神农架大九湖泥炭孔隙水中微生物的碳代谢特征
Characteristics of Microbial Carbon Utilization in Peat Pore Water in the Dajiuhu Peatland, Shennongjia
,
为研究水位波动下泥炭地微生物碳代谢特征,利用Biolog-Eco微平板技术对神农架大九湖不同水位下泥炭孔隙水中微生物的碳代谢图谱进行测定.结果表明,不同水位下微生物的碳代谢活性和多样性差异显著,均表现为中水位>低水位>高水位.酯类(丙酮酸甲酯、吐温40、吐温80、D-半乳糖酸γ内酯),氨基酸(L-精氨酸、L-天冬酰胺酸、L-苯基丙氨酸、L-丝氨酸和甘氨酰-L-谷氨酸),胺类(苯乙基胺、腐胺和N-乙酰基-D-葡萄胺)是引起微生物碳代谢差异的主要贡献者.冗余度分析显示,电导率(F=3.2, P=0.018)和氧化还原电位(F=2.6, P=0.044)显著影响微生物的碳代谢,其变化与水位波动密切相关.水位波动通过改变泥炭孔隙水中微生物的碳代谢功能进而影响泥炭地碳循环.
泥炭地 / 孔隙水 / 水位 / Biolog-Eco微平板 / 碳代谢 / 碳循环 / 环境微生物学.
peatland / pore water / water table level / Biolog-Eco microplate / carbon utilization / carbon cycle / environmental microbiology
| [1] |
Barel, J. M., Moulia, V., Hamard, S., et al., 2021. Come Rain, Come Shine: Peatland Carbon Dynamics Shift under Extreme Precipitation. Frontiers in Environmental Science, 9: 659953. https://doi.org/10.3389/fenvs.2021.659953 |
| [2] |
Benoit, J. M., Shull, D. H., Harvey, R. M., et al., 2009. Effect of Bioirrigation on Sediment-Water Exchange of Methylmercury in Boston Harbor, Massachusetts. Environmental Science & Technology, 43(10): 3669-3674. https://doi.org/10.1021/es803552q |
| [3] |
Chen, H., Wu, N., Wang, Y. F., et al., 2021. A Historical Overview about Basic Issues and Studies of Mires. Science in China (Series D), 51(1): 15-26 (in Chinese with English abstract). |
| [4] |
Chen, Z., Li, Y. Z., Peng, Y. Y., et al., 2022. Feasibility of Sewage Sludge and Food Waste Aerobic Co- Composting: Physicochemical Properties, Microbial Community Structures, and Contradiction between Microbial Metabolic Activity and Safety Risks. The Science of the Total Environment, 825: 154047. https://doi.org/10.1016/j.scitotenv.2022.154047 |
| [5] |
Corzo, A., Jiménez-Arias, J. L., Torres, E., et al., 2018. Biogeochemical Changes at the Sediment–Water Interface during Redox Transitions in an Acidic Reservoir: Exchange of Protons, Acidity and Electron Donors and Acceptors. Biogeochemistry, 139(3): 241-260. https://doi.org/10.1007/s10533-018-0465-7 |
| [6] |
Fenner, N., Freeman, C., 2011. Drought-Induced Carbon Loss in Peatlands. Nature Geoscience, 4(12): 895-900. https://doi.org/10.1038/ngeo1323 |
| [7] |
Freeman, C., Ostle, N., Kang, H., 2001. An Enzymic ‘Latch’ on a Global Carbon Store. Nature, 409: 149. https://doi.org/10.1038/35051650 |
| [8] |
Garland, J. L., 1996. Analytical Approaches to the Characterization of Samples of Microbial Communities Using Patterns of Potential C Source Utilization. Soil Biology and Biochemistry, 28(2): 213-221. https://doi.org/10.1016/0038-0717(95)00112-3 |
| [9] |
Haapalehto, T., Kotiaho, J. S., Matilainen, R., et al., 2014. The Effects of Long-Term Drainage and Subsequent Restoration on Water Table Level and Pore Water Chemistry in Boreal Peatlands. Journal of Hydrology, 519: 1493-1505. https://doi.org/10.1016/j.jhydrol.2014.09.013 |
| [10] |
Hribljan, J. A., Kane, E. S., Pypker, T. G., et al., 2014. The Effect of Long-Term Water Table Manipulations on Dissolved Organic Carbon Dynamics in a Poor Fen Peatland. Journal of Geophysical Research: Biogeosciences, 119(4): 577-595. https://doi.org/10.1002/2013jg002527 |
| [11] |
Huang, X. Y., Zhang, Z. Q., Wang, H. M., et al., 2017. Overview on Critical Zone Observatory at Dajiuhu Peatland, Shennongjia. Earth Science, 42(6): 1026-1038 (in Chinese with English abstract). |
| [12] |
Järveoja, J., Peichl, M., Maddison, M., et al., 2016. Impact of Water Table Level on Annual Carbon and Greenhouse Gas Balances of a Restored Peat Extraction Area. Biogeosciences, 13(9): 2637-2651. https://doi.org/10.5194/bg-13-2637-2016 |
| [13] |
Kloss, S., Zehetner, F., Buecker, J., et al., 2015. Trace Element Biogeochemistry in the Soil-Water-Plant System of a Temperate Agricultural Soil Amended with Different Biochars. Environmental Science and Pollution Research, 22(6): 4513-4526. https://doi.org/10.1007/s11356-014-3685-y |
| [14] |
Kwon, M. J., Haraguchi, A., Kang, H., 2013. Long-Term Water Regime Differentiates Changes in Decomposition and Microbial Properties in Tropical Peat Soils Exposed to the Short-Term Drought. Soil Biology and Biochemistry, 60: 33-44. https://doi.org/10.1016/j.soilbio.2013.01.023 |
| [15] |
Liao, H. H., Yu, K., Duan, Y. H., et al., 2019. Profiling Microbial Communities in a Watershed Undergoing Intensive Anthropogenic Activities. The Science of the Total Environment, 647: 1137-1147. https://doi.org/10.1016/j.scitotenv.2018.08.103 |
| [16] |
Limpens, J., Berendse, F., Blodau, C., et al., 2008. Peatlands and the Carbon Cycle: From Local Processes to Global Implications-A Synthesis. Biogeosciences, 5(5): 1475-1491. https://doi.org/10.5194/bg-5-1475-2008 |
| [17] |
Liu, H. M., An, K. R., Wang, H., et al., 2020. Effects of Fertilization Regimes on the Metabolic Diversity of Microbial Carbon Sources in a Maize Field of Fluvoaquic Soil in North China. Journal of Agro-Environment Science, 39(10): 2336-2344 (in Chinese with English abstract). |
| [18] |
Luo, T., Lun, Z.J., Gu, Y.S., et al., 2015. Plant Community Survey and Ecological Protection of Dajiuhu Wetlands in Shennongjia Area. Wetland Science, 13(2): 153-160 (in Chinese with English abstract). |
| [19] |
Palansooriya, K. N., Wong, J. T. F., Hashimoto, Y., et al., 2019. Response of Microbial Communities to Biochar-Amended Soils: a Critical Review. Biochar, 1(1): 3-22. https://doi.org/10.1007/s42773-019-00009-2 |
| [20] |
Saunois, M., Stavert, A. R., Poulter, B., et al., 2020. The Global Methane Budget 2000–2017. Earth System Science Data, 12(3): 1561-1623. https://doi.org/10.5194/essd-12-1561-2020 |
| [21] |
Si, G. H., Yuan, J. F., Xu, X. Y., et al., 2018. Effects of an Integrated Rice-Crayfish Farming System on Soil Organic Carbon, Enzyme Activity, and Microbial Diversity in Waterlogged Paddy Soil. Acta Ecologica Sinica, 38(1): 29-35. https://doi.org/10.1016/j.chnaes.2018.01.005 |
| [22] |
Song, X. C., Wang, H. L., Qin, W. D., et al., 2019. Effects of Stand Type of Artificial Forests on Soil Microbial Functional Diversity. Chinese Journal of Applied Ecology, 30(3): 841-848 (in Chinese with English abstract). |
| [23] |
Tian, W., Wang, H. M., Xiang, X., et al., 2019. Structural Variations of Bacterial Community Driven by Sphagnum Microhabitat Differentiation in a Subalpine Peatland. Frontiers in Microbiology, 10: 1661-1671. https://doi.org/10.3389/fmicb.2019.01661 |
| [24] |
Tian, W., Xiang, X., Wang, H. M., 2021. Differential Impacts of Water Table and Temperature on Bacterial Communities in Pore Water from a Subalpine Peatland, Central China. Frontiers in Microbiology, 12: 649981. https://doi.org/10.3389/fmicb.2021.649981 |
| [25] |
Treat, C. C., Kleinen, T., Broothaerts, N., et al., 2019. Widespread Global Peatland Establishment and Persistence over the last 130, 000 Y. Proceedings of the National Academy of Sciences of the United States of America, 116(11): 4822-4827. https://doi.org/10.1073/pnas.1813305116 |
| [26] |
Ulanowski, T. A., Branfireun, B. A., 2013. Small-Scale Variability in Peatland Pore-Water Biogeochemistry, Hudson Bay Lowland, Canada. The Science of the Total Environment, 454-455: 211-218. https://doi.org/10.1016/j.scitotenv.2013.02.087 |
| [27] |
Urbanová, Z., Bárta, J., 2016. Effects of Long-Term Drainage on Microbial Community Composition Vary between Peatland Types. Soil Biology and Biochemistry, 92: 16-26. https://doi.org/10.1016/j.soilbio.2015.09.017 |
| [28] |
Wang, D. X., Zhang, Y. M., Wang, R. C., et al., 2018. Characteristics of Dissolved Organic Matter in Pore Water from the Dajiuhu Peatland, Central China. Resources and Environment in the Yangtze Basin, 27(11): 2568-2577 (in Chinese with English abstract). |
| [29] |
Wang, R. C., Wang, H. M., Xi, Z. Q., et al., 2022. Hydrology Driven Vertical Distribution of Prokaryotes and Methane Functional Groups in a Subtropical Peatland. Journal of Hydrology, 608: 127592. https://doi.org/10.1016/j.jhydrol.2022.127592 |
| [30] |
Wang, R. C., Wang, H. M., Xiang, X., et al., 2018. Temporal and Spatial Variations of Microbial Carbon Utilization in Water Bodies from the Dajiuhu Peatland, Central China. Journal of Earth Science, 29(4): 969-976. https://doi.org/10.1007/s12583-017-0818-5 |
| [31] |
Wang, X., He, S. W., Pan, J. Z., et al., 2021. Effects of Aquatic Plant Restoration on Water Quality and Microbial Functional Diversity of Wanshan Lake. Journal of Ecology and Rural Environment, 37(10): 1352-1360 (in Chinese with English abstract). |
| [32] |
Xu, J. R., Morris, P. J., Liu, J. G., et al., 2018. PEATMAP: Refining Estimates of Global Peatland Distribution Based on a Meta-Analysis. CATENA, 160: 134-140. https://doi.org/10.1016/j.catena.2017.09.010 |
| [33] |
Xue, D., Chen, H., Zhan, W., et al., 2021. How do Water Table Drawdown, Duration of Drainage, and Warming Influence Greenhouse Gas Emissions from Drained Peatlands of the Zoige Plateau? Land Degradation & Development, 32(11): 3351-3364. https://doi.org/10.1002/ldr.4013 |
| [34] |
Yuan, M. M., Guo, X., Wu, L. W., et al., 2021. Climate Warming Enhances Microbial Network Complexity and Stability. Nature Climate Change, 11: 343–348. https://doi.org/10.1038/s41558-021-00989-9 |
| [35] |
Yun, Y., Cheng, X. Y., Wang, W. Q., et al., 2018. Seasonal Variation of Bacterial Community and Their Functional Diversity in Drip Water from a Karst Cave. Chinese Science Bulletin, 63(36): 3932-3944 (in Chinese). |
| [36] |
Zhang, W. X., Furtado, K., Wu, P. L., et al., 2021. Increasing Precipitation Variability on Daily-to-Multiyear Time Scales in a Warmer World. Science Advances, 7(31): eabf8021. https://doi.org/10.1126/sciadv.abf8021 |
| [37] |
Zhang, Y. M., Naafs, B. D. A., Huang, X. Y., et al., 2022. Variations in Wetland Hydrology Drive Rapid Changes in the Microbial Community, Carbon Metabolic Activity, and Greenhouse Gas Fluxes. Geochimica et Cosmochimica Acta, 317: 269-285. https://doi.org/10.1016/j.gca.2021.11.014 |
| [38] |
Zhang, Z. Q., Zhang, Y. M., Huang, X. Y., et al., 2021. Seasonal Variations and Influencing Factors of Dissolved Organic Carbon in Pore Water from the Dajiuhu Peatland in Shennongjia. Bulletin of Geological Science and Technology, 40(2): 147-155 (in Chinese with English abstract). |
| [39] |
Zhong, Q. P., Chen, H., Liu, L. F., et al., 2017. Water Table Drawdown Shapes the Depth-Dependent Variations in Prokaryotic Diversity and Structure in Zoige Peatlands. FEMS Microbiology Ecology, 93(6): fix049. https://doi.org/10.1093/femsec/fix049 |
| [40] |
Zhou, G. X., Qiu, X. W., Chen, L., et al., 2019. Succession of Organics Metabolic Function of Bacterial Community in Response to Addition of Earthworm Casts and Zeolite in Maize Straw Composting. Bioresource Technology, 280: 229-238. https://doi.org/10.1016/j.biortech.2019.02.015 |
国家自然科学基金项目(41572325)
流域关键带演化湖北省重点实验室开放基金项目(CEZ2022F02)
/
| 〈 |
|
〉 |