多孔介质固体颗粒粒径特征及膨胀作用对地下水孔隙尺度流场特征的影响
侯玉松 , 刘苏 , 辛虎 , 吴吉春 , 胡晓农 , 邢立亭
地球科学 ›› 2024, Vol. 49 ›› Issue (07) : 2589 -2599.
多孔介质固体颗粒粒径特征及膨胀作用对地下水孔隙尺度流场特征的影响
Influence of Particle Size Characteristics and Swelling of Solid Particles in Porous Media on Pore-Scale Flow Field Characteristics of Groundwater
,
地下水孔隙尺度流场特征的研究对于深入理解地下水渗流、溶质运移具有重要意义.目前固体颗粒粒径特征不同时介质微观结构对孔隙尺度流场的影响尚不清楚.基于迭代重排算法构建了固体颗粒粒径分布特征、膨胀程度不同的多孔介质,基于此研究了固体颗粒平均粒径、粒径方差及膨胀作用对地下水流场特征的影响.结果表明,在介质孔隙率相同的条件下,固体颗粒平均粒径、粒径方差对多孔介质中流速的非均质性、速度概率密度分布等流场特征影响较小.而在同一介质中,当固体颗粒膨胀引起孔隙率减小时,平均粒径较小幅度的变化就会对以上流场特征产生显著影响.例如当固体颗粒膨胀程度增强时,粒径小幅度的增大,就会导致流场中优势流区和不流动区比例同时大幅度增加,流场非均质性显著增强,流速概率密度分布更加发散.
地下水流场特征 / 多孔介质 / 固体颗粒粒径 / 孔隙尺度 / 数值模拟 / 水文地质学
groundwater flow field characteristics / porous media / solid particle size / pore scale / numerical simulation / hydrogeology
| [1] |
Aziz, R., Niasar, V., Erfani, H., et al., 2020. Impact of Pore Morphology on Two-Phase Flow Dynamics under Wettability Alteration. Fuel, 268: 117315. https://doi.org/10.1016/j.fuel.2020.117315 |
| [2] |
Bijeljic, B., Mostaghimi, P., Blunt, M. J., 2013a. Insights into Non-Fickian Solute Transport in Carbonates. Water Resources Research, 49(5): 2714-2728. https://doi.org/10.1002/wrcr.20238 |
| [3] |
Bijeljic, B., Raeini, A., Mostaghimi, P., et al., 2013b. Predictions of Non-Fickian Solute Transport in Different Classes of Porous Media Using Direct Simulation on Pore-Scale Images. Physical Review E, 87: 013011. https://doi.org/10.1103/physreve.87.013011 |
| [4] |
Chai, B., Shi, X.S., Du, J., et al., 2022. How to Realize Elaborated Analysis of Regional Rock Mass Structure? A Review and Idea. Earth Science, 47(12): 4629-4646 (in Chinese with English abstract). |
| [5] |
Chen, S. B., Gong, Z., Li, X. Y., et al., 2021. Pore Structure and Heterogeneity of Shale Gas Reservoirs and Its Effect on Gas Storage Capacity in the Qiongzhusi Formation. Geoscience Frontiers, 12(6): 101244. https://doi.org/10.1016/j.gsf.2021.101244 |
| [6] |
Dentz, M., Cortis, A., Scher, H., et al., 2004. Time Behavior of Solute Transport in Heterogeneous Media: Transition from Anomalous to Normal Transport. Advances in Water Resources, 27(2): 155-173. https://doi.org/10.1016/j.advwatres.2003.11.002 |
| [7] |
Di Palma, P. R., Parmigiani, A., Huber, C., et al., 2017. Pore-Scale Simulations of Concentration Tails in Heterogeneous Porous Media. Journal of Contaminant Hydrology, 205: 47-56. https://doi.org/10.1016/j.jconhyd.2017.08.003 |
| [8] |
Dou, Z., Chen, Z., Zhou, Z. F., et al., 2018. Influence of Eddies on Conservative Solute Transport through a 2D Single Self-Affine Fracture. International Journal of Heat and Mass Transfer, 121: 597-606. https://doi.org/10.1016/j.ijheatmasstransfer.2018.01.037 |
| [9] |
Edery, Y., Guadagnini, A., Scher, H., et al., 2014. Origins of Anomalous Transport in Heterogeneous Media: Structural and Dynamic Controls. Water Resources Research, 50(2): 1490-1505. https://doi.org/10.1002/2013wr015111 |
| [10] |
Hochstetler, D. L., Rolle, M., Chiogna, G., et al., 2013. Effects of Compound-Specific Transverse Mixing on Steady-State Reactive Plumes: Insights from Pore-Scale Simulations and Darcy-Scale Experiments. Advances in Water Resources, 54: 1-10. https://doi.org/10.1016/j.advwatres.2012.12.007 |
| [11] |
Hou, Y. S., Jiang, J. G., Wu, J. C., 2018. Anomalous Solute Transport in Cemented Porous Media: Pore-Scale Simulations. Soil Science Society of America Journal, 82(1): 10-19. https://doi.org/10.2136/sssaj2017.04.0125 |
| [12] |
Hou, Y. S., Wu, J. C., Jiang, J. G., 2019. Time Behavior of Anomalous Solute Transport in Three-Dimensional Cemented Porous Media. Soil Science Society of America Journal, 83(4): 1012-1023. https://doi.org/10.2136/sssaj2018.12.0476 |
| [13] |
Hui, W., Xue, Y.Z., Bai, X.L., et al., 2020. Influence of Micro-Pore Structure on the Movable Fluid Occurrence in Tight Sandstone Reservoir. Special Oil & Gas Reservoirs, 27(2): 87-92 (in Chinese with English abstract). |
| [14] |
Lee, J., Rolle, M., Kitanidis, P. K., 2018. Longitudinal Dispersion Coefficients for Numerical Modeling of Groundwater Solute Transport in Heterogeneous Formations. Journal of Contaminant Hydrology, 212: 41-54. https://doi.org/10.1016/j.jconhyd.2017.09.004 |
| [15] |
Li, X., 2018. Study on the Expansion Characteristics of Neogene System in Xining Basin (Dissertation). Southwest Jiaotong University, Chengdu (in Chinese with English abstract). |
| [16] |
Li, Z. X., Wan, J. W., Huang, K., et al., 2017. Effects of Particle Diameter on Flow Characteristics in Sand Columns. International Journal of Heat and Mass Transfer, 104: 533-536. https://doi.org/10.1016/j.ijheatmasstransfer.2016.08.085 |
| [17] |
Li, Z. X., Wan, J. W., Zhan, H. B., et al., 2019. Particle Size Distribution on Forchheimer Flow and Transition of Flow Regimes in Porous Media. Journal of Hydrology, 574: 1-11. https://doi.org/10.1016/j.jhydrol.2019.04.026 |
| [18] |
Li, Z. X., Wan, J. W., Zhan, H. B., et al., 2020. An Energy Perspective of Pore Scale Simulation and Experimental Evidence of Fluid Flow in a Rough Conduit. Journal of Hydrology, 587: 125010. https://doi.org/10.1016/j.jhydrol.2020.125010 |
| [19] |
Liu, Y., Zhang, Q., Qian, J.Z., et al., 2022. Simulation of Bimolecular Reactive Solute Transport in Porous Media via Image Analysis. Earth Science Frontiers, 29(3): 248-255 (in Chinese with English abstract). |
| [20] |
Molins, S., Trebotich, D., Steefel, C. I., et al., 2012. An Investigation of the Effect of Pore Scale Flow on Average Geochemical Reaction Rates Using Direct Numerical Simulation. Water Resources Research, 48(3): W03527. https://doi.org/10.1029/2011wr011404 |
| [21] |
Qiao, J. C., Zeng, J. H., Ma, Y., et al., 2020. Effects of Mineralogy on Pore Structure and Fluid Flow Capacity of Deeply Buried Sandstone Reservoirs with a Case Study in the Junggar Basin. Journal of Petroleum Science and Engineering, 189: 106986. https://doi.org/10.1016/j.petrol.2020.106986 |
| [22] |
Rolle, M., Kitanidis, P. K., 2014. Effects of Compound- Specific Dilution on Transient Transport and Solute Breakthrough: A Pore-Scale Analysis. Advances in Water Resources, 71: 186-199. https://doi.org/10.1016/j.advwatres.2014.06.012 |
| [23] |
Sánchez-Vila, X., Carrera, J., 2004. On the Striking Similarity between the Moments of Breakthrough Curves for a Heterogeneous Medium and a Homogeneous Medium with a Matrix Diffusion Term. Journal of Hydrology, 294(1-3): 164-175. https://doi.org/10.1016/j.jhydrol.2003.12.046 |
| [24] |
Sharma, P. K., Agarwal, P., Mehdinejadiani, B., 2022. Study on Non-Fickian Behavior for Solute Transport through Porous Media. ISH Journal of Hydraulic Engineering, 28(sup1): 171-179. https://doi.org/10.1080/09715010.2020.1727783 |
| [25] |
Srzic, V., Cvetkovic, V., Andricevic, R., et al., 2013. Impact of Aquifer Heterogeneity Structure and Local-Scale Dispersion on Solute Concentration Uncertainty. Water Resources Research, 49(6): 3712-3728. https://doi.org/10.1002/wrcr.20314 |
| [26] |
Wang, L. G., Zhang, Y. Z., Zhang, N. Y., et al., 2020. Pore Structure Characterization and Permeability Estimation with a Modified Multimodal Thomeer Pore Size Distribution Function for Carbonate Reservoirs. Journal of Petroleum Science and Engineering, 193: 107426. https://doi.org/10.1016/j.petrol.2020.107426 |
| [27] |
Wang, L. L., Wang, Z. T., Ding, Z. P., et al., 2022. Factors Influencing Accuracy of Free Swelling Ratio of Expansive Soil. Journal of Central South University, 29(5): 1653-1662. https://doi.org/10.1007/s11771-022-4986-9 |
| [28] |
Wei, H.X., Lai, F.P., Jiang, Z.Y., et al., 2020. Micropore Structure and Fluid Distribution Characteristics of Yanchang Tight Gas Reservoir. Fault-Block Oil & Gas Field, 27(2): 182-187 (in Chinese with English abstract). |
| [29] |
Werth, C. J., Cirpka, O. A., Grathwohl, P., 2006. Enhanced Mixing and Reaction through Flow Focusing in Heterogeneous Porous Media. Water Resources Research, 42(12): W12414. https://doi.org/10.1029/2005wr004511 |
| [30] |
Willingham, T., Zhang, C. Y., Werth, C. J., et al., 2010. Using Dispersivity Values to Quantify the Effects of Pore-Scale Flow Focusing on Enhanced Reaction along a Transverse Mixing Zone. Advances in Water Resources, 33(4): 525-535. https://doi.org/10.1016/j.advwatres.2010.02.004 |
| [31] |
Wirner, F., Scholz, C., Bechinger, C., 2014. Geometrical Interpretation of Long-Time Tails of First-Passage Time Distributions in Porous Media with Stagnant Parts. Physical Review E, 90(1): 013025. https://doi.org/10.1103/physreve.90.013025 |
| [32] |
Xu, P., Li, C.H., Liu, H.C., et al., 2017. Fractal Features of the Effective Gas Transport Coefficient for Multiscale Porous Media. Earth Science, 42(8): 1373-1378 (in Chinese with English abstract). |
| [33] |
Xue, J. F., Qi, Z. W., Chen, J. L., et al., 2023. Dynamic of Soil Porosity and Water Content under Tillage during Summer Fallow in the Dryland Wheat Fields of the Loess Plateau in China. Land, 12(1): 230. https://doi.org/10.3390/land12010230 |
| [34] |
Yang, A., Miller, C. T., Turcoliver, L. D., 1996. Simulation of Correlated and Uncorrelated Packing of Random Size Spheres. Physical Review E, 53(2): 1516-1524. https://doi.org/10.1103/physreve.53.1516 |
| [35] |
Yao,L.L.,2021.Evaluation of Microscopic Pore Structure Characteristics and Flow Mechanism of Shale Oil Reservoirs (Dissertation).Institute of Porous Flow & Fluid Mechanics, Chinese Academy of Sciences, Langfang (in Chinese with English abstract). |
| [36] |
Zhang, X.Y., Dou, Z., 2018. Influence of Microscopic Pore Structure of Clay on Soluble Contaminant Transport. Hydrogeology & Engineering Geology, 45(4): 157-164 (in Chinese with English abstract). |
| [37] |
Zhao, X.Z., Chen, C.W., Song, S.Y., et al., 2023. Shale Oil Reservoir Structure Characteristics of the Second Member of Kongdian Formation in Cangdong Sag, Bohai Bay Basin. Earth Science, 48(1): 63-76 (in Chinese with English abstract). |
| [38] |
Zhou, K., Chen, X.P., Qu, X.B., 2022. Determining Methods of Micro-Pore and Liquids and Adsorption- Desorption Experiment for Shale Reservoir: Taking Member He-8 Reservoir in Ordos Yulin Area as an Example. Petroleum Geology & Oilfield Development in Daqing, 41(2): 139-146 (in Chinese with English abstract). |
| [39] |
Zhu, Y. H., Zhan, H. B., Jin, M. G., 2016. Analytical Solutions of Solute Transport in a Fracture-Matrix System with Different Reaction Rates for Fracture and Matrix. Journal of Hydrology, 539: 447-456. https://doi.org/10.1016/j.jhydrol.2016.05.056 |
国家自然科学基金项目(42002257)
山东省自然科学基金项目(ZR2020QD123)
山东省高校院所创新团队项目(2018GXRC012)
国家自然科学基金项目(41772257)
济南大学博士基金项目(XBS1911)
济南大学科技计划基金项目(XKY1922)
/
| 〈 |
|
〉 |