柴北缘西段绿梁山早古生代复式花岗岩体成因

张懿 ,  朱小辉 ,  蒲永霞 ,  张君 ,  任云飞 ,  王海杰 ,  孔红喜 ,  陈丹玲

地球科学 ›› 2024, Vol. 49 ›› Issue (09) : 3106 -3121.

PDF (10166KB)
地球科学 ›› 2024, Vol. 49 ›› Issue (09) : 3106 -3121. DOI: 10.3799/dqkx.2023.097

柴北缘西段绿梁山早古生代复式花岗岩体成因

作者信息 +

Petrogenesis of the Lüliangshan Early Paleozoic Composite Granite Pluton in North Qaidam Tectonic Belt

Author information +
文章历史 +
PDF (10409K)

摘要

为探讨柴北缘西段绿梁山复式岩体的成因及其与大陆深俯冲‒折返过程的关系,对其开展了系统的岩石学、地球化学和同位素年代学研究.结果表明,该复式岩体由三期中酸性侵入岩构成,是柴北缘构造带早古生代陆壳深俯冲‒折返到造山带垮塌过程的岩浆响应.其中,I期为似斑状花岗闪长岩,规模较小,形成年龄为436~430 Ma,是陆壳深俯冲/碰撞过程中加厚镁铁质下地壳部分熔融的产物;II期为英云闪长岩‒正长花岗岩‒二长花岗岩,年龄介于400~390 Ma,由折返的超高压榴辉岩和下地壳镁铁质岩石在地壳伸展背景下部分熔融形成;III期二云母花岗岩为绿梁山复式岩体的主体,形成年龄为365~360 Ma,具强过铝质S型花岗岩特征,是造山带去根、垮塌阶段中、上地壳变泥质岩部分熔融的产物.

关键词

地球化学 / 锆石U-Pb年代学 / 花岗岩 / 绿梁山 / 柴北缘 / 岩石学.

Key words

geochemistry / zircon U-Pb dating / granite / Lüliangshan / North Qaidam / petrology

引用本文

引用格式 ▾
张懿,朱小辉,蒲永霞,张君,任云飞,王海杰,孔红喜,陈丹玲. 柴北缘西段绿梁山早古生代复式花岗岩体成因[J]. 地球科学, 2024, 49(09): 3106-3121 DOI:10.3799/dqkx.2023.097

登录浏览全文

4963

注册一个新账户 忘记密码

0 引言

碰撞造山带在俯冲/碰撞、折返和垮塌过程中,除了发生变形变质外,还会伴随多期次以及不同程度的深熔作用,因此对造山带中不同期次和类型岩浆岩进行系统研究,对于认识俯冲大陆岩石圈再循环、岩浆形成机制和碰撞造山带构造演化等具有重要意义.柴北缘构造带是一条典型的陆壳深俯冲型变质带,主要由经历高压‒超高压变质的花岗片麻岩、泥质片麻岩和少量呈透镜状‒似层状产出的榴辉岩和石榴橄榄岩组成.榴辉岩及其围岩副片麻岩中柯石英包体(Yang et al., 2001Song et al., 2003Zhang et al., 2009a, 2009b, 2010a,, 2010b; Liu et al., 2012)、石榴橄榄岩中金刚石包体和超高压显微出溶结构的发现(Song et al., 2005a, 2005b2007),以及大量变质作用研究已经很好地约束了带内各种超高压岩石的进变质、峰期变质和退变质作用的PT条件和演化轨迹(Song et al., 2003; 陈丹玲等, 2005, 2007; Zhang et al., 2005, 2009a, 2010a,, 2010b, 2011; Ren et al., 2021, 2022).锆石U-Pb年代学研究结果对超高压变质作用的峰期变质以及不同类型榴辉岩的原岩结晶年龄也给出了很好的限定(Song et al., 2003; 陈丹玲等, 2005; Zhang et al., 2005Yang and Powell,2008Zhang et al., 2009a, 2009b2010aCao et al., 2017).相对而言,由于退变质锆石的生长有限,有关柴北缘超高压变质岩石的折返退变质过程从变质岩石学角度缺乏有效约束,目前仅有零星的420~400 Ma退变质年龄的报道(Song et al., 2005a; 陈丹玲等,2007;Yu et al., 2013Zhang et al., 2015a, 2015bCao et al., 2017).

与洋壳相比,大陆地壳相对干冷,因此陆壳俯冲/碰撞时期同俯冲岩浆作用较少发育(Labrousse et al., 2011Xia et al., 2013Chen et al., 2014),但在后碰撞阶段,由于受板片断离以及加厚下地壳拆沉、地幔对流侵蚀等因素影响(Bird, 1979England and Houseman, 1989Davies and von Blanckenburg, 1995),不仅会导致深俯冲陆壳快速折返,造成陆壳中含水矿物和名义上无水矿物的减压、脱水熔融(Labrousse et al., 2011; 陈丹玲等, 2013; Chen et al., 2012Song et al., 2014Yu et al., 2015),还会诱发软流圈地幔上涌并引发岩石圈地幔楔、上覆大陆地壳岩石发生不同程度部分熔融,继而形成一系列复杂的后碰撞岩浆岩组合(Ligéois et al., 1998Barbarin, 1999Miller et al., 1999Bonin, 2004Dai et al., 2015Song et al., 2015).因此,对造山带岩浆岩尤其是后碰撞岩浆岩开展系统的成因研究,可为刻画深俯冲板片折返过程以及碰撞型造山带构造演化提供重要信息.

绿梁山复式岩体位于柴北缘构造带西段(图1a),已有研究分别给出了~430 Ma(孟繁聪等, 2005)、~420 Ma(周宾等, 2014; Yang et al., 2020)和~400 Ma(吴才来等, 2007)等不同的形成年龄.但这些研究多针对单一类型岩石,缺乏全面系统研究,也导致目前对绿梁山复式岩体的成因和形成机制存在俯冲板片折返导致的减压熔融(吴才来等, 2007; 孟繁聪等, 2005; Yang et al., 2020)和加厚陆壳重熔(周宾等, 2014)等不同认识.本文通过详细的野外调查,从绿梁山复式岩体中识别出5种不同类型的中酸性侵入岩,同时获得这些岩石的形成时代介于430~360 Ma,这一时期正是柴北缘构造带从造山时期的俯冲/碰撞阶段向后造山板内伸展的转换时期,因此详细探讨绿梁山复式岩体的成因类型、形成时代和构造背景,可为探讨柴北缘构造带碰撞造山过程提供重要约束.

1 区域地质概况与岩石学特征

柴北缘构造带位于青藏高原东北部,呈北西西向展布,其南北分别以柴北缘深断裂和乌兰‒鱼卡断裂为界与柴达木陆块和全吉地块相邻,东西则以哇洪山‒温泉断裂和阿尔金走滑断裂为界与秦岭造山带和阿尔金高压‒超高压变质带相接,为一条早古生代形成的俯冲碰撞杂岩带(图1a).该构造带主要由中‒新元古代正/副片麻岩、滩间山群火山‒沉积岩系、镁铁‒超镁铁质岩、中酸性侵入岩以及少量大理岩组成.高压‒超高压榴辉岩呈大小不等的透镜状或夹层状岩块产于片麻岩中,自西向东断续出露于鱼卡、绿梁山、锡铁山和都兰地区.榴辉岩和围岩副片麻岩中柯石英包体(Yang et al., 2001; Song et al., 2003; Zhang et al., 2009a, 2010a; Liu et al., 2012)以及石榴橄榄岩中金刚石包体和石榴子石中辉石、金红石等显微出溶结构的发现(Song et al., 2005a, 2005b2007)限定本地区峰期变质条件已经达到柯石英‒金刚石稳定域,同时变质作用研究和相平衡计算结果显示榴辉岩及其围岩具有大致相同的顺时针P-T演化轨迹(Song et al., 2003; 陈丹玲等, 2005; Zhang et al., 2010a, 2010b2011Ren et al., 2016, 2021).地球化学和年代学研究揭示榴辉岩的原岩存在3种类型,其中主体为新元古代(880~750 Ma)板内火山岩(杨经绥等, 2003; Chen et al., 2009Song et al., 2010Zhang et al., 2010b, 2017),少量为古生代洋壳(516~510 Ma,Zhang et al., 2008; ~450 Ma,Chen et al., 2018, 2019a2019b),以及新近在鱼卡地区发现的中元古代洋壳(1 280~ 1 060 Ma,Ren et al., 2018, 2019),它们的峰期变质时代均介于460~420 Ma,且以450~430 Ma为主.由于锆石的退变质边较窄,目前关于超高压岩石的退变质年龄仅有零星的420~400 Ma报道(Chen et al., 2009Zhang et al., 2015aCao et al., 2017).

绿梁山复式岩体位于柴北缘构造带西段,大柴旦镇以南的绿梁山一带(图1),呈不规则岩株状侵位于片麻岩中,出露面积约75 km2.该复式岩体主要由二云母花岗岩、英云闪长岩、似斑状花岗闪长岩、正长花岗岩和二长花岗岩组成.其中,二云母花岗岩呈灰白色,是绿梁山复式花岗岩体的主要岩石类型(图2a);英云闪长岩出露面积仅次于二云母花岗岩,呈青灰色,局部可见被二长花岗岩和正长花岗岩穿插(图2b~2c);似斑状花岗闪长岩出露规模较小,淡青灰色,长石斑晶肉眼可见,被二云母花岗岩包围和穿插(图2d);正长花岗岩主体呈砖红色,呈岩墙/岩脉状产于英云闪长岩中(图2b),脉体宽度介于0.5~ 2.0 m;二长花岗岩呈灰白色,出露面积较小,与其他岩体的接触关系不清,但局部可见二长花岗岩体侵入到角砾状的英云闪长岩中(图2c).

似斑状花岗闪长岩(15QH42)主体具似斑状结构,块状构造.其中斑晶含量约50%,粒径0.5~ 2.0 cm,主要由石英、斜长石和碱性长石组成(图3a~3b);基质主要由斜长石(40%~50%)、石英(20%~30%)、碱性长石(10%~15%)及黑云母 (>5%)组成,另含少量的锆石、磷灰石.其余类型岩石均具中细粒花岗结构,块状构造,其中英云闪长岩(15QH44)主要由斜长石(50%~55%)、石英(20%~25%)、碱性长石(~5%)和黑云母(10%~15%)组成(图3c),含少量的白云母,斜长石可见轻度绢云母化;正长花岗岩(15QH40)主要由微斜长石(45%~50%)、石英(25%~30%)、斜长石(15%~20%)组成,含有少量的黑云母和白云母(图3d);二长花岗岩(15QH41)由斜长石(30%~35%)、碱性长石(30%~35%)、石英(25%~30%)和少量的白云母组成(图3e),碱性长石呈不规则粒状,以微斜长石为主;二云母花岗岩(14QH29)主要由斜长石(35%~40%)、石英(25%~30%)、微斜长石(15%~20%)、黑云母(~8%)及白云母组成(~10%)(图3f).

2 研究方法

所有分析测试均在西北大学大陆动力学国家重点实验室完成.其中锆石LA-ICP-MS U-Pb定年在Hewlett Packard公司的Agilent 7500a电感耦合等离子体质谱仪(ICP-MS)和Lambda Physick公司的ComPex102准分子激光器以及MicroLas公司的Geolas 200M光学系统的联机上进行,所用激光斑束为24 μm.数据处理采用Glitter(ver. 4.0,Macquarie University)程序,锆石年龄计算采用国际标准锆石91500进行分馏校正,元素含量(质量分数)采用人工合成硅酸盐玻璃标准物质NIST SRM610作为外标,29Si作为内标进行校正,分析结果见附表1.谐和图的绘制利用Isoplot(ver. 3.15; Ludwig, 2003)完成.

全岩主量元素含量(质量分数)分析采用X射线荧光熔片法,测试仪器为日本理学RIX2000型X荧光光谱仪(XRF),分析过程中采用BCR-2和GBW07105标样以及重复样监控,分析精度一般优于±2%.烧失量采用高温灼烧法获得.全岩微量元素含量(质量分数)分析采用溶液‒等离子体质谱法,分析仪器为Agilent 7500a ICP-MS,测试过程中采用USCG标样BHVO-2、AGV-2、BCR-2、GSP-2以及重复样监控,分析精度对大多数元素优于10%,分析结果见附表2.

3 分析结果

3.1 锆石年代学

似斑状花岗闪长岩中的锆石为自形长柱状,粒径约80~120 μm,显示清晰振荡环带结构(图4a),Th/U比值介于0.2~1.4(附表1),为典型岩浆锆石.25个有效测点的分析结果(附表1)在U-Pb谐和图中构成了一条不一致线(图5a),上交点年龄为(431±9) Ma.上交点处8个测点的206Pb/238U表面年龄介于436~430 Ma,加权平均值为(431±4) Ma,与上交点年龄一致,代表似斑状花岗闪长岩的形成年龄.

英云闪长岩锆石为自形长柱状,粒径介于200~300 μm,普遍具有核‒边结构(图4b),核部与边部均显示岩浆振荡环带结构,主体为岩浆成因锆石.只是核部反光较强且具有浑圆状外貌和相对较低的稀土元素含量和弱的Eu负异常,为源岩继承锆石.24个有效测点分析结果见附表1,其中核部测点构成一条不一致线,上交点年龄为(923±30) Ma(图5b),代表继承锆石年龄,下交点年龄为(397±14) Ma,为源岩受岩浆热事件改造年龄;边部测点在谐和图上形成一个年龄集中区(图5b),其206Pb/238U表面年龄介于396~403 Ma,加权平均年龄为(401±4) Ma,与核部测点的下交点年龄近乎一致,代表英云闪长岩的形成年龄.

正长花岗岩锆石为自形柱状,长约150~ 250 μm,具有清晰的振荡环带结构,个别颗粒可见继承性残核(图4c).对24颗锆石进行了37个测点的有效分析(附表1),其中23个核部测点的206Pb/238U表面年龄介于990~442 Ma,可能为继承锆石年龄.另有14个边部测点的206Pb/238U表面年龄介于398~367 Ma,其中有12个测点在U-Pb谐和图上构成一个年龄集中区,加权平均值为(394±3.4) Ma(图5c),代表正长花岗岩的形成年龄.

二长花岗岩锆石为自形长柱状,粒径约100~200 μm,可见明显的核‒边结构(图4d),其中核部发光性强,具清晰的振荡环带结构,Th/U比值主体介于0.1~1.0,为岩浆成因锆石;边部发光性弱,无环带,Th、U含量明显高于核部,且个别测点Th/U比值<0.01,可能为后期流体改造所致.22个有效测点分析结果见附表1.其中,核部测点在谐和图上构成一条不一致线(图5d),上交点年龄为(392±14) Ma,在上交点附近有4个测点构成一个年龄集中区,加权平均值为(391±6) Ma,与上交点年龄在误差范围内一致,代表二长花岗岩的形成年龄.边部测点的204Pb含量较高(4.79×10-6~169×10-6,大部分>10×10-6),偏离谐和线较远(图略),未能获得有效年龄.

二云母花岗岩锆石呈自形柱状,但粒度差异较大,粒径变化于80~250 μm(图4e),所有锆石皆显示核‒边结构,其中核部可见弱的振荡环带结构和浑圆状轮廓,为继承锆石,边部的环带结构清晰.定年结果显示(附表1),锆石核部测点谐和度差,边部测点的206Pb/238U表面年龄变化于365~360 Ma之间,在U-Pb谐和图上构成一个集中区(图5e),对应206Pb/238U年龄的加权平均值为(363±4) Ma,代表二云母花岗岩的形成年龄.

3.2 岩石地球化学

似斑状花岗闪长岩的SiO2含量在69.37%~70.18%之间,Al2O3含量为15.20%~15.38%,Na2O和K2O含量近乎相等(Na2O=3.63%~3.88%,K2O=3.22%~3.68%,Na2O/K2O=0.99~1.20),Fe2O3 T含量为2.32%~2.53%,MgO含量为0.84%~0.90%,Mg#为45~47,A/CNK值为1.06~1.07,属于弱过铝质高钾钙碱性系列岩石(图6).岩石稀土元素总量为157×10-6~190×10-6,呈轻稀土元素富集、重稀土元素略亏损的右倾曲线形态,轻、重稀土分异明显,LaN/YbN=25.8~30.9,并具弱的负Eu异常,δEu=0.67~0.80(图7a).在原始地幔标准化微量元素蛛网图中(图7b),所有样品都表现出Nb、Ta、Ti等高场强元素的相对亏损和Rb、Ba等大离子亲石元素的富集.

英云闪长岩的SiO2含量变化于69.28%~69.90%,Al2O3为15.65%~15.97%,Na2O含量为4.49%~4.65%,K2O含量为2.45%~2.72%,Na2O/K2O=1.65~1.88,Fe2O3 T含量为2.13%~2.24%,MgO含量为0.76%~0.83%,Mg#介于45~46,A/CNK值为1.03~1.04,属于弱过铝质钙碱性系列岩石(图6).岩石稀土元素总量介于150×10-6~166×10-6,具轻、重稀土强烈分馏的右倾曲线形态(LaN/YbN=33.2~33.9)和弱的负Eu异常,δEu=0.75~0.81(图7c).在原始地幔标准化微量元素蛛网图中(图7d),同样表现出Nb、Ta、Ti等高场强元素的相对亏损和Rb、Ba等大离子亲石元素的富集.

正长花岗岩的SiO2含量为73.08%~74.85%,Al2O3为14.09%~14.31%,Na2O含量为3.98%~5.45%,K2O含量为4.56%~5.50%,Na2O/K2O=0.72~1.01,Fe2O3 T、MgO含量较低,分别为0.37%~0.56%和0.05%~0.07%,Mg#为18~31,A/CNK值为0.89~1.06,属于准铝质‒弱过铝质高钾钙碱性‒钾玄质系列花岗岩(图6).该岩石稀土元素总量较低,介于50.1×10-6~78.7×10-6,呈轻度右倾的“海鸥式”稀土配分模式(图7e),轻、重稀土分馏较弱(LaN/YbN=1.83~2.54),但具有明显的Eu负异常,δEu=0.08~0.15.在原始地幔标准化微量元素蛛网图中(图7f),呈现出Sr、Ba、Ti等的强烈亏损以及Rb、U等的相对富集.

二长花岗岩的SiO2含量为74.43%~74.98%,Al2O3含量较低,介于13.99%~14.02%,Na2O含量为4.18%~4.42%,K2O含量为3.61%~4.02%,Na2O/K2O=1.05~1.22,Fe2O3 T含量介于0.41%~0.54%,MgO含量介于0.10%~0.15%,Mg#介于34~39,A/CNK变化于1.04~1.06,属于弱过铝质高钾钙碱性系列岩石(图6).二长花岗岩的稀土元素总量较低,介于39.9×10-6~45.2×10-6,具有LREE富集的稀土元素配分模式(LaN/YbN=7.88~8.85)(图7e)以及弱的负Eu异常,δEu=0.73~0.82.在原始地幔标准化微量元素蛛网图中(图7f),所有样品都表现出亏损高场强元素(Nb、Ta、Ti)和富集大离子亲石元素(Ba、Sr)的特征.

二云母花岗岩的SiO2含量为74.19%~74.84%之间,Al2O3=14.18%~14.53%,Na2O含量为4.15%~4.33%,K2O含量为3.07%~3.28%,Na2O/K2O=1.27~1.41,Fe2O3 T含量介于1.02%~1.15%,MgO含量介于0.22%~0.25%,Mg#介于33~34,A/CNK变化于1.11~1.16,属于强过铝质钙碱性系列花岗岩(图6).岩石的稀土元素总量变化于59.9×10-6~74.7×10-6之间,具LREE富集的右倾型配分模式(LaN/YbN=8.39~9.30)(图7g)以及明显的Eu负异常,δEu=0.48~0.56.在原始地幔标准化微量元素蛛网图中(图7h),所有样品具有一致的变化趋势,表现出Nb、Ta、Ti等高场强元素的亏损和Rb、Ba等大离子亲石元素的相对富集.

4 讨论

4.1 绿梁山复式岩体成因

似斑状花岗闪长岩和英云闪长岩均具有高Sr(分别为421×10-6~434×10-6和515×10-6~531×10-6),低Y(分别为10.5×10-6~12.3×10-6和8.37×10-6~9.22×10-6)、Yb(分别为0.94×10-6~1.04×10-6和0.70×10-6~0.78×10-6)含量以及高Sr/Y比值(分别为34.1~41.4和55.9~61.9)的特征,与埃达克岩的地球化学特征相似(图8a~8bDefant and Drummond,1990Petford and Atherton, 1996).一般来讲,埃达克质岩石在洋内/洋陆俯冲带、大陆俯冲/碰撞带以及陆内等多种构造背景下都可以形成,具有幔源物质和壳源岩浆的混合(Petford and Atherton,1996)、基性岩浆的分离结晶(Castillo, 2002, 2006)、俯冲的洋壳在榴辉岩相条件下熔融(Defant and Drummond,1990)以及增厚/拆沉下地壳部分熔融(Chung et al., 2003Gao et al., 2004)等多种不同的成因.绿梁山似斑状花岗闪长岩和英云闪长岩的形成年龄分别为(431±4) Ma和(401±3.8) Ma,明显晚于柴北缘地区洋壳的发育时代(>460 Ma;朱小辉等, 2015),应该与俯冲洋壳部分熔融无关.而且,二者均具有低的Cr、Ni含量(Cr=7.06×10-6~11.0×10-6,Ni=3.63×10-6~6.83×10-6)及Mg#值(45~47),表现出了明显的壳源特征,没有被地幔物质混染(Rapp et al., 1999Gao et al., 2004Wang et al., 2020),因此二者的形成应与基性地壳物质部分熔融有关.

绿梁山似斑状花岗闪长岩和英云闪长岩均具有低Y、Yb,亏损HREE及Nb、Ta、Ti的特征,负Eu异常不明显,表明其源区残留相为石榴子石和金红石,几乎没有斜长石,符合基性岩石在高压条件下部分熔融或经历过高压变质的岩石再发生部分熔融的特征.其中似斑状花岗闪长岩的形成年龄为(431±4) Ma,与柴北缘地区超高压岩石的峰期变质时代,尤其是与邻近的鱼卡河超高压地体的峰期变质年龄(437~430 Ma; Chen et al., 2009)一致,也与带内东段都兰超高压地体中加厚镁铁质下地壳部分熔融形成的埃达克质岩石的年龄(437~423 Ma; Yu et al., 2012Song et al., 2014)相近.因此,绿梁山似斑状花岗闪长岩应该形成于陆壳俯冲阶段,源于俯冲板块的叠置导致加厚下地壳镁铁质岩石发生的部分熔融.

前人对绿梁山和锡铁山超高压地体中深熔浅色体的研究表明,柴北缘超高压地体在428~421 Ma发生了局部的深熔作用(Chen et al.,2012Yu et al.,2015Zhang et al.,2015a, 2015bCao et al.,2017),说明此时部分陆壳物质可能已经从俯冲的大陆岩石圈板片拆离并折返(Zheng et al.,2013),而带内与伸展构造背景有关的早泥盆世(<410 Ma)牦牛山组磨拉石建造的出现标志着柴北缘在该时期开始进入后碰撞伸展阶段.考虑到绿梁山英云闪长岩的成分特征以及形成年龄((401±3) Ma)与鱼卡河超高压榴辉岩退变质年龄(~400 Ma; 陈丹玲等,2007)一致,笔者认为绿梁山英云闪长岩应该为折返到地壳的榴辉岩地体在伸展背景下经减压熔融形成.

绿梁山正长花岗岩(~394 Ma)与二长花岗岩(~391 Ma)具有近乎一致的形成时代,二者都属于准铝质‒弱过铝质高钾钙碱性‒钾玄质系列I型花岗岩,该类岩石通常起源于下地壳变质火成岩部分熔融(Roberts and Clemens, 1993).其中正长花岗岩具有高Na、K,低Ti、Mg、Ca、P的特征,亏损Nb、Ta、Zr、Hf、Ti等高场强元素,并显示Eu负异常明显的“海鸥式”稀土配分曲线,同时具有高的Zr含量(299×10-6~379×10-6)、Zr+Nb+Ce+Y(348×10-6~450×10-6)以及10 000Ga/Al比值(2.69~3.03),显示了A型花岗岩的地球化学特征(图9Whalen et al., 1987).需要指出的是,高分异花岗岩同样可以显示A型花岗岩的部分地球化学特征,例如高的Ga/Al值以及强烈的负Eu异常等.但是高分异花岗岩是岩浆结晶分异过程中最晚期的产物,位于Q-Ab-Or花岗岩体系的最低共结点附近,矿物组成以石英、钾长石和钠长石(或富钠斜长石)为主,岩浆温度较低.同时由于锆石的分离结晶作用,高分异花岗岩普遍具有低的Zr含量和Zr/Hf比值(Whalen et al., 1987King et al., 1997).绿梁山正长花岗岩具有较高Zr含量(>299×10-6)、Zr/Hf值(>95.2)以及全岩Zr饱和温度(822~869 ℃),指示该岩石并非高分异花岗岩.因此,近同时形成的绿梁山正长花岗岩和二长花岗岩应该是早泥盆世晚期地壳减薄和幔源岩浆上涌导致下地壳物质发生部分熔融的结果.在柴北缘中东部的锡铁山和都兰地区~400 Ma的花岗岩体中含有大量来自深部的暗色包体,并发育同期中基性岩墙(Wang et al., 2014Zhou et al., 2021),共同指示柴北缘造山带在~400 Ma已经进入后碰撞伸展阶段.

绿梁山复式岩体的主体二云母花岗岩 (~363 Ma)属于强过铝质S型花岗岩,该类岩石通常起源于中、上地壳变沉积岩部分熔融.一般来说贫长石、富粘土的泥质岩部分熔融产生的熔体CaO/Na2O值较低(<0.30),而富长石、贫粘土的砂质岩部分熔融产生的熔体CaO/Na2O值较高 (>0.30)(Sylvester, 1998).绿梁山二云母花岗岩具有较低的CaO/Na2O(0.25~0.30),暗示其源岩以泥质岩为主.泥盆纪时期柴北缘地区出现大量的后碰撞花岗岩,特别是起源于软流圈地幔的基性岩墙的存在(Wang et al., 2014; Zhou et al., 2021),表明柴北缘造山带发生了去根、垮塌作用,地壳持续的伸展减薄以及幔源岩浆上升导致中上地壳物质发生了大规模重熔改造.

4.2 构造意义

由于物质组成和热结构的差异,大陆俯冲/碰撞阶段的岩浆岩分布局限,主要以从俯冲板片拆离的地壳碎片减压熔融以及俯冲带上盘中上地壳在剪切热或放射性元素衰变热的影响下发生脱水熔融形成的中酸性岩浆岩(Sylvester, 1998Barbarin, 1999Harrison et al., 2005Zhu et al., 2015),或由增厚的基性下地壳部分熔融形成的埃达克岩为主(Aikman et al., 2008Zeng et al., 2011, 2015).在后碰撞时期,由于受板片断离以及加厚下地壳拆沉、地幔对流侵蚀等因素影响(Bird, 1979; England and Houseman, 1989; Davies and von Blanckenburg,1995),软流圈地幔上涌,引发岩石圈地幔楔、上覆大陆下地壳乃至上地壳岩石发生部分熔融,形成强过铝质岩浆岩、准铝质长英质岩浆岩(中‒高钾钙碱性‒钾玄质‒超钾质岩浆岩)以及镁铁‒超镁铁质岩等在内的一系列复杂的岩浆岩组合(Ligéois et al., 1998Barbarin,1999Miller et al., 1999; Bonin, 2004; Dai et al., 2015; Song et al., 2015).另外,由于板片断离导致深俯冲陆壳快速折返,造成含水矿物和名义上无水矿物的减压脱水熔融,也会产生大量的熔/流体活动,并引发俯冲陆壳发生不同程度的部分熔融(Labrousse et al., 2011Chen et al., 2012; 陈丹玲等, 2013; Song et al., 2014; Yu et al., 2015).

综合岩石学、年代学和岩石地球化学研究以及柴北缘高压‒超高压变质带已有研究结果,笔者认为绿梁山复式花岗岩体是柴北缘构造带早古生代碰撞造山过程的岩浆响应,记录了陆壳深俯冲、折返抬升以及造山带去根、垮塌的全过程.其中,460~420 Ma时柴北缘古生代大洋岩石圈板片拖曳柴达木地块俯冲至地幔深度,形成一系列高压‒超高压变质岩石,同时俯冲板块的叠置导致加厚的镁铁质下地壳发生部分熔融,在~430 Ma时形成了具有埃达克岩特征的似斑状花岗闪长岩;425~ 420 Ma左右深俯冲大洋板片断离,深俯冲陆壳失去拖拽开始折返,~400 Ma时已经折返的高压‒超高压地体减压脱水并发生不同程度的部分熔融,形成埃达克质英云闪长岩.同时随着岩石圈的持续伸展减薄以及幔源岩浆活动,下地壳岩石发生部分熔融,在~390 Ma时形成具有A型花岗岩特征的正长花岗岩和具有I型花岗岩特征的二长花岗岩.~360 Ma时,中、上地壳受造山带去根、垮塌作用影响发生大规模重熔改造,形成强过铝质S型二云母花岗岩;石炭纪时期,柴北缘包括整个祁连地区广泛发育陆表海沉积建造,标志着本地区早古生代造山作用的结束.

5 结论

柴北缘西段绿梁山复式花岗岩体主要由似斑状花岗闪长岩、英云闪长岩、正长花岗岩、二长花岗岩和二云母花岗岩组成,可划分为436~ 430 Ma、400~390 Ma和365~360 Ma三期岩浆活动,是柴北缘碰撞造山过程的岩浆响应.

其中似斑状花岗闪长岩具有埃达克岩地球化学特征,形成年龄为(431±4) Ma,与柴北缘地区超高压变质作用的峰期时代一致,是加厚的镁铁质下地壳部分熔融的结果.英云闪长岩同样具有埃达克岩地球化学特征,形成年龄为(401± 4) Ma;正长花岗岩具有A型花岗岩的特征,形成年龄为(394±4) Ma;二长花岗岩为高钾钙碱性I型花岗岩,形成年龄为(391±6) Ma,它们的形成年龄与柴北缘超高压变质岩石的退变质年龄(400~390 Ma)以及早泥盆世的磨拉石建造同期,分别对应于折返的超高压榴辉岩地体的部分熔融以及幔源岩浆底侵、地壳伸展减薄诱发的下地壳岩石的部分熔融,指示了构造体制由挤压向伸展的转变.二云母花岗岩为强过铝质S型花岗岩,形成年龄为(363±4) Ma,是造山带去根、垮塌阶段中、上地壳变泥质岩石部分熔融的产物.

--引用第三方内容--

附表见https://doi.org/10.3799/dqkx.2023.097.

参考文献

[1]

Aikman, A. B., Harrison, T. M., Lin, D., 2008. Evidence for Early (>44 Ma) Himalayan Crustal Thickening, Tethyan Himalaya, Southeastern Tibet. Earth and Planetary Science Letters, 274(1-2): 14-23. https://doi.org/10.1016/j.epsl.2008.06.038

[2]

Barbarin, B., 1999. A Review of the Relationships between Granitoid Types, Their Origins and Their Geodynamic Environments. Lithos, 46(3): 605-626. https://doi.org/10.1016/s0024-4937(98)00085-1

[3]

Bird, P., 1979. Continental Delamination and the Colorado Plateau. Journal of Geophysical Research: Solid Earth, 84(B13): 7561-7571. https://doi.org/10.1029/jb084ib13p07561

[4]

Bonin, B., 2004. Do Coeval Mafic and Felsic Magmas in Post-Collisional to Within-Plate Regimes Necessarily Imply Two Contrasting, Mantle and Crustal, Sources? A Review. Lithos, 78(1-2): 1-24. https://doi.org/10.1016/j.lithos.2004.04.042

[5]

Cao, Y. T., Liu, L., Chen, D. L., et al., 2017. Partial Melting during Exhumation of Paleozoic Retrograde Eclogite in North Qaidam, Western China. Journal of Asian Earth Sciences, 148: 223-240. https://doi.org/10.1016/j.jseaes.2017.09.009

[6]

Castillo, P. R., 2002. The Origin of some of the Adakite-Like and Nb-Enriched Lavas in Southern Philippines. Acta Petrologica Sinica, 18(2): 143-151. https://doi.org/10.1080/12265080208422884

[7]

Castillo, P. R., 2006. An Overview of Adakite Petrogenesis. Chinese Science Bulletin, 51(3): 257-268. https://doi.org/10.1007/s11434-006-0257-7

[8]

Chen, D. L., Cao, Y. T., Liu, L., 2013.Partial Melting of UHP Terranes in the Western Segment of the North Qaidam during Exhumation: Constraints from Studies of Leucocratic Veins within Eclogite/Retrograde Eclogite. Chinese Science Bulletin, 58(22): 2209-2214 (in Chinese with English abstract).

[9]

Chen, D. L., Liu, L., Sun, Y., et al., 2009. Geochemistry and Zircon U-Pb Dating and Its Implications of the Yukahe HP/UHP Terrane, the North Qaidam, NW China. Journal of Asian Earth Sciences, 35(3-4): 259-272. https://doi.org/10.1016/j.jseaes.2008.12.001

[10]

Chen, D. L., Liu, L., Sun, Y., et al., 2012. Felsic Veins within UHP Eclogite at Xitieshan in North Qaidam, NW China: Partial Melting during Exhumation. Lithos, 136-139: 187-200. https://doi.org/10.1016/j. lithos.2011.11.006

[11]

Chen, D. L., Sun, Y., Liu, L., et al., 2005. Metamorphic Evolution of the Yuka Eclogite in the North Qaidam, NW China: Evidences from the Compositional Zonation of Garnet and Reaction Texture in the Rock. Acta Petrologica Sinica, 21(4): 1039-1048 (in Chinese with English abstract).

[12]

Chen, D. L., Sun, Y., Liu, L., 2007. The Metamorphic Ages of the Country Rock of the Yukahe Eclogites in the North Qaidam and Its Geological Significance. Earth Science Frontiers, 14(1): 108-116 (in Chinese with English abstract).

[13]

Chen, X., Schertl, H. P., Cambeses, A., et al., 2019b. From Magmatic Generation to UHP Metamorphic Overprint and Subsequent Exhumation: A Rapid Cycle of Plate Movement Recorded by the Supra-Subduction Zone Ophiolite from the North Qaidam Orogen. Lithos, 350: 105238. https://doi.org/10.1016/j.lithos.2019.105238

[14]

Chen, X., Xu, R. K., Zheng, Y. Y., et al., 2018. Petrology and Geochemistry of High Niobium Eclogite in the North Qaidam Orogen, Western China: Implications for an Eclogite Facies Metamorphosed Island Arc Slice. Journal of Asian Earth Sciences, 164: 380-397. https://doi.org/10.1016/j.jseaes.2018.07.003

[15]

Chen, X., Xu, R. K., Zheng, Y. Y., et al., 2019a. The Geodynamic Setting of Dulan Eclogite-Type Rutile Deposits in the North Qaidam Orogen, Western China. Ore Geology Reviews, 110: 102936. https://doi.org/10.1016/j.oregeorev.2019.102936

[16]

Chen, Y. X., Song, S. G., Niu, Y. L., et al., 2014. Melting of Continental Crust during Subduction Initiation: A Case Study from the Chaidanuo Peraluminous Granite in the North Qilian Suture Zone. Geochimica et Cosmochimica Acta, 132: 311-336. https://doi.org/10.1016/j.gca.2014.02.011

[17]

Chung, S. L., Liu, D. Y., Ji, J. Q., et al., 2003. Adakites from Continental Collision Zones: Melting of Thickened Lower Crust Beneath Southern Tibet. Geology, 31(11): 1021-1024. https://doi.org/10.1130/g19796.1

[18]

Dai, L. Q., Zhao, Z. F., Zheng, Y. F., 2015. Tectonic Development from Oceanic Subduction to Continental Collision: Geochemical Evidence from Postcollisional Mafic Rocks in the Hong’an-Dabie Orogens. Gondwana Research, 27(3): 1236-1254. https://doi.org/10.1016/j.gr.2013.12.005

[19]

Davies, J. H., von Blanckenburg, F., 1995. Slab Breakoff: A Model of Lithosphere Detachment and Its Test in the Magmatism and Deformation of Collisional Orogens. Earth and Planetary Science Letters, 129(1-4): 85-102. https://doi.org/10.1016/0012-821x(94)00237-s

[20]

Defant, M. J., Drummond, M. S., 1990. Derivation of some Modern Arc Magmas by Melting of Young Subducted Lithosphere. Nature, 347: 662-665. https://doi.org/10.1038/347662a0

[21]

Drummond, M. S., Defant, M. J., 1990. A Model for Trondhjemite-Tonalite-Dacite Genesis and Crustal Growth via Slab Melting: Archean to Modern Comparisons. Journal of Geophysical Research: Solid Earth, 95(B13): 21503-21521. https://doi.org/10.1029/jb095ib13p21503

[22]

England, P., Houseman, G., 1989. Extension during Continental Convergence, with Application to the Tibetan Plateau. Journal of Geophysical Research: Solid Earth, 94(B12): 17561-17579. https://doi.org/10.1029/jb094ib12p17561

[23]

Gao, S., Rudnick, R. L., Yuan, H. L., et al., 2004. Recycling Lower Continental Crust in the North China Craton. Nature, 432: 892-897. https://doi.org/10.1038/nature03162

[24]

Harrison, T. M., Blichert-Toft, J., Müller, W., et al., 2005. Heterogeneous Hadean Hafnium: Evidence of Continental Crust at 4.4 to 4.5 Ga. Science, 310(5756): 1947-1950. https://doi.org/10.1126/science.1117926

[25]

King, P. L., White, A. J. R., Chappell, B. W., et al., 1997. Characterization and Origin of Aluminous A-Type Granites from the Lachlan Fold Belt, Southeastern Australia. Journal of Petrology, 38(3): 371-391. https://doi.org/10.1093/petroj/38.3.371

[26]

Labrousse, L., Prouteau, G., Ganzhorn, A. C., 2011. Continental Exhumation Triggered by Partial Melting at Ultrahigh Pressure. Geology, 39(12): 1171-1174. https://doi.org/10.1130/g32316.1

[27]

Ligéois, J. P., Navez, J., Hertogen, J., et al., 1998. Contrasting Origin of Post-Collisional High-K Calc-Alkaline and Shoshonitic Versus Alkaline and Peralkaline Granitoids. The Use of Sliding Normalization. Lithos, 45(1-4): 1-28. https://doi.org/10.1016/S0024-4937(98)00023-1

[28]

Liu, X. C., Wu, Y. B., Gao, S., et al., 2012. First Record and Timing of UHP Metamorphism from Zircon in the Xitieshan Terrane: Implications for the Evolution of the Entire North Qaidam Metamorphic Belt. American Mineralogist, 97(7): 1083-1093. https://doi.org/10.2138/am.2012.4048

[29]

Ludwig, K., 2003. User’s Manual for Isoplot 3.00: A geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Berkeley.

[30]

Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5): 635-643. https://doi.org/10.1130/0016-7606(1989)1010635: tdog>2.3.co;2

[31]

Meng, F. C., Zhang, J. X., Yang, J. S., 2005. Tectono-Thermal Event of Post-HP/UHP Metamorphism in the Xitieshan Area of the North Qaidam Mountains, Western China: Isotopic and Geochemical Evidence of Granite and Gneiss. Acta Petrologica Sinica, 21(1): 45-56 (in Chinese with English abstract).

[32]

Miller, C., Schuster, R., Klötzli, U., et al., 1999. Post-Collisional Potassic and Ultrapotassic Magmatism in SW Tibet: Geochemical and Sr-Nd-Pb-O Isotopic Constraints for Mantle Source Characteristics and Petrogenesis. Journal of Petrology, 40(9): 1399-1424. https://doi.org/10.1093/petroj/40.9.1399

[33]

Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81. https://doi.org/10.1007/BF00384745

[34]

Petford, N., Atherton, M., 1996. Na-Rich Partial Melts from Newly Underplated Basaltic Crust: The Cordillera Blanca Batholith, Peru. Journal of Petrology, 37(6): 1491-1521. https://doi.org/10.1093/petrology/37.6.1491

[35]

Rapp, R. P., Shimizu, N., Norman, M. D., et al., 1999. Reaction between Slab-Derived Melts and Peridotite in the Mantle Wedge: Experimental Constraints at 3.8 GPa. Chemical Geology, 160(4): 335-356. https://doi.org/10.1016/S0009-2541(99)00106-0

[36]

Ren, Y. F., Chen, D. L., Hauzenberger, C., et al., 2016. Petrology and Geochronology of Ultrahigh-Pressure Granitic Gneiss from South Dulan, North Qaidam Belt, NW China. International Geology Review, 58(2): 171-195. http://dx.doi.org/10.1080/00206814.2015.1058729

[37]

Ren, Y. F., Chen, D. L., Kelsey, D. E., et al., 2018. Metamorphic Evolution of a Newly Identified Mesoproterozoic Oceanic Slice in the Yuka Terrane and Its Implications for a Multi-Cyclic Orogenic History of the North Qaidam UHPM Belt. Journal of Metamorphic Geology, 36(4): 463-488. https://doi.org/10.1111/jmg.12300

[38]

Ren, Y. F., Chen, D. L., Wang, H. J., et al., 2021. Grenvillian and Early Paleozoic Polyphase Metamorphism Recorded by Eclogite and Host Garnet Mica Schist in the North Qaidam Orogenic Belt. Geoscience Frontiers, 12: 101170. https://doi.org/10.1016/j.gsf.2021.101170

[39]

Ren, Y. F., Chen, D. L., Wang, H. J., et al., 2022. Origin and Metamorphic Evolution of Chachahe Eclogites, North Qaidam UHP Metamorphic Belt, NW China: Implications for Fate of Overriding Plate Material in Subduction Channel. Journal of Asian Earth Sciences, 236: 105331. https://doi.org/10.1016/j.jseaes.2022.105331

[40]

Ren, Y. F., Chen, D. L., Zhu, X. H., et al., 2019. Two Orogenic Cycles Recorded by Eclogites in the Yuka-Luofengpo Terrane: Implications for the Mesoproterozoic to Early Paleozoic Tectonic Evolution of the North Qaidam Orogenic Belt, NW China. Precambrian Research, 333: 105449. https://doi.org/10.1016/j.precamres.2019.105449

[41]

Roberts, M. P., Clemens, J. D., 1993. Origin of High-Potassium, Talc-Alkaline, I-Type Granitoids. Geology, 21(9): 825-828. https://doi.org/10.1130/0091-7613(1993)0210825: oohpta>2.3.co;2

[42]

Song, S. G., Niu, Y. L., Su, L., et al., 2014. Adakitic (Tonalitic-Trondhjemitic) Magmas Resulting from Eclogite Decompression and Dehydration Melting during Exhumation in Response to Continental Collision. Geochimica et Cosmochimica Acta, 130(4): 42-62. https://doi.org/10.1016/j.gca.2014.01.008

[43]

Song, S. G., Su, L., Li, X. H., et al., 2010. Tracing the 850-Ma Continental Flood Basalts from a Piece of Subducted Continental Crust in the North Qaidam UHPM Belt, NW China. Precambrian Research, 183(4): 805-816. https://doi.org/10.1016/j.precamres.2010.09.008

[44]

Song, S. G., Su, L., Niu, Y. L., et al., 2007. Petrological and Geochemical Constraints on the Origin of Garnet Peridotite in the North Qaidam Ultrahigh-Pressure Metamorphic Belt, Northwestern China. Lithos, 96(1-2): 243-265. https://doi.org/10.1016/j.lithos.2006.09.017

[45]

Song, S. G., Wang, M. J., Wang, C., et al., 2015. Magmatism during Continental Collision, Subduction, Exhumation and Mountain Collapse in Collisional Orogenic Belts and Continental Net Growth: A Perspective. Science China Earth Sciences, 58(8): 1284-1304. https://doi.org/10.1007/s11430-015-5102-x

[46]

Song, S. G., Yang, J. S., Xu, Z. Q., et al., 2003. Metamorphic Evolution of the Coesite-Bearing Ultrahigh-Pressure Terrane in the North Qaidam, Northern Tibet, NW China. Journal of Metamorphic Geology, 21(6): 631-644. https://doi.org/10.1046/j.1525-1314.2003.00469.x

[47]

Song, S. G., Zhang, L. F., Chen, J., et al., 2005b. Sodic Amphibole Exsolutions in Garnet from Garnet-Peridotite, North Qaidam UHPM Belt, NW China: Implications for Ultradeep-Origin and Hydroxyl Defects in Mantle Garnets. American Mineralogist, 90(5-6): 814-820. https://doi.org/10.2138/am.2005.1684

[48]

Song, S. G., Zhang, L. F., Niu, Y. L., et al., 2005a. Geochronology of Diamond-Bearing Zircons from Garnet Peridotite in the North Qaidam UHPM Belt, Northern Tibetan Plateau: A Record of Complex Histories from Oceanic Lithosphere Subduction to Continental Collision. Earth and Planetary Science Letters, 234(1-2): 99-118. https://doi.org/10.1016/j.epsl.2005.02.036

[49]

Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society of London Special Publications, 42(1): 313-345. https://doi.org/10.1144/GSL.SP.1989.042.01.19

[50]

Sylvester, P. J., 1998. Post-Collisional Strongly Peraluminous Granites. Lithos, 45(1-4): 29-44. https://doi.org/10.1016/s0024-4937(98)00024-3

[51]

Wang, M. J., Song, S. G., Niu, Y. L., et al., 2014. Post-Collisional Magmatism: Consequences of UHPM Terrane Exhumation and Orogen Collapse, N. Qaidam UHPM Belt, NW China. Lithos, 210-211: 181-198. https://doi.org/10.1016/j.lithos.2014.10.006

[52]

Wang, Q., Hao, L. L., Zhang, X. Z., et al., 2020. Adakitic Rocks at Convergent Plate Boundaries: Compositions and Petrogenesis. Science China Earth Sciences, 63(12): 1992-2016. https://doi.org/10.1007/s11430-020-9678-y

[53]

Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419. https://doi.org/10.1007/BF00402202

[54]

Wu, C. L., Gao, Y. H., Wu, S. P., et al., 2007.Zircon SHRIMP U-Pb Dating of Granites from the Da Qaidam Area in the North Margin of Qaidam Basin, NW China. Acta Petrologica Sinica, 23(8): 1861-1875 (in Chinese with English abstract).

[55]

Xia, Q. X., Zheng, Y. F., Chen, Y. X., 2013. Protolith Control on Fluid Availability for Zircon Growth during Continental Subduction-Zone Metamorphism in the Dabie Orogen. Journal of Asian Earth Sciences, 67: 93-113. https://doi.org/10.1016/j.jseaes.2013.02.014

[56]

Yang, J. J., Powell, R., 2008. Ultrahigh-Pressure Garnet Peridotites from the Devolatilization of Sea-Floor Hydrated Ultramafic Rocks. Journal of Metamorphic Geology, 26(6): 695-716. https://doi.org/10.1111/j.1525-1314.2008.00780.x

[57]

Yang, J. S., Xu, Z. Q., Song, S. G., et al., 2001. Discovery of Coesite in the North Qaidam Early Palaeozoic Ultrahigh Pressure (UHP) Metamorphic Belt, NW China. Comptes Rendus de l’Académie des Sciences-Series IIA-Earth and Planetary Science, 333(11): 719-724. https://doi.org/10.1016/s1251-8050(01)01718-9

[58]

Yang, J. S., Zhang, J. X., Meng, F. C., et al., 2003.Ultrahigh Pressure Eclogites of the North Qaidam and Altun Mountains, Nw China and Their Protoliths. Earth Science Frontiers, 10(3): 291-314 (in Chinese with English abstract).

[59]

Yang, S. X., Su, L., Song, S. G., et al., 2020. Melting of Subducted Continental Crust during Collision and Exhumation: Insights from Granitic Rocks from the North Qaidam UHP Metamorphic Belt, NW China. Lithos, 378-379: 105794. https://doi.org/10.1016/j.lithos.2020.105794

[60]

Yu, S. Y., Zhang, J. X., Del Real, P. G., 2012. Geochemistry and Zircon U-Pb Ages of Adakitic Rocks from the Dulan Area of the North Qaidam UHP Terrane, North Tibet: Constraints on the Timing and Nature of Regional Tectonothermal Events Associated with Collisional Orogeny. Gondwana Research, 21(1): 167-179. https://doi.org/10.1016/j.gr.2011.07.024

[61]

Yu, S. Y., Zhang, J. X., Li, H. K., et al., 2013. Geochemistry, Zircon U-Pb Geochronology and Lu-Hf Isotopic Composition of Eclogites and Their Host Gneisses in the Dulan Area, North Qaidam UHP Terrane: New Evidence for Deep Continental Subduction. Gondwana Research, 23(3): 901-919. https://doi.org/10.1016/j.gr.2012.07.018

[62]

Yu, S. Y., Zhang, J. X., Sun, D. Y., et al., 2015. Anatexis of Ultrahigh-Pressure Eclogite during Exhumation in the North Qaidam Ultrahigh-Pressure Terrane: Constraints from Petrology, Zircon U-Pb Dating, and Geochemistry. Geological Society of America Bulletin, 127(9-10): 1290-1312. https://doi.org/10.1130/b31162.1

[63]

Zeng, L. S., Gao, L. E., Tang, S. H., et al., 2015. Eocene Magmatism in the Tethyan Himalaya, Southern Tibet. Geological Society, London, Special Publications, 412(1): 287-316. https://doi.org/10.1144/sp412.8

[64]

Zeng, L. S., Gao, L. E., Xie, K. J., et al., 2011. Mid-Eocene High Sr/Y Granites in the Northern Himalayan Gneiss Domes: Melting Thickened Lower Continental Crust. Earth and Planetary Science Letters, 303(3-4): 251-266. https://doi.org/10.1016/j.epsl.2011.01.005

[65]

Zhang, C., Zhang, L. F., van Roermund, H., et al., 2011. Petrology and SHRIMP U-Pb Dating of Xitieshan Eclogite, North Qaidam UHP Metamorphic Belt, NW China. Journal of Asian Earth Sciences, 42(4): 752-767. https://doi.org/10.1016/j.jseaes.2011.04.002

[66]

Zhang, G. B., Niu, Y. L., Song, S. G., et al., 2015a. Trace Element Behavior and P-T-T Evolution during Partial Melting of Exhumed Eclogite in the North Qaidam UHPM Belt (NW China): Implications for Adakite Genesis. Lithos, 226: 65-80. https://doi.org/10.1016/j.lithos.2014.12.009

[67]

Zhang, G. B., Song, S. G., Zhang, L. F., et al., 2008. The Subducted Oceanic Crust within Continental-Type UHP Metamorphic Belt in the North Qaidam, NW China: Evidence from Petrology, Geochemistry and Geochronology. Lithos, 104(1): 99-118. https://doi.org/10.1016/j.lithos.2007.12.001

[68]

Zhang, G. B., Zhang, L. F., Song, S. G., et al., 2009a. UHP Metamorphic Evolution and SHRIMP Geochronology of a Coesite-Bearing Meta-Ophiolitic Gabbro in the North Qaidam, NW China. Journal of Asian Earth Sciences, 35(3-4): 310-322. https://doi.org/10.1016/j.jseaes.2008.11.013

[69]

Zhang, G.B., Ellis, D.J., Christy, A.G., et al., 2010a. UHP Metamorphic Evolution of Coesite-Bearing Eclogite from the Yuka Terrane, North Qaidam UHPM Belt, NW China. European Journal of Mineralogy, 21(6): 1287-1300. https://doi.org/10.1127/0935-1221/2009/0021-1989

[70]

Zhang, J. X., Mattinson, C. G., Yu, S. Y., et al., 2010b. U-Pb Zircon Geochronology of Coesite-Bearing Eclogites from the Southern Dulan Area of the North Qaidam UHP Terrane, Northwestern China: Spatially and Temporally Extensive UHP Metamorphism during Continental Subduction. Journal of Metamorphic Geology, 28(9): 955-978. https://doi.org/10.1111/j.1525-1314.2010.00901.x

[71]

Zhang, J. X., Meng, F. C., Li, J. P., et al., 2009b. Coesite in Eclogite from the North Qaidam Mountains and Its Implications. Chinese Science Bulletin, 54(6): 1105-1110. https://doi.org/10.1007/s11434-009-0074-x

[72]

Zhang, J. X., Yang, J. S., Mattinson, C. G., et al., 2005. Two Contrasting Eclogite Cooling Histories, North Qaidam HP/UHP Terrane, Western China: Petrological and Isotopic Constraints. Lithos, 84(1-2): 51-76. https://doi.org/10.1016/j.lithos.2005.02.002

[73]

Zhang, L., Chen, R. X., Zheng, Y. F., et al., 2015b. Partial Melting of Deeply Subducted Continental Crust during Exhumation: Insights from Felsic Veins and Host UHP Metamorphic Rocks in North Qaidam, Northern Tibet. Journal of Metamorphic Geology, 33(7): 671-694. https://doi.org/10.1111/jmg.12146

[74]

Zhang, L., Chen, R. X., Zheng, Y. F., et al., 2017. Whole-Rock and Zircon Geochemical Distinction between Oceanic- and Continental-Type Eclogites in the North Qaidam Orogen, Northern Tibet. Gondwana Research, 44: 67-88. https://doi.org/10.1016/j.gr.2016.10.021

[75]

Zheng, Y. F., Zhao, Z. F., Chen, Y. X., 2013. Continental Subduction Channel Processes: Plate Interface Interaction during Continental Collision. Chinese Science Bulletin, 58(35): 4371-4377. https://doi.org/10.1007/s11434-013-6066-x

[76]

Zhou, B., Zheng, Y. Y., Tong, H. K., et al., 2014. Zircon Dating of Early Paleozoic Adakitic Granite on the Northern Margin of Qaidam Basin and Its Geological Significance. Geoscience, 28(5): 875-883 (in Chinese with English abstract).

[77]

Zhou, C. A., Song, S. G., Allen, M. B., et al., 2021. Post-Collisional Mafic Magmatism: Insights into Orogenic Collapse and Mantle Modification from North Qaidam Collisional Belt, NW China. Lithos, 398-399: 106311. https://doi.org/10.1016/j.lithos.2021.106311

[78]

Zhu, D. C., Wang, Q., Zhao, Z. D., et al., 2015. Magmatic Record of India-Asia Collision. Scientific Reports, 5: 14289. https://doi.org/10.1038/srep14289

[79]

Zhu, X. H., Chen, D. L., Wang, C., et al., 2015.The Initiation, Development and Termination of the Neoproterozoic-Early Paleozoic Ocean in the Northern Margin of Qaidam Basin. Acta Geologica Sinica, 89(2): 234-251 (in Chinese with English abstract).

基金资助

国家自然科学基金项目(42372074;41972058;41802056)

陕西省自然科学基础研究计划资助项目(2023-JC-YB-254)

中石油青海油田公司项目(研2020-勘探-技术-09,2021DJ0305)

AI Summary AI Mindmap
PDF (10166KB)

147

访问

0

被引

详细

导航
相关文章

AI思维导图

/