拟. 中国石油大学学报(自然科学版), 40(6):109-117.

[131]

谈健,2011. 低渗透煤层注入超临界CO2增透规律研究(硕士学位论文). 阜新:辽宁工程技术大学.

[132]

王海柱, 李根生, 贺振国, 等, 2018. 超临界CO2岩石致裂机制分析. 岩土力学, 39(10): 3589-3596.

[133]

汪集暘, 邱楠生, 胡圣标, 等, 2017. 中国油田地热研究的进展和发展趋势. 地学前缘, 24(3): 1-12.

[134]

王社教, 李峰, 闫家泓, 等, 2020. 油田地热资源评价方法及应用. 石油学报, 41(5): 553-564.

[135]

王社教, 闫家泓, 黎民, 等, 2014. 油田地热资源评价研究新进展. 地质科学, 49(3):771-780.

[136]

汪艳勇, 2015.大庆榆树林油田扶杨油层CO2驱油试验. 大庆石油地质与开发, 34(1): 136-139.

[137]

肖勇, 2017.增强地热系统中干热岩水力剪切压裂THMC耦合研究(博士学位论文).成都:西南石油大学.

[138]

叶建平, 冯三利, 范志强, 等, 2007. 沁水盆地南部注二氧化碳提高煤层气采收率微型先导性试验研究. 石油学报, 28(4):77-80.

[139]

张臣, 周世新, 陈科, 等, 2019. 高压条件下CO2对页岩微观孔隙结构影响及其在页岩中的吸附特征. 地球科学, 44(11): 3773-3782.

[140]

张欣玮,2018. 超临界CO2压裂页岩复杂裂缝形成机理及等效渗流模型(博士学位论文).重庆:重庆大学.

[141]

张舟, 张宏福, 2012. 基性、超基性岩: 二氧化碳地质封存的新途径. 地球科学, 37(1): 156-162.

基金资助

国家自然科学基金面上项目(42072174)

AI Summary AI Mindmap
PDF (1870KB)

517

访问

0

被引

详细

导航
相关文章

AI思维导图

/