基于卷积神经网络的滑坡易发性评价: 以辽南仙人洞国家级自然保护区为例
郑德凤 , 高敏 , 闫成林 , 李媛媛 , 年廷凯
地球科学 ›› 2024, Vol. 49 ›› Issue (05) : 1654 -1664.
基于卷积神经网络的滑坡易发性评价: 以辽南仙人洞国家级自然保护区为例
Susceptibility Assessment of Landslides Based on Convolutional Neural Network Model: A Case Study from Xianrendong National Nature Reserve in Southern Liaoning Province
,
为了解决滑坡易发性评价过程中存在的滑坡编录数据不足,主观或者随机地选取非滑坡栅格单元而导致模型准确率较低等问题,以辽南仙人洞国家级自然保护区为研究区,首先,从地形地貌、地质条件、水文气象条件和人类工程活动等方面选取了12个评价因子构建滑坡评价体系;其次,利用SMOTETomek综合采样方法解决滑坡与非滑坡样本类别的比例失衡问题,进而建立滑坡易发性评价模型的数据集;最后,针对研究区东西两侧(A区和B区)的非线性滑坡数据,通过构建卷积神经网络(Convolutional Neural Networks, CNN)模型进行滑坡易发性评价,并精准绘制了研究区滑坡易发性分布图.结果表明:CNN模型具有良好的适应性,绘制的滑坡易发性分区图显示出合理的空间分布,A区和B区的测试集AUC面积分别为91.2%和94.3%;70%的滑坡数据分布在较高及以上等级的易发区,68.7%的非滑坡数据分布在较低及以下等级的易发区;滑坡高易发区主要位于研究区东北部猫岭北沟山一带、冰峪沟风景区的北部山区和碧流河水库沿岸区.研究成果为辽南仙人洞国家级自然保护区的地质灾害防治规划、应急预案制定等提供了重要的科学依据.
滑坡 / 卷积神经网络 / 综合采样方法 / 易发性 / 仙人洞国家级自然保护区 / 工程地质
landslides / convolutional neural networks / comprehensive sampling methods / susceptibility / Xianrendong National Nature Reserve / engineering geology
| [1] |
Althuwaynee, O. F., Pradhan, B., Lee, S., 2016. A Novel Integrated Model for Assessing Landslide Susceptibility Mapping Using CHAID and AHP Pair-Wise Comparison. International Journal of Remote Sensing, 37(5): 1190-1209. https://doi.org/10.1080/01431161.2016.1148282 |
| [2] |
Aslam, B., Zafar, A., Khalil, U., 2021. Development of Integrated Deep Learning and Machine Learning Algorithm for the Assessment of Landslide Hazard Potential. Soft Computing, 25(21): 13493-13512. https://doi.org/10.1007/s00500-021-06105-5 |
| [3] |
Blahut, J., van Westen, C. J., Sterlacchini, S., 2010. Analysis of Landslide Inventories for Accurate Prediction of Debris-Flow Source Areas. Geomorphology, 119(1-2): 36-51. https://doi.org/10.1016/j.geomorph.2010.02.017 |
| [4] |
Chauhan, S., Sharma, M., Arora, M. K., et al., 2010. Landslide Susceptibility Zonation through Ratings Derived from Artificial Neural Network. International Journal of Applied Earth Observation and Geoinformation, 12(5): 340-350. https://doi.org/10.1016/j.jag.2010.04.006 |
| [5] |
Chen, W., Li, W. P., Hou, E. K., et al., 2014. Landslide Susceptibility Mapping Based on GIS and Information Value Model for the Chencang District of Baoji, China. Arabian Journal of Geosciences, 7(11): 4499-4511. https://doi.org/10.1007/s12517-014-1369-z |
| [6] |
Fang, Z. C., Wang, Y., Peng, L., et al., 2020. Integration of Convolutional Neural Network and Conventional Machine Learning Classifiers for Landslide Susceptibility Mapping. Computers & Geosciences, 139: 104470. https://doi.org/10.1016/j.cageo.2020.104470 |
| [7] |
Geertsema, M., Pojar, J. J., 2007. Influence of Landslides on Biophysical Diversity—A Perspective from British Columbia. Geomorphology, 89(1-2): 55-69. https://doi.org/10.1016/j.geomorph.2006.07.019 |
| [8] |
Girshick, R., 2015. Fast R-CNN. 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, 1440-1448. https://doi.org/10.1109/ICCV.2015.169 |
| [9] |
Habumugisha, J. M., Chen, N. S., Rahman, M., et al., 2022. Landslide Susceptibility Mapping with Deep Learning Algorithms. Sustainability, 14(3): 1734. https://doi.org/10.3390/su14031734 |
| [10] |
Hansen, A., Franks, C. A. M., Kirk, P. A., et al., 1995. Application of GIS to Hazard Assessment, with Particular Reference to Landslides in Hong Kong. Geographical Information Systems in Assessing Natural Hazards. Springer, Dordrecht, 273-298. https://doi.org/10.1007/978-94-015-8404-3_14 |
| [11] |
Huang, F.M., Chen, B., Mao, D.X., et al., 2023. Landslide Susceptibility Prediction Modeling and Interpretability Based on Self-Screening Deep Learning Model. Earth Science, 48(5):1696-1710 (in Chinese with English abstract). |
| [12] |
Huang, F. M., Chen, J. W., Tang, Z. P., et al., 2021. Uncertainties of Landslide Susceptibility Prediction due to Different Spatial Resolutions and Different Proportions of Training and Testing Datasets. Journal of Rock Mechanics and Engineering, 40(6): 1155-1169 (in Chinese with English abstract). |
| [13] |
Huang, F. M., Yin, K. L., Jiang, S. H., et al., 2018. Landslide Susceptibility Assessment Based on Clustering Analysis and Support Vector Machine. Journal of Rock Mechanics and Engineering, 37(1): 156-167 (in Chinese with English abstract). |
| [14] |
Huang, W. B., Ding, M. T., Wang, D., et al., 2022. Evaluation of Landslide Susceptibility Based on Layer Adaptive Weighted Convolutional Neural Network Model along Sichuan-Tibet Traffic Corridor. Earth Science, 47(6): 2015-2030 (in Chinese with English abstract). |
| [15] |
Ilmy, H. F., Darminto, M. R., Widodo, A., 2021. Application of Machine Learning on Google Earth Engine to Produce Landslide Susceptibility Mapping (Case Study: Pacitan). IOP Conference Series: Earth and Environmental Science, 731(1): 012028. https://doi.org/10.1088/1755-1315/731/1/012028 |
| [16] |
Li, W. B., Fan, X. M., Huang, F. M., 2021. Uncertainties of Landslide Susceptibility Modeling under Different Environmental Factor Connections and Prediction Models. Earth Science, 46(10): 3777-3795 (in Chinese with English abstract). |
| [17] |
Li, W. J., Fang, Z. C., Wang, Y., 2022. Stacking Ensemble of Deep Learning Methods for Landslide Susceptibility Mapping in the Three Gorges Reservoirarea, China. Stochastic Environmental Research and Risk Assessment, 36(8): 2207-2228. https://doi.org/10.1007/s00477-021-02032-x |
| [18] |
Liu, Y., 2022. Research on Pre Loan Risk Control Based on Stacking Integration Method under Unbalanced Samples (Dissertation). Central China Normal University, Wuhan (in Chinese with English abstract). |
| [19] |
Meten, M., Bhandary, N. P., Yatabe, R., 2015. GIS-Based Frequency Ratio and Logistic Regression Modelling for Landslide Susceptibility Mapping of Debre Sina Area in Central Ethiopia. Journal of Mountain Science, 12(6): 1355-1372. https://doi.org/10.1007/s11629-015-3464-3 |
| [20] |
Moni, M., Sethi, I. P. S., Sethi, S. P. S., 1991. Natural Calamities Relief Management Software. IETE Technical Review, 8(2): 64-71. https://doi.org/10.1080/02564602.1991.11438716 |
| [21] |
Nian, T. K., Feng, Z. K., Yu, P. C., et al., 2013. Strength Behavior of Slip-Zone Soils of Landslide Subject to the Change of Water Content. Natural Hazards, 68(2): 711-721. https://doi.org/10.1007/s11069-013-0647-5 |
| [22] |
Pardeshi, S. D., Autade, S. E., Pardeshi, S. S., 2013. Landslide Hazard Assessment: Recent Trends and Techniques. Springer Plus, 2(1): 523. https://doi.org/10.1186/2193-1801-2-523 |
| [23] |
Pei, Z. W., Nian, T. K., Wu, H., et al., 2021. Research Progress on Emergency Treatment Techniques for Landslide Geological Hazards. Journal of Disaster Prevention and Mitigation Engineering, 41(6): 1382-1394 (in Chinese with English abstract). |
| [24] |
Pham, V. D., Nguyen, Q. H., Nguyen, H. D., et al., 2020. Convolutional Neural Network-Optimized Moth Flame Algorithm for Shallow Landslide Susceptible Analysis. IEEE Access, 8: 32727-32736. https://doi.org/10.1109/ACCESS.2020.2973415 |
| [25] |
Wang, C. Y., 2008. Study on the Relationship between Aspect and Slope Stability (Dissertation). Kunming University of Science and Technology, Kunming (in Chinese with English abstract). |
| [26] |
Wang, W. D., He, Z. L., Han, Z., et al., 2020. Mapping the Susceptibility to Landslides Based on the Deep Belief Network: A Case Study in Sichuan Province, China. Natural Hazards, 103(3): 3239-3261. https://doi.org/10.1007/s11069-020-04128-z |
| [27] |
Wang, Y., Fang, Z.C., Niu, R.Q., et al., 2021. Landslide Susceptibility Analysis Based on Deep Learning. Journal of Geo-Information Science, 23(12): 2244-2260 (in Chinese with English abstract). |
| [28] |
Wu, C., 2019. Landslide Susceptibility Based on Extreme Rainfall-Induced Landslide Inventories and the Following Landslide Evolution. Water, 11(12): 2609. https://doi.org/10.3390/w11122609 |
| [29] |
Wu, X. L., Yang, J.Y., Niu, R. Q., 2020. A Landslide Susceptibility Assessment Method Using SMOTE and Convolutional Neural Network. Geomatics and Information Science of Wuhan University, 45(8): 1223-1232 (in Chinese with English abstract). |
| [30] |
Yan, C. L., Zheng, D. F., Nian, T. K., et al., 2021. Fuzzy Bayesian Network Model Based on ANP and Its Application to Coastal Zone Geohazard Risk Assessment. Journal of Engineering Geology, 29(6): 1862-1868 (in Chinese with English abstract). |
| [31] |
Zhang, C.X., Yang, Q.K., Li, R., 2005. Advancement in Topographic Wetness Index and Its Application. Progress In Geography, 24(6): 116-123 (in Chinese with English abstract). |
| [32] |
Zhang, K. X., Wu, X. L., Niu, R. Q., et al., 2017. The Assessment of Landslide Susceptibility Mapping Using Random Forest and Decision Tree Methods in the Three Gorges Reservoir Area, China. Environmental Earth Sciences, 76(11): 405. https://doi.org/10.1007/s12665-017-6731-5 |
| [33] |
Zhao, P. X., Masoumi, Z., Kalantari, M., et al., 2022. A GIS-Based Landslide Susceptibility Mapping and Variable Importance Analysis Using Artificial Intelligent Training-Based Methods. Remote Sensing, 14(1): 211. https://doi.org/10.3390/rs14010211 |
| [34] |
Zhou, X.T., Huang, F.M., Wu, W.C., et al., 2022.Regional Landslide Susceptibility Prediction Based on Negative Sample Selected by Coupling Information Value Method. Advanced Engineering Sciences, 54(3): 25-35 (in Chinese with English abstract). |
国家自然科学基金项目(42077272;42377185)
辽宁师范大学高端科研成果培育资助计划项目(23GDL007)
/
| 〈 |
|
〉 |