湘西前陆坳陷区五峰‒龙马溪组黑色岩系沉积环境与有机质富集机制:以TD2井为例
蔡全升 , 胡明毅 , 杨智 , 邱小松 , 张保民 , 李海 , 胡忠贵 , 邓庆杰
地球科学 ›› 2024, Vol. 49 ›› Issue (07) : 2330 -2345.
湘西前陆坳陷区五峰‒龙马溪组黑色岩系沉积环境与有机质富集机制:以TD2井为例
Sedimentary Environment and Organic Matter Accumulation of Black Rock Series of Wufeng-Longmaxi Formations in Foreland Depression, Western Hunan Province: An Example from Well TD2 in Changde Area
,
受地层剥蚀和强烈构造活动的影响,对中扬子东南缘前陆坳陷区五峰‒龙马溪组黑色岩系关注较少,该区黑色岩系沉积特征与有机质富集规律尚不清楚.利用近年来新获取的常德TD2井岩心资料,基于岩石学、沉积学以及地球化学分析,对湘西前陆坳陷区五峰‒龙马溪组黑色岩系的发育特征、沉积环境及有机质富集机制开展了深入研究.结果表明,湘西前陆坳陷区TD2井五峰‒龙马溪组黑色岩系厚度较大,TOC>2%的富有机质页岩厚约21 m,岩性以硅质页岩与碳质页岩为主,基于岩性差异自下而上可划分为四个沉积单元,富有机质页岩主要集中凯迪阶至鲁丹阶下部,而鲁丹阶上部‒埃隆阶下部黑色岩系TOC含量普遍偏低且呈间断发育.综合研究认为,前陆坳陷区五峰‒龙马溪组黑色岩系的形成主要受构造、海平面以及陆源碎屑供给等因素的综合控制.凯迪晚期‒鲁丹早期,受区域构造挤压和全球海平面上升的影响,湘西地区经历了显著的构造沉降及相对海平面上升等事件,极大地促进了坳陷区强还原条件的形成以及古生产力的提高,使得该时期研究区黑色岩系中的有机质大量富集.然而,随着鲁丹晚期区域构造挤压活动的加剧,研究区由构造沉降向构造隆升转变,持续的构造抬升与风化作用增强,导致了研究区陆源碎屑供给大量增加和相对海平面不断下降,并最终使得研究区富有机质页岩的形成发育在埃隆早期被终结.值得注意的是,埃隆早期的全球冰川型海平面上升在研究区也有响应,促进了龙马溪组黑色页岩的二次发育.据此,提出了湘西前陆坳陷区奥陶‒志留纪之交富有机质页岩的发育模式,以期为该区五峰‒龙马溪组页岩气勘探及奥陶‒志留纪之交重大地质事件沉积响应研究提供参考.
前陆坳陷 / 五峰‒龙马溪组 / 黑色岩系,沉积特征 / 有机质富集 / 湘西地区 / 石油地质.
foreland depression / Wufeng-Longmaxi formations / black shale / sedimentary environment / organic matter accumulation / western Hunan Province / petroleum geology
| [1] |
Algeo, T. J., Liu, J. S., 2020. A Re-Assessment of Elemental Proxies for Paleoredox Analysis. Chemical Geology, 540: 119549. https://doi.org/10.1016/j.chemgeo.2020.119549 |
| [2] |
Algeo, T. J., Lyons, T. W., 2006. Mo-Total Organic Carbon Covariation in Modern Anoxic Marine Environments: Implications for Analysis of Paleoredox and Paleohydrographic Conditions. Paleoceanography, 21(1): PA1016. https://doi.org/10.1029/2004PA001112 |
| [3] |
Algeo, T. J., Maynard, J. B., 2004. Trace-Element Behavior and Redox Facies in Core Shales of Upper Pennsylvanian Kansas-Type Cyclothems. Chemical Geology, 206(3-4): 289-318. https://doi.org/10.1016/j.chemgeo.2003.12.009 |
| [4] |
Algeo, T. J., Tribovillard, N., 2009. Environmental Analysis of Paleoceanographic Systems Based on Molybdenum-Uranium Covariation. Chemical Geology, 268(3-4): 211-225. https://doi.org/10.1016/j.chemgeo.2009.09.001 |
| [5] |
Cai, Q.S., Chen, X.H., Zhang, G.T., et al., 2021. Characteristics and Exploration Potential of the Wufeng-Longmaxi Shale Gas Reservoirs of Lower Paleozoic in Yichang Area, Western Hubei Province, China. Oil & Gas Geology, 42(1): 107-123 (in Chinese with English abstract). |
| [6] |
Cai, Q. S., Hu, M. Y., Kane, O. I., et al., 2022a. Cyclic Variations in Paleoenvironment and Organic Matter Accumulation of the Upper Ordovician-Lower Silurian Black Shale in the Middle Yangtze Region, South China: Implications for Tectonic Setting, Paleoclimate, and Sea-Level Change. Marine and Petroleum Geology, 136: 105477. https://doi.org/10.1016/j.marpetgeo.2021.105477 |
| [7] |
Cai, Q. S., Hu, M. Y., Zhang, B. M., et al., 2022b. Source of Silica and Its Implications for Organic Matter Enrichment in the Upper Ordovician-Lower Silurian Black Shale in Western Hubei Province, China: Insights from Geochemical and Petrological Analysis. Petroleum Science, 19(1): 74-90. https://doi.org/10.1016/j.petsci.2021.10.012 |
| [8] |
Chen, Q., Fan, J. X., Zhang, L. N., et al., 2018. Paleogeographic Evolution of the Lower Yangtze Region and the Break of the “Platform-Slope-Basin” Pattern during the Late Ordovician. Scientia Sinica Terrae, 48(6): 767-777 (in Chinese). |
| [9] |
Chen, X., Chen, Q., Zhen, Y.Y., et al., 2018. Circumjacent Distribution Pattern of the Lungmachian Graptolitic Black Shale (Early Silurian) on the Yichang Uplift and Its Peripheral Region. Scientia Sinica Terrae, 48(9): 1198-1206 (in Chinese). |
| [10] |
Chen, X., Rong, J. Y., Li, Y., et al., 2004. Facies Patterns and Geography of the Yangtze Region, South China, through the Ordovician and Silurian Transition. Palaeogeography, Palaeoclimatology, Palaeoecology, 204(3-4): 353-372. https://doi.org/10.1016/s0031-0182(03)00736-3 |
| [11] |
Dong, D. Z., Shi, Z. S., Guan, Q. Z., et al., 2018. Progress, Challenges and Prospects of Shale Gas Exploration in the Wufeng-Longmaxi Reservoirs in the Sichuan Basin. Natural Gas Industry B, 5(5): 415-424. https://doi.org/10.1016/j.ngib.2018.04.011 |
| [12] |
Fan, J. X., Melchin, M. J., Chen, X., et al., 2011. Biostratigraphy and Geography of the Ordovician-Silurian Lungmachi Black Shales in South China. Science China Earth Sciences, 54(12): 1854-1863. https://doi.org/10.1007/s11430-011-4301-3 |
| [13] |
Haq, B. U., Schutter, S. R., 2008. A Chronology of Paleozoic Sea-Level Changes. Science, 322(5898): 64-68. https://doi.org/10.1126/science.1161648 |
| [14] |
Huang, H. Y., He, D. F., Li, D., et al., 2020. Geochemical Characteristics of Organic-Rich Shale, Upper Yangtze Basin: Implications for the Late Ordovician-Early Silurian Orogeny in South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 554: 109822. https://doi.org/10.1016/j.palaeo.2020.109822 |
| [15] |
Huang, H. Y., He, D. F., Li, Y. Q., et al., 2018. Silurian Tectonic-Sedimentary Setting and Basin Evolution in the Sichuan Area, Southwest China: Implications for Palaeogeographic Reconstructions. Marine and Petroleum Geology, 92: 403-423. https://doi.org/10.1016/j.marpetgeo.2017.11.006 |
| [16] |
Li, Q.Q., Lan, B.F., Li, G.Q., et al., 2021. Element Geochemical Characteristics and Their Geological Significance of Wufeng-Longmaxi Formation Shales in North Margin of the Central Guizhou Uplift. Earth Science, 46(9): 3172-3188 (in Chinese with English abstract). |
| [17] |
Liu, C.S., Guo, J.H., Wang, Z.X., 2019. Potential for Shale Gas Exploration of Xuefengshan Foreland Basin of Lower Silurian. Earth Science, 44(11): 3678-3691 (in Chinese with English abstract). |
| [18] |
Liu, Z. H., Algeo, T. J., Guo, X. S., et al., 2017. Paleo-Environmental Cyclicity in the Early Silurian Yangtze Sea (South China): Tectonic or Glacio-Eustatic Control? Palaeogeography, Palaeoclimatology, Palaeoecology, 466(6): 59-76. https://doi.org/10.1016/j.palaeo.2016.11.007 |
| [19] |
Lu, X.Z., Shen, J., Guo, W., et al., 2021. Influence of Mercury Geochemistry and Volcanism on the Enrichment of Organic Matter near the Ordovician Silurian Transition in the Middle and Upper Yangtze. Earth Science, 46(7): 2329-2340 (in Chinese with English abstract). |
| [20] |
Malekzadeh, M., Hosseini-Barzi, M., Sadeghi, A., et al., 2020. Geochemistry of Asara Shale Member of Karaj Formation, Central Alborz, Iran: Provenance, Source Weathering and Tectonic Setting. Marine and Petroleum Geology, 121: 104584. https://doi.org/10.1016/j.marpetgeo.2020.104584 |
| [21] |
McLennan, S. M., 1993. Weathering and Global Denudation. The Journal of Geology, 101(2): 295-303. https://doi.org/10.1086/648222 |
| [22] |
Munnecke, A., Calner, M., Harper, D.A.T., et al., 2010. Ordovician and Silurian Sea-Water Chemistry, Sea Level, and Climate: A Synopsis. Palaeogeography, Palaeoclimatology, Palaeoecology, 296(3-4): 389-413. https://doi.org/10.1016/j.palaeo.2010.08.001 |
| [23] |
Nesbitt, H. W., Young, G. M., 1982. Early Proterozoic Climates and Plate Motions Inferred from Major Element Chemistry of Lutites. Nature, 299: 715-717. https://doi.org/10.1038/299715a0 |
| [24] |
Nie, H.K., Li, P., Dang, W., et al., 2022. Enrichment Characteristics and Exploration Directions of Deep Shale Gas of Ordovician-Silurian in the Sichuan Basin and Its Surrounding Areas, China. Petroleum Exploration and Development, 49(4): 648-659 (in Chinese with English abstract). |
| [25] |
Price, J. R., Velbel, M. A., 2003. Chemical Weathering Indices Applied to Weathering Profiles Developed on Heterogeneous Felsic Metamorphic Parent Rocks. Chemical Geology, 202(3-4): 397-416. https://doi.org/10.1016/j.chemgeo.2002.11.001 |
| [26] |
Qin, M.Y., Guo, J.H., He, H.S., et al., 2018. Geological Conditions and Gas-Bearing Characteristics of Shale Gas in Complex Structure Area out of Sichuan Basin: A Case of Wufeng-Longmaxi Formation in Northwestern Hunan, China. Journal of Central South University (Science and Technology), 49(8): 1979-1990 (in Chinese with English abstract). |
| [27] |
Qiu, Z., Zou, C.N., 2020. Unconventional Petroleum Sedimentology: Connotation and Prospect. Acta Sedimentologica Sinica, 38(1): 1-29 (in Chinese with English abstract). |
| [28] |
Rimmer, S. M., 2004. Geochemical Paleoredox Indicators in Devonian-Mississippian Black Shales, Central Appalachian Basin (USA). Chemical Geology, 206(3-4): 373-391. https://doi.org/10.1016/j.chemgeo.2003.12.029 |
| [29] |
Sageman, B. B., Murphy, A. E., Werne, J. P., et al., 2003. A Tale of Shales: The Relative Roles of Production, Decomposition, and Dilution in the Accumulation of Organic-Rich Strata, Middle-Upper Devonian, Appalachian Basin. Chemical Geology, 195(1-4): 229-273. https://doi.org/10.1016/s0009-2541(02)00397-2 |
| [30] |
Shao, J. Q., Yang, S. Y., Li, C., 2012. Chemical Indices (CIA and WIP) as Proxies for Integrated Chemical Weathering in China: Inferences from Analysis of Fluvial Sediments. Sedimentary Geology, 265-266: 110-120. https://doi.org/10.1016/j.sedgeo.2012.03.020 |
| [31] |
Sweere, T., van den Boorn, S., Dickson, A. J., et al., 2016. Definition of New Trace-Metal Proxies for the Controls on Organic Matter Enrichment in Marine Sediments Based on Mn, Co, Mo and Cd Concentrations. Chemical Geology, 441: 235-245. https://doi.org/10.1016/j.chemgeo.2016.08.028 |
| [32] |
Su, W.B., Li, Z.M., Shi, X.Y., et al., 2006. K-Bentonites and Black Shales from the Wufeng-Longmaxi Formations (Early Paleozoic, South China) and Xiamaling Formation (Early Neoproterozoic, North China)-Implications for Tectonic Processes during Two Important Transitions. Earth Science Frontiers, 13(6): 82-95 (in Chinese with English abstract). |
| [33] |
Taylor, S., McLennan, S., 1985. The Continental Crust: Its Composition and Evolution. Blackwell Scientific Publications, Oxford. |
| [34] |
Tribovillard, N., Algeo, T. J., Lyons, T., et al., 2006. Trace Metals as Paleoredox and Paleoproductivity Proxies: An Update. Chemical Geology, 232(1-2): 12-32. https://doi.org/10.1016/j.chemgeo.2006.02.012 |
| [35] |
Wang, G. X., Zhan, R. B., Percival, I. G., 2019. The End-Ordovician Mass Extinction: A Single-Pulse Event? Earth-Science Reviews, 192: 15-33. https://doi.org/10.1016/j.earscirev.2019.01.023 |
| [36] |
Wang, H. Y., Shi, Z. S., Sun, S. S., 2021. Biostratigraphy and Reservoir Characteristics of the Ordovician Wufeng Formation-Silurian Longmaxi Formation Shale in the Sichuan Basin and Its Surrounding Areas, China. Petroleum Exploration and Development, 48(5): 1019-1032. https://doi.org/10.1016/s1876-3804(21)60088-5 |
| [37] |
Wang, P., Du, Y. S., Yu, W. C., et al., 2020. The Chemical Index of Alteration (CIA) as a Proxy for Climate Change during Glacial-Interglacial Transitions in Earth History. Earth-Science Reviews, 201: 103032. https://doi.org/10.1016/j.earscirev.2019.103032 |
| [38] |
Wang, Y., Rong, J.Y., Zhan, R.B., et al., 2013. On the Ordovician-Silurian Boundary Strata in Southwestern Hubei, and the Yichang Uplift. Journal of Stratigraphy, 37(3): 264-274 (in Chinese with English abstract). |
| [39] |
Wang, Y. M., Dong, D. Z., Li, X. J., et al., 2015. Stratigraphic Sequence and Sedimentary Characteristics of Lower Silurian Longmaxi Formation in Sichuan Basin and Its Peripheral Areas. Natural Gas Industry B, 2(2-3): 222-232. https://doi.org/10.1016/j.ngib.2015.07.014 |
| [40] |
Xiao, B., Liu, S.G., Ran, B., et al., 2021. Study on Sedimentary Tectonic Pattern of Wufeng Formation and Longmaxi Formation in the Northern Margin of Sichuan Basin, South China. Earth Science, 46(7): 2449-2465 (in Chinese with English abstract). |
| [41] |
Zhang, L.N., Fan, J.X., Chen, Q., 2016. Geographic Distribution and Palaeogeographic Reconstruction of the Upper Ordovician Kuanyinchiao Bed in South China. Chinese Science Bulletin, 61(18): 2053-2063 (in Chinese). |
| [42] |
Yan, D. T., Chen, D. Z., Wang, Q. C., et al., 2010. Large-Scale Climatic Fluctuations in the Latest Ordovician on the Yangtze Block, South China. Geology, 38(7): 599-602. https://doi.org/10.1130/g30961.1 |
| [43] |
Yao, W. H., Li, Z. X., 2016. Tectonostratigraphic History of the Ediacaran-Silurian Nanhua Foreland Basin in South China. Tectonophysics, 674: 31-51. https://doi.org/10.1016/j.tecto.2016.02.012 |
| [44] |
Zou, C. N., Qiu, Z., Poulton, S. W., et al., 2018. Ocean Euxinia and Climate Change “Double Whammy” Drove the Late Ordovician Mass Extinction. Geology, 46(6): 535-538. https://doi.org/10.1130/g40121.1 |
中石油科技创新基金项目(2021DQ02-0101)
湖北省教育厅青年基金项目(Q20211304)
长江大学非常规油气省部共建协同创新中心开放基金项目(UOG2022-08)
构造与油气资源教育部重点实验室项目(TPR-2021-13)
/
| 〈 |
|
〉 |