砂岩热储温度场对回灌参数的响应机理与规律
李嘉龙 , 康凤新 , 白通 , 张平平 , 李振函 , 赵强
地球科学 ›› 2024, Vol. 49 ›› Issue (09) : 3318 -3333.
砂岩热储温度场对回灌参数的响应机理与规律
Response Process and Mechanism of Sandstone Geothermal Reservoir Temperature to Reinjection Parameters
,
,
研究地热尾水回灌引起的热储层内温度场演化对地热资源的可持续利用具有重要意义.本文通过大型砂槽仿真试验模型的渗透试验、示踪试验和回灌试验结合数值模拟方法,研究了回灌参数与开采井热突破时间的定量关系,并通过非线性拟合和参数敏感性分析讨论了流体粘度与密度对高温流体向低温流体回灌结果的影响,以及回灌参数对开采井热突破时间的影响程度和内在机理与规律.结果显示回灌水在不同渗透率的砂岩层内运移速率不同,开采井热突破时间t分别与Q ‒0.85、ΔT ‒0.21和R 1.4呈线性关系.相关方程和分析结果表明,采灌温差ΔT在大于30 ℃时,其变化对开采井热突破时间t的影响已变得微弱,这是由于ΔT通过影响18.5 ℃等温线在温度过渡区内的相对位置来对开采井热突破时间t产生作用,而试验中采取的高温流体向低温流体回灌产生的误差可以引入粘度修正系数αμ 修正.
回灌参数 / 仿真试验 / 数值模拟 / 温度场 / 演化机理 / 地热能 / 地热井.
reinjection parameters / simulation test / numerical simulation / geo-temperature / mechanism of evolution / geothermal energy / geothermal wells
| [1] |
Bedre, M. G., Anderson, B. J., 2012. Sensitivity Analysis of Low-Temperature Geothermal Reservoirs: Effect of Reservoir Parameters on the Direct Use of Geothermal Energy. Transactions-Geothermal Resources Council, 36 2: 1255-1261 |
| [2] |
Bodvarsson, G., 1972. Thermal Problems in the Siting of Reinjection Wells. Geothermics, 1(2): 63-66. https://doi.org/10.1016/0375-6505(72)90013-2 |
| [3] |
Franco, A., Vaccaro, M., 2014. Numerical Simulation of Geothermal Reservoirs for the Sustainable Design of Energy Plants: A Review. Renewable and Sustainable Energy Reviews, 30: 987-1002. https://doi.org/10.1016/j.rser.2013.11.041 |
| [4] |
Ganguly, S., Mohan Kumar, M. S., 2014. Analytical Solutions for Transient Temperature Distribution in a Geothermal Reservoir Due to Cold Water Injection. Hydrogeology Journal, 22(2): 351-369. https://doi.org/10.1007/s10040-013-1048-2 |
| [5] |
He, M. C., Liu, B., Yao, L. H., et al., 2003. Study on the Theory of Seepage Field for Geothermal Single Well Reinjection. Acta Energiae Solaris Sinica, 24(2): 197-201 (in Chinese with English abstract). |
| [6] |
Kang, F. X., 2018. Comprehensive Evaluation of Geothermal Clean Energy in Shandong Province. Science Press, Beijing (in Chinese). |
| [7] |
Kang, F. X., Shi, Q. P., Ma, Z. M., et al., 2023a. Genetic Mechanism of the Karst Geothermal Reservoir in Buried Uplifts of Basins: A Case Study of Heze. Acta Geologica Sinica, 97(1): 221-237 (in Chinese with English abstract). |
| [8] |
Kang, F. X., Zhao, J. C., Huang, X., et al., 2023b. Heat Accumulation Mechanism and Resources Potential of the Karst Geothermal Reservoir in Liangcun Buried Uplift of Linqing Depression. Earth Science, 48(3): 1080-1092 (in Chinese with English abstract). |
| [9] |
Kang, F. X., Zhao, J. C., Tan, Z. R., et al., 2021. Geothermal Power Generation Potential in the Eastern Linqing Depression. Acta Geologica Sinica-English Edition, 95(6): 1870-1881. https://doi.org/10.1111/ 1755-6724.14877 |
| [10] |
Lei, H. Y., Zhu, J. L., 2010. Modeling of Exploitation and Reinjection of Porous Medium Geothermal Reservoir. Acta Energiae Solaris Sinica, 31(12): 1633-1638 (in Chinese with English abstract). |
| [11] |
Liu, Z. T., Liu, S., Song, W. H., 2019. Change Characteristics of Geothermal Field for Geothermal Return Water Reinjection of Sandstone Reservoir in the Northern Shangdong. Acta Geologica Sinica, 93(S1): 149-156 (in Chinese with English abstract). |
| [12] |
Mottaghy, D., Pechnig, R., Vogt, C., 2011. The Geothermal Project Den Haag: 3D Numerical Models for Temperature Prediction and Reservoir Simulation. Geothermics, 40(3): 199-210. https://doi.org/10.1016/j.geothermics.2011.07.001 |
| [13] |
Obembe, A. D., Abu-Khamsin, S. A., Hossain, M. E., 2016. A Review of Modeling Thermal Displacement Processes in Porous Media. Arabian Journal for Science and Engineering, 41(12): 4719-4741. https://doi.org/10.1007/s13369-016-2265-5 |
| [14] |
Saeid, S., Al-Khoury, R., Nick, H. M., et al., 2014. Experimental-Numerical Study of Heat Flow in Deep Low-Enthalpy Geothermal Conditions. Renewable Energy, 62: 716-730. https://doi.org/10.1016/j.renene.2013.08.037 |
| [15] |
Saeid, S., Al-Khoury, R., Nick, H. M., et al., 2015. A Prototype Design Model for Deep Low-Enthalpy Hydrothermal Systems. Renewable Energy, 77: 408-422. https://doi.org/10.1016/j.renene.2014.12.018 |
| [16] |
Sauty, J. P., Gringarten, A. C., Landel, P. A., et al., 1980. Lifetime Optimization of Low Enthalpy Geothermal Doublets. Advances in European Geothermal Research. Springer, Dordrecht, 706-719. https://doi.org/10.1007/978-94-009-9059-3_64 |
| [17] |
Seibt, P., Kellner, T., 2003. Practical Experience in the Reinjection of Cooled Thermal Waters Back into Sandstone Reservoirs. Geothermics, 32(4-6): 733-741. https://doi.org/10.1016/s0375-6505(03)00071-3 |
| [18] |
Sippel, J., Fuchs, S., Cacace, M., et al., 2013. Deep 3D Thermal Modelling for the City of Berlin (Germany). Environmental Earth Sciences, 70(8): 3545-3566. https://doi.org/10.1007/s12665-013-2679-2 |
| [19] |
Wang, W., Fu, H., Xing, L. X., et al., 2021. Crack Propagation Behavior of Carbonatite Geothermal Reservoir Rock Mass Based on Extended Finite Element Method. Earth Science, 46(10): 3509-3519 (in Chinese with English abstract). |
| [20] |
Wu, L. J., Zhao, J. C., Li, A. Y., et al., 2016. Key Issues of Geothermal Resource Exploitation and Utilization in the Depression Area of Northern Shandong Province. Geology and Exploration, 52(2): 300-306 (in Chinese with English abstract). |
| [21] |
Xu, Z. K., Xu, S. G., Zhang, S. T., 2021. Hydro-Geochemistry of Anning Geothermal Field and Flow Channels Inferring of Upper Geothermal Reservoir. Earth Science, 46(11): 4175-4187 (in Chinese with English abstract). |
| [22] |
Zhao, J. C., 2013. Lubei Geothermal Tail Water Reinjection Experiments in Sandstone Reservoir. Shandong Land and Resources, 29(9): 23-30 (in Chinese with English abstract). |
| [23] |
Zhu, J. L., Zhu, X. M., Lei, H. Y., 2012. Analysis of Impact of Pressure Compensation between Geothermal Wells on Reinjection Effeciency. Acta Energiae Solaris Sinica, 33(1): 56-62 (in Chinese with English abstract). |
国家自然科学基金项目(42072331;U1906209)
泰山学者工程专项经费(tstp20230626)
/
| 〈 |
|
〉 |