广西运动在华南板块北缘的构造响应:来自生物地层学方面的证据

王欣 ,  高晓峰 ,  查显锋

地球科学 ›› 2024, Vol. 49 ›› Issue (09) : 3199 -3211.

PDF (2569KB)
地球科学 ›› 2024, Vol. 49 ›› Issue (09) : 3199 -3211. DOI: 10.3799/dqkx.2023.115

广西运动在华南板块北缘的构造响应:来自生物地层学方面的证据

作者信息 +

Tectonic Response of the Kwangsian Orogeny in the Northern Margin of the South China Block:Evidences from Biostratigraphy

Author information +
文章历史 +
PDF (2630K)

摘要

广西运动的构造作用范围是否涵盖华南板块北缘尚存在不同认识,并成为了制约相关构造动力学机制研究的瓶颈.此次研究聚焦北大巴山地区,以精确的笔石生物地层序列为标尺,同时综合岩石学特征认为,广西运动在华南板块北缘存在构造‒沉积响应,其构造启动时间为志留系特列奇阶Spirograptus turriculatus笔石带所代表的时限(~435 Ma),与“扬子上升”第一幕的时限基本一致.在华南板块北缘,广西运动在特列奇阶Oktavites spiralis-Cyrtograptus lapworthi笔石带所涵盖的时间范围内第一次到达构造活动峰值(~433 Ma),期间还伴随着大规模的岩浆活动.本研究进一步扩大了广西运动的构造作用范围,同时也为相关的构造发生模式和动力学机制研究提供了更多的思路和参考,即华南与华北碰撞的远程效应可能是广西运动重要的构造驱动力之一.

关键词

广西运动 / 华南板块北缘 / 构造响应 / 地层学 / 志留纪 / 沉积学.

Key words

Kwangsian Orogeny / northern margin of the South China Block / tectonic response / stratigraphy / Silurian / sedimentology

引用本文

引用格式 ▾
王欣,高晓峰,查显锋. 广西运动在华南板块北缘的构造响应:来自生物地层学方面的证据[J]. 地球科学, 2024, 49(09): 3199-3211 DOI:10.3799/dqkx.2023.115

登录浏览全文

4963

注册一个新账户 忘记密码

0 引言

根据广西兴安地区泥盆系莲花山组与下伏的下古生界“龙山系”之间的不整合接触所指示的一次构造抬升事件,丁文江于1929年首次提出“广西运动”概念(Ting, 1929),并将其解读为加里东运动在华南地区的构造响应(吴浩若,2000).广西运动关乎华南板块两大构造单元——扬子地块和华夏地块的相互作用和拼合过程,因此也被视为华南最为重要的构造界面之一(Zhang et al.,2013).以精确的生物地层学研究为基础,同时综合岩石学特征,可以从浅部和深部两个方向探索广西运动在华南不同构造部位的启动时间和发生过程(徐亚军和杜远生,2018).生物地层学及岩相学证据显示,广西运动具有明显的方向性和阶段性,大体可以概括为自南向北、自东向西、分阶段发生的一系列构造事件(Chen et al.,2010, 20122014),并在局部发生陆内造山作用(徐亚军和杜远生,2018;王怿等,2021).其中,在雪峰山断裂以东,自粤南‒粤北‒赣南地区开始,经湘西新化地区到桂北兴安地区,广西运动的构造启动时间从奥陶纪桑比期(~456 Ma)逐步过渡到凯迪期(~453 Ma),再到志留纪埃隆期 (~440 Ma),逐渐推后,其上均被中泥盆统所不整合覆盖;在雪峰山以西,从湖北宜昌地区经陕西宁强地区,广西运动的构造活动启动时间从志留纪埃隆期中期(~439 Ma)过渡到特列奇期早期 (~436 Ma),其上被中泥盆统不整合覆盖(Chen et al.,2010, 20122014).岩石学证据显示,与“广西运动”相关的岩浆活动事件年龄范围在~460~ 380 Ma,活动峰值集中在435 Ma(Yao et al., 2012Feng et al., 2014Zhong et al., 2014);相关的变质作用年龄范围在450~420 Ma,其中峰值同样集中在 435 Ma(Wang et al.,2012, 2013Zhang et al.,2015).综上所述,广西运动在华南不同构造部位的启动时间大致为奥陶纪桑比期(~456 Ma)至志留纪特列奇期早期(~436 Ma),相关的岩浆活动和变质作用峰值年龄为435 Ma,受构造抬升作用影响普遍缺失志留系特列奇阶中上部至下泥盆统(~438~ 393 Ma),直至中泥盆世再次大范围接受沉积.

目前,关于广西运动研究的重点和难点在于其构造动力学模式(王怿等,2021).同时,关于广西运动的构造作用范围是否涉及华南板块北缘(北大巴山地区)同样存在较大争议(Wang et al.,2007Chen et al.,2014;徐亚军和杜远生,2018),并成为制约相关构造动力学模式研究的瓶颈(Zhang et al.,2013).鉴于此,此次研究聚焦于华南板块北缘(陕西紫阳‒岚皋地区),综合生物地层学和岩石学特征,对广西运动在北大巴山地区的构造‒沉积响应进行讨论,进而为探讨广西运动的构造发生过程和动力学机制研究提供更多的思路和参考.

1 岩石地层单位简介及剖面概述

受广西运动引起的海退事件影响,华南地区志留系特列奇阶笔石相地层序列普遍存在不同程度的缺失(陈旭和戎嘉余,1996;Rong et al.,2003).陕西紫阳‒岚皋地区(北大巴山地区)在古地理上位于华南板块北缘,受构造活动影响相对较晚,区域内志留系埃隆阶(Aeronian)至特列奇阶(Telychian)笔石相地层序列发育较为完整,化石带相对连续,生物地层学研究工作开展得较为深入(邓宝,1979;傅力浦等,2006;Wang et al.,2017;王欣等,2018).此次研究工作所涉及剖面分别位于陕西紫阳紫黄地区、紫阳芭蕉口地区以及陕西岚皋明珠镇(小镇)地区(图1).

1.1 紫阳紫黄剖面

紫黄地区(剖面)位于紫阳县西南(图1),毗邻四川省万源县,大地构造位置位于华南板块北缘,地层分区隶属于扬子地层区米仓山地层小区.区域内埃迪卡拉系陡山沱组、灯影组,寒武系牛蹄塘组、石牌组、西王庙组、娄山关组,奥陶系大湾组、宝塔组、五峰组,志留系龙马溪组、崔家沟组等均有出露.紫黄地区的龙马溪组主要为一套富含有机质的黑色笔石页岩相地层序列,风化后常呈土黄色,沉积厚度通常在15~25 m,与下伏五峰组深黑色含笔石硅质页岩为整合接触,二者岩性十分接近,较难区分(马润华,1998).崔家沟组整合于龙马溪组之上,岩性以黄绿色粉砂岩、砂质页岩和粉砂质页岩为主.相较于龙马溪组,崔家沟组中的粉砂质、砂质含量明显增加,沉积厚度明显增大,在南郑福成地区崔家沟组厚度约为480 m,在南郑县西河地区该组厚度约为125 m,紫阳紫黄地区该组厚度约为305 m(马润华,1998).生物地层学研究资料显示,上述地区龙马溪组的顶界为志留系特列奇阶Spirograptus turriculatus笔石带,而崔家沟组则同样仅包括特列奇阶Spirograptus turriculatus笔石带(陈旭等,1990;马润华,1998).

研究剖面(紫黄剖面)位于紫黄地区赵里溪村附近(图1).在紫黄剖面,奥陶系五峰组主要为一套深黑色含笔石硅质页岩,出露厚度约为5 m;该剖面的龙马溪组下部层位风化严重,与下伏五峰组接触界线不甚清晰,化石采集相对困难;剖面龙马溪组中上部层位出露较好,笔石极为丰富且保存精美(图2图3c3f3g).生物地层学研究显示,该剖面龙马溪组中上部记录了相对完整的埃隆阶和特列奇阶下部笔石页岩相地层序列.其中,以化石分子Demirastrites triangulates的首现位置作为剖面起点(0 m处),同时其也作为埃隆阶的底界标志;阶内发育的化石带还包括:Lituigraptus convolutus笔石带(8.1~12.9 m;图3c),Stimulograptus sedgwickii笔石带(12.9~14.8 m)和Stimulograptus halli笔石带(14.8~16.3 m).该剖面16.3 m处和17.8 m处分别为特列奇阶带化石分子Spirograptus guerichiSpirograptus turriculatus的首现位置(图2图3f).综上所述,紫黄剖面龙马溪组中上部约19.3 m的地层厚度记录了埃隆阶Demirastrites triangulates笔石带至特列奇阶Spirograptus turriculatus笔石带共计6个笔石带,总体表现为相对缓慢的沉积过程,即经典的笔石页岩相地层序列.

紫黄剖面自19.3 m处砂岩、粉砂岩含量开始明显增加(图2),即崔家沟组的底界标志.在崔家沟组中获得的笔石化石包括:Stimulograptus halli(Barrande,1850)、Demirastrites raitzhainiensis(Eisel,1899)、Spirograptus turriculatus(Barrande,1850)、Spirograptus guerichi(Loydell,Storch & Melchin,1993)和Oktavites planus(Barrande,1850)等,均为特列奇阶Spirograptus turriculatus笔石带的代表性化石分子(图3d~3e).根据区域地质调查资料,紫黄地区崔家沟组的厚度大于300 m,其顶部与二叠系梁山组呈断层式接触(图1).目前,紫黄剖面崔家沟组下部出露较好,出露厚度约为65 m,根据获得的最高化石层位(距底界之上58 m处)仍为特列奇阶Spirograptus turriculatus笔石带,即仍与龙马溪组顶界化石带一致.由于风化作用,紫黄剖面崔家沟组65 m之上覆盖严重,化石采集困难.在紫黄地区,崔家沟组之上的古生界最低层位为泥盆系铁矿梁组,与崔家沟组的接触关系尚不明确,而区域上崔家沟组顶界则通常与寒武系呈断层式接触.

1.2 紫阳芭蕉口剖面

紫阳芭蕉口地区(剖面)在古地理上位于华南板块北缘斜坡带,古生代地层与典型的台地相地层沉积序列存在明显区别,其岩石地层组合具有明显的区域特色,发育的早古生代地层包括:寒武系鲁家坪组、箭竹坝组、毛坝关组,奥陶系高桥组、权河口组,奥陶系‒志留系斑鸠关组,以及志留系陡山沟组、伍峡河组(马润华,1998).斑鸠关组岩性以深黑色中薄层碳质、硅质板岩为主,偶见粉砂岩夹层,笔石化石丰富(图3a~3b),时代为奥陶纪末期到志留纪早期(傅力浦等,2006).在斑鸠关组与下伏奥陶系权河口组界线处,多以早古生代基性岩墙顺层侵入为特征,因此二者接触关系不明,标志是以斑鸠关组碳质、硅质板岩的出现作为该组的底界.陡山沟组整合于斑鸠关组之上,整合于伍峡河组或白崖垭组之下,岩性以灰‒灰黑色厚层砂岩、中薄层粉砂岩为主,夹少量灰黑色板岩.陡山沟组以厚层砂岩的出现作为底界标志,以厚层砂岩的消失作为顶界标志,该组灰黑色板岩中笔石化石丰富(图4a~4e),时代为志留纪兰多维列世(马润华,1998).值得注意的是,陡山沟组中普遍发育重荷模、槽模、包卷层理、平行层理、水平层理等典型鲍马序列,是典型的斜坡相浊流沉积(赵健,1987;孟庆任,1991).伍峡河组整合于陡山沟组砂岩或白崖垭组生物碎屑灰岩之上,顶界通常为断层切割,与上覆地层接触关系不明,岩性主要为灰白色中薄层粉砂质板岩、黑‒灰黑色薄层碳质板岩构成的不等厚互层,时代为志留纪兰多维列世至温洛克世(马润华,1998;傅力浦等,2006).

由于受广西运动的影响相对较晚,芭蕉口地区(芭蕉口剖面)发育了世界上较为完整且连续的志留系特列奇阶笔石相地层序列(Loydell,1993),具备极高的研究价值(Rong et al.,2019).傅力浦等(2006)依据当时的国际地层划分标准,将芭蕉口剖面特列奇阶共划分出9个笔石带、5个笔石亚带,为该地区生物地层学研究奠定了坚实的基础(图 2).生物地层学研究显示,斑鸠关组顶界层位为志留系特列奇阶Spirograptus guerichi笔石带(傅力浦等,2006),与紫黄地区龙马溪组顶界大致相当(图2).陡山沟组发育的化石带包括特列奇阶Spirograptus turriculatus笔石带至Cyrtograptus lapworthi笔石带,其底界与崔家沟组底界大致相当(图2).伍峡河组发育笔石带包括志留系兰多维列统特列奇阶Cyrtograptus lapworthi笔石带至温洛克统候默阶Cyrtograptus murchisoni笔石带(傅力浦等,2006;图2).

1.3 岚皋明珠镇地区(桥西剖面)

陡山沟组顶界具有穿时性,在岚皋部分地区该组上部相变为以生物碎屑灰岩为主的白崖垭组(图1).白崖垭组现被定义为整合于陡山沟组厚层砂岩之上,整合于伍峡河组深黑色碳质板岩之下的一套志留纪地层,地层中珊瑚、层孔虫和腕足类化石丰富,沉积厚度变化范围在25~315 m(马润华,1998).明珠镇桥西剖面的白崖垭组沉积厚度约为26 m(雒昆利,1992),与上覆伍峡河组界线清晰(图2).根据从上覆地层伍峡河组采获的笔石化石Oktavites contortus(Perner,1897)、Cyrtograptus lapworthi(Tullberg,1883)和Cyrtograptus sakmaricus(Koren,1968;图4f),同时综合白崖垭组中微体化石的最新研究进展(Chen et al.,2020),笔者推测白崖垭组的层位相当于特列奇阶Oktavites spiralis笔石带至Cyrtograptus lapworthi笔石带下部(图2),与前人的研究结论一致(雒昆利,1992).桥西剖面伍峡河组上部岩石发生强烈的劈理化,笔石化石较难采集,加之剖面覆盖严重,未见顶.根据前人研究,岚皋明珠镇地区伍峡河组最高层位可能达到温洛克统(马润华,1998;Tang et al.,2015).

2 广西运动在华南板块北缘的构造响应

关于广西运动在华南板块北缘(扬子地块北缘)是否存在构造响应尚存在不同认识(Wang et al.,2007;徐亚军和杜远生,2018),部分学者认为华南板块北缘可能具有相对独立的构造演化史,并未在广西运动的构造作用范围之内(徐亚军和杜远生,2018).本文综合生物地层学和岩相学证据认为(图2~图4),广西运动在华南板块北缘存在构造响应.在紫黄地区,广西运动的构造启动时限为志留系特列奇阶Spirograptus turriculatus笔石带所代表的时限,岩相变化表现为龙马溪组笔石页岩相地层向崔家沟组的砂质页岩‒粉砂岩‒砂岩的转变过程,而在此过程中崔家沟组包含的笔石带与龙马溪组顶界基本一致,反映出崔家沟组相对快速的沉积过程(图2).在芭蕉口地区,广西运动的构造启动时间同样为志留系特列奇阶Spirograptus turriculatus笔石带所代表的时限,岩相学变化则表现为斑鸠关组富含笔石的碳质板岩‒硅质板岩向陡山沟组厚层砂岩的转变过程,即陡山沟组的浊流沉积出现(图2).在紫阳芭蕉口剖面,陡山沟组最为经典的浊流沉积层位大致为特列奇阶Oktavites spiralis笔石带和Cyrtograptus lapworthi笔石带下部所涵盖的地层范围(图2),砂岩单层厚度通常在2 m以上,几乎不含细粒碎屑岩夹层(赵健,1987;孟庆任,1991;傅力浦等,2006).以Oktavites spiralis笔石带为例,在芭蕉口剖面该笔石带的沉积厚度甚至超过了 300 m,代表了构造抬升最为强烈的阶段之一(图2).

在紫阳芭蕉口剖面,志留系特列奇阶Cyrtograptus lapworthi笔石带上部至候默阶Cyrtograptus murchisoni笔石带,即伍峡河组层位,以陡山沟组厚层砂岩消失作为底界标志(图 2),可能代表了一个构造活动相对平缓期和短暂的海进过程.伍峡河组顶部通常为断层所截,因此该组厚度及其与上覆地层的接触关系均不明确(马润华,1998).紫阳地区伍峡河组之上的古生界最低层位为泥盆纪海相地层(未命名),主要分布于紫阳涣古滩地区,产早泥盆世笔石化石,但未见与伍峡河组的接触关系(傅力浦等,2006).在岚皋明珠镇地区,陡山沟组厚层砂岩(浊流沉积)的出现同样标志着广西运动在该地区的沉积响应.不同之处在于,明珠镇地区的陡山沟组上部相变为以生物碎屑灰岩相为主的白崖垭组,可能预示着强烈的抬升期和水体逐渐变浅的过程,层位大致为特列奇阶Oktavites spiralis笔石带和Cyrtograptus lapworthi笔石带下部,即对应紫阳芭蕉口地区陡山沟组的经典浊流沉积段(图2).白崖垭组生物碎屑灰岩结束并再次过渡为伍峡河组的笔石页岩相地层,时代大致为Cyrtograptus lapworthi笔石带上部所代表的时间范围,可与紫阳芭蕉口地区陡山沟组厚层砂岩的结束和伍峡河组的出现相对应,同样揭示了构造活动的相对平缓期和短暂的海侵过程(图2).

值得注意的是,北大巴山地区普遍发育一套NW-SE走向的超基性‒基性岩墙和岩脉,西起于陕西平利‒紫阳‒岚皋地区,向东可延至湖北境内,形成了造山带内一条绵延百里的岩墙群和岩脉(黄月华等,1992;黄月华,1993;张成立等,2002,2007;王存智等,2009;邹先武等,2011;王坤明等,2014).在紫阳、岚皋地区,该套侵入岩主要出露于红春坝‒岚皋大断裂以北的高滩、兵房街地层小区(滕人林和李育敬,1990),岩体规模不等,宽度范围为数米到数百米,长度范围从几公里到几十公里(图1).该套侵入岩的岩石组合主要包括辉绿岩、辉长辉绿岩、辉长岩、辉绿玢岩等(黄月华等,1992;张成立等,2007;王存智等,2009;向忠金等,2010;王坤明等,2014),岩体大多为顺层侵入于前泥盆纪地层,接触边界平整,少数岩体与地层呈“港湾式”接触.基于岩石学、矿物学及岩石地球化石特征,前人认为该套超基性‒基性侵入岩是加里东运动(广西运动)的产物(滕人林和李育敬,1990;黄月华等,1992),为揭示秦岭造山带主造山作用前的早古生代构造演化和动力学机制提供了珍贵的材料(张成立等,2007).在北大巴山地区,该套侵入岩锆石U-Pb年龄为(433±4)Ma(张成立等,2007),形成时代为志留纪兰多维列世(黄月华等,1992),时限大致可对应特列奇阶Oktavites spiralis笔石带和Cyrtograptus lapworthi笔石带所涵盖的时间范围,即广西运动在华南板块北缘的第一次构造高潮点(图2).

综上所述,研究表明广西运动在华南板块北缘存在构造响应,构造启动时间大致为特列奇早期,即相当于Spirograptus turriculatus笔石带所代表的时限(~435 Ma),与扬子上升第一幕时限基本一致(Rong et al.,2003Chen et al.,2014;王怿等,2021).这一时间接近于华南地区与广西运动相关的岩浆活动和变质作用峰值年龄(~435 Ma)(徐亚军和杜远生,2018),但略晚于广西运动在华南其他地区的构造启动时限(456~436 Ma),符合前人提出的由南向北,自东向西的构造推进模式(Chen et al.,2014).在华南板块北缘(图2),广西运动于特列奇阶Oktavites spiralis笔石带至Cyrtograptus lapworthi笔石带下部所涵盖的时间范围内第一次到达构造高潮点,期间伴随着经典浊流沉积以及大范围的侵入岩发育(~433 Ma);广西运动在特列奇阶Cyrtograptus lapworthi笔石带上部至申伍德阶Cyrtograptus murchisoni笔石带所涵盖的时间范围内构造活动相对减弱,并伴随着短暂的海侵过程,并于泥盆纪早期再次接受沉积(傅力浦等,2006).值得注意的是,在紫阳‒岚皋各地区均未见泥盆纪地层与下伏地层的接触关系,可能预示着在华南板块北缘发生了局部的陆内造山过程.

3 研究意义

目前,关于广西运动研究的重点和难点在于动力学机制和构造发生模式(Zhang et al.,2013;王怿等,2021).前人研究认为,广西运动的构造驱动力可能来自于东部的远古日本岛弧(Isozaki et al.,2010)、或是东南部的潜在地块(舒良树,2012)、或是南部的南海地块和澳大利亚块体(Shu et al.,2014)、或是西南部的北越地块(鞠天吟,1999),亦或是上述构造动力源共同作用下的结果(王怿等,2021).生物地层学和构造‒热事件记录显示,广西运动具有明显的方向性和阶段性,大体可以概括为自南向北、自东向西、分阶段发生的一系列构造事件(Chen et al.,2014).因此,广西运动的构造驱动力很可能来自于东南方向,或可能是以东南方向为主体的多重构造动力源(王怿等,2021).

同步于冈瓦纳大陆北缘的造山作用,发生于华南板块东南部(云开地块)的郁南运动相关变质年龄接近500 Ma,其构造发生模式被认为与广西运动可能具有一定的关联性和继承性(徐亚军和杜远生,2018);值得注意的是,在北秦岭地区同样发育着一期500 Ma的超高压变质事件(刘良等,2013),被认为是二郎坪弧后盆地洋壳深俯冲的变质作用记录.广西运动总体表现为自东南向西北、分阶段发生的一系列构造事件(图5),在华南地区最早的构造启动时间大致为奥陶纪桑比期(~456 Ma);在北秦岭构造带,伴随着二郎坪弧后盆地洋壳的俯冲消减,华北克拉通南缘在奥陶纪末期从被动大陆边缘快速转变为活动大陆边缘,其沉积学特征表现为水体迅速加深并伴有典型浊流沉积(周缘前陆盆地),而二郎坪弧后洋最终于奥陶纪凯迪期(~450 Ma)关闭(Sun et al.,2023).至奥陶纪末期至志留纪早期,位于华南板块和华北克拉通之间的商丹洋洋壳逐渐消减闭合(图5),秦岭构造带大量的同时期花岗质侵入岩反映了俯冲‒碰撞构造环境(Dong et al.,2011Dong and Santosh,2016),同时结合区域变质作用可以将商丹洋的消减时间限定在~450~430 Ma(Dong and Santosh,2016Dong et al.,2021),而这也可能为广西运动在华南板块北缘的启动和发生过程提供了重要的构造驱动力(~435 Ma).

因此,前人在讨论广西运动的构造发生模式时,提出其构造驱动力来自于华北与华南碰撞的远程效应,即原特提斯洋洋壳双向消减在华北克拉通南缘与华南板块北缘之间的结果(Wang et al.,2007).然而,也有不同观点认为华南板块北缘在早古生代处于被动大陆边缘,并不在广西运动构造作用涵盖的范围之内(徐亚军和杜远生,2018),加之缺乏相关的岛弧岩浆体系(Wu et al.,2009),因此“华北与华南碰撞的远程效应”这一模式在根本上缺乏构造驱动力.因此,关于广西运动是否涉及华南板块北缘,这不仅关系到此次构造活动作用范围,同时也是探索广西运动构造发生模式以及构造驱动力的关键所在(Zhang et al.,2013).综合此次研究成果,即广西运动在华南板块北缘存在构造‒沉积响应(图5).同样值得注意的是,近年来的岩石学证据表明,出露于北大巴山的志留纪侵入岩可能属于岛弧岩浆岩系列(王宗起等,2009;王坤明等,2014),而志留纪沉积岩的地球化学特征也指示同一构造环境(张英利等,2020).综上所述,广西运动的构造驱动力可能是多源和多方向的叠加效应(王怿等,2021),而华南与华北碰撞的远程效应也可能是广西运动重要的构造驱动力之一(Wang et al.,2007).

同样值得关注的是,包括秦岭造山带在内,沿特提斯构造域向西,东昆仑地区发育大量同时期的岩浆作用(Dong et al.,2018及其参考文献),而柴达木周缘同样发育~450~430 Ma的构造热事件(孟繁聪等,2005;Zhang et al.,2009;刘永江等,2012;查显锋等,2016)和变质作用记录(Song et al.,2018Zha et al.,2022).尽管相关研究在不同地区对这一期构造事件给予了不同的命名(如加里东运动、广西运动)和不同的理解(吴浩若,2000;Zhang et al.,2009;徐亚军和杜远生,2018;Dong et al.,2021, 2022),但上述大量的研究成果表明这一时期的构造活动可能具有更为广泛而深刻的影响,同时也为探索广西运动的构造动力学机制提供了更多的思路和参考.

4 结论

(1)综合生物地层学和岩石学证据认为,广西运动在华南板块北缘(北大巴山地区)存在构造影响,其启动时间大致为志留系特列奇阶Spirograptus turriculatus带所代表的时限(~435 Ma),与扬子上升第一幕的时限基本一致,同时接近于华南地区相关的岩浆活动和变质作用的峰值年龄.

(2)在华南板块北缘,广西运动在特列奇阶

Oktavites spiralis笔石带至Cyrtograptus lapworthi笔石带下部所涵盖的时间范围内首次到达构造活动高峰,具体表现为经典浊流沉积发育,同时还伴随着大规模的岩浆活动事件(~433 Ma);在志留系特列奇阶Cyrtograptus lapworthi笔石带上部至申伍德阶Cyrtograptus murchisoni笔石带所涵盖的时间范围内,广西运动在华南板块北缘的构造活动进入相对平缓期,并伴随着短暂的海侵过程;至泥盆纪早期,华南板块北缘再次接受大规模沉积.

(3)本研究为前人提出的广西运动构造发生模式提供了重要支撑,广西运动的构造学动力可能是多源和多方向的,而华南与华北碰撞的远程效应可能是广西运动重要的构造驱动力之一,即原特提斯洋洋壳双向消减于华北克拉通南缘与华南板块北缘之间的结果.

参考文献

[1]

Chen, X., Fan, J. X., Chen, Q., et al., 2014. Toward a Stepwise Kwangsian Orogeny. Science China Earth Sciences, 57(3): 379-387. https://doi.org/10.1007/s11430-013-4815-y

[2]

Chen, X., Rong, J. Y., 1996.Telychian Stage of Llandovery Series of Yangtze Region China. Science Press, Beijing (in Chinese).

[3]

Chen, X., Xu, J. T., Cheng, H. J., et al., 1990. On the Hannan Old Land and Dabashan Uplift. Journal of Stratigraphy, 14(2): 81-116 (in Chinese with English abstract).

[4]

Chen, X., Zhang, Y. D., Fan, J. X., et al., 2010. Ordovician Graptolite-Bearing Strata in Southern Jiangxi with a Special Reference to the Kwangsian Orogeny. Science China Earth Sciences, 53(11): 1602-1610. https://doi.org/10.1007/s11430-010-4117-6

[5]

Chen, X., Zhang, Y. D., Fan, J. X., et al., 2012. Onset of the Kwangsian Orogeny as Evidenced by Biofacies and Lithofacies. Science China Earth Sciences, 55(10): 1592-1600. https://doi.org/10.1007/s11430-012-4490-4

[6]

Chen, Z. Y., Männik, P., Wang, X., et al., 2020. First Documentation of Llandovery (Silurian) Conodont Genus Astropentagnathus in China (Langao, Shaanxi Province) and the Age of Baiyaya Formation. Palaeoworld, 29(4): 662-671. https://doi.org/10.1016/j.palwor.2019.11.002

[7]

Deng, B., 1979. On the Occurrence of Cyrtograptus (Graptolite) from Ziyang, Shaanxi. Acta Palaeontologica Sinica, 18(3): 308-311 (in Chinese with English abstract).

[8]

Dong, Y. P., He, D. F., Sun, S. S., et al., 2018. Subduction and Accretionary Tectonics of the East Kunlun Orogen, Western Segment of the Central China Orogenic System. Earth-Science Reviews, 186: 231-261. https://doi.org/10.1016/j.earscirev.2017.12.006

[9]

Dong, Y. P., Santosh, M., 2016. Tectonic Architecture and Multiple Orogeny of the Qinling Orogenic Belt, Central China. Gondwana Research, 29(1): 1-40. https://doi.org/10.1016/j.gr.2015.06.009

[10]

Dong, Y. P., Sun, S. S., Santosh, M., et al., 2021. Central China Orogenic Belt and Amalgamation of East Asian Continents. Gondwana Research, 100: 131-194. https://doi.org/10.1016/j.gr.2021.03.006

[11]

Dong, Y. P., Sun, S. S., Santosh, M., et al., 2022. Cross Orogenic Belts in Central China: Implications for the Tectonic and Paleogeographic Evolution of the East Asian Continental Collage. Gondwana Research, 109: 18-88. https://doi.org/10.1016/j.gr.2022.04.012

[12]

Dong, Y. P., Zhang, G. W., Neubauer, F., et al., 2011. Tectonic Evolution of the Qinling Orogen, China: Review and Synthesis. Journal of Asian Earth Sciences, 41(3): 213-237. https://doi.org/10.1016/j.jseaes.2011.03.002

[13]

Feng, S. J., Zhao, K. D., Ling, H. F., et al., 2014. Geochronology, Elemental and Nd-Hf Isotopic Geochemistry of Devonian A-Type Granites in Central Jiangxi, South China: Constraints on Petrogenesis and Post-Collisional Extension of the Wuyi-Yunkai Orogeny. Lithos, 206: 1-18. https://doi.org/10.1016/j.lithos.2014.07.007

[14]

Fu, L. P., Zhang Z. F., Geng L. Y., 2006. Silurian High Resolution Graptolite Biostratigraphy and Biotic Recovery in Ziyang, China. Geological Publishing House, Beijing (in Chinese with English abstract).

[15]

Huang, Y. H., 1993. Mineralogical Characteristics of Phlogopite-Amphibole-Pyroxenite Mantle Xenoliths Included in the Alkali Mafic-Ultramafic Subvolcanic Complex from Langao County, China. Acta Petrologica Sinica, 9(4): 367-378 (in Chinese with English abstract).

[16]

Huang, Y. H., Ren, Y. X., Xia, L. Q., et al., 1992. Early Palaeozoic Bimodal Igneous Suite on Northern Daba Mountains Gaotan Diabase and Haoping Trachyte as Examples. Acta Petrologica Sinica, 8(3): 243-256 (in Chinese with English abstract).

[17]

Isozaki, Y., Aoki, K., Nakama, T., et al., 2010. New Insight into a Subduction-Related Orogen: A Reappraisal of the Geotectonic Framework and Evolution of the Japanese Islands. Gondwana Research, 18(1): 82-105. https://doi.org/10.1016/j.gr.2010.02.015

[18]

Ju, T. Y., 1999. Discussion on Central Guizhou Uplift. Guizhou Geology, 16(2): 180-184 (in Chinese with English abstract).

[19]

Liu, L., Cao, Y. T., Chen, D. L., et al., 2013. New Progress in Research on High-Pressure and Ultrahigh- Pressure Metamorphism in South Altun and North Qinling. Chinese Science Bulletin, 58(22): 2113-2123 (in Chinese with English abstract).

[20]

Liu, Y. J., Neubauer, F., Li, W. M., et al., 2012.Tectonic-Thermal Events of the Northern Qaidam Margin- Southern Qilian Area, Western China. Journal of Jilin University: Earth Science Edition, 42(5): 1317-1329 (in Chinese with English abstract).

[21]

Loydell, D. K., 1993. Worldwide Correlation of Telychian (Upper Llandovery) Strata Using Graptolites. Geological Society, London, Special Publications, 70(1): 323-340. https://doi.org/10.1144/gsl.sp.1993.070.01.21

[22]

Luo, K. L., 1992. New Views on the Wuxiahe, Bajaiya and Anpingliang Formations. Journal of Stratigraphy, 16(4): 316-319 (in Chinese with English abstract).

[23]

Ma, R. H., 1998. Multiple Classification and Correlation of the Stratigraphy of China (61): Stratigraphy (Lithostratic) of Shaanxi Province. China University of Geosciences Press, Wuhan (in Chinese with English abstract).

[24]

Meng, F. C., Zhang, J. X., Yang, J. S., 2005. Tectono–Thermal Event of Post–HP/UHP Metamorphism in the Xitieshan Area of the North Qaidam Mountains, Western China: Isotopic and Geochemical Evidence of Granite and Gneiss. Acta Petrologica Sinica, 21(1): 45-56 (in Chinese with English abstract).

[25]

Meng, Q. R., 1991. Study on Silurian Turbidite System in Bajiaokou Area, Shaanxi. Acta Sedimentologica Sinica, 9(1): 35-43 (in Chinese with English abstract).

[26]

Rong, J. Y., Chen, X., Su, Y. Z., et al., 2003. Silurian Paleogeography of China, Silurian Lands and Seas Paleogeography Outside of Laurentia. New York State Museum Bulletin, 493: 243-298.

[27]

Rong, J. Y., Wang, Y., Zhan, R. B., et al., 2019. Silurian Integrative Stratigraphy and Timescale of China. Science China Earth Sciences, 62(1): 89-111. https://doi.org/10.1007/s11430-017-9258-0

[28]

Shu, L. S., 2012. An Analysis of Principal Features of Tectonic Evolution in South China Block. Geological Bulletin of China, 31(7): 1035-1053 (in Chinese with English abstract).

[29]

Shu, L. S., Jahn, B. M., Charvet, J., et al., 2014. Early Paleozoic Depositional Environment and Intraplate Tectono-Magmatism in the Cathaysia Block (South China): Evidence from Stratigraphic, Structural, Geochemical and Geochronological Investigations. American Journal of Science, 314(1): 154-186. https://doi.org/10.2475/01.2014.05

[30]

Song, S. G., Bi, H. Z., Qi, S. S., et al., 2018. HP–UHP Metamorphic Belt in the East Kunlun Orogen: Final Closure of the Proto-Tethys Ocean and Formation of the Pan-North-China Continent. Journal of Petrology, 59(11): 2043-2060. https://doi.org/10.1093/petrology/egy089

[31]

Sun, J. P., Dong, Y. P., Chen, Q., et al., 2023. Ordovician Tectonic Transition from Passive Margin into Peripheral Foreland in the Southern Ordos: A Diagnostic Insight into the Closure of Erlangping Ocean between the North Qinling Arc and North China Block. Basin Research, 35(1): 336-362. https://doi.org/10.1111/bre.12714

[32]

Tang, P., Wang, J., Wang, C. Y., et al., 2015. Microfossils across the Llandovery–Wenlock Boundary in Ziyang–Langao Region, Shaanxi, NW China. Palaeoworld, 24(1-2): 221-230. https://doi.org/10.1016/j.palwor.2015.03.001

[33]

Teng, R. L., Li, Y. J., 1990. On the Lithochemical Features and the Diagenetic Environment of the Caledonian Magmatic Rocks in the Northern Dabashan, Shaanxi Province. Geology of Shaanxi, 8(1): 37-52 (in Chinese with English abstract).

[34]

Ting,V. K., 1929. The Orogenic Movement in China. Bulletin of the Geological Society of China, 8(1): 151-170. https://doi.org/10.1111/j.1755-6724.1929.mp8002007.x

[35]

Wang, C. Z., Yang, K. G., Xu, Y., et al., 2009. Geochemistry and LA-ICP-MS Zircon U-Pb Age of Basic Dike Swarms in North Daba Mountains and Its Tectonic Significance. Geological Science and Technology Information, 28(3): 19-26 (in Chinese with English abstract).

[36]

Wang, K. M., Wang, Z. Q., Zhang, Y. L., et al., 2014. Mineral Chemistry Characteristics and Indication Significance of Clinopyroxene in Mafic Rock of Gaoqiao Area, North Daba Mountains. Acta Petrologica et Mineralogica, 33(3): 527-539 (in Chinese with English abstract).

[37]

Wang, X., Wang, J., Zhang, J., 2017. First Appearance Datum of the Silurian graptoliteOktavites Spiralis, and Its Evolution on the Northern Margin of South China. Alcheringa: An Australasian Journal of Palaeontology, 41(1): 30-45. https://doi.org/10.1080/03115518.2016.1177290

[38]

Wang, X., Wang, J., Zhang, J., 2018. A New Silurian Graptolite Species of Oktavites from Northwestern Margin of Yangtze Platform, and Its Stratigraphic Significance. Earth Science, 43(12): 4399-4410 (in Chinese with English abstract).

[39]

Wang, Y., Rong, J. Y., Tang, P., et al., 2021. Characteristics of Major Hiatus in Middle Paleozoic Rocks of South China and Their Significance of Geotectonics. Science in China (Series D), 51(2): 218-240 (in Chinese).

[40]

Wang, Y. J., Fan, W. M., Zhao, G. C., et al., 2007. Zircon U–Pb Geochronology of Gneissic Rocks in the Yunkai Massif and Its Implications on the Caledonian Event in the South China Block. Gondwana Research, 12(4): 404-416. https://doi.org/10.1016/j.gr.2006.10.003

[41]

Wang, Y. J., Wu, C. M., Zhang, A. M., et al., 2012. Kwangsian and Indosinian Reworking of the Eastern South China Block: Constraints on Zircon U-Pb Geochronology and Metamorphism of Amphibolites and Granulites. Lithos, 150: 227-242. https://doi.org/10.1016/j.lithos.2012.04.022

[42]

Wang, Y. J., Zhang, A. M., Fan, W. M., et al., 2013. Origin of Paleosubduction-Modified Mantle for Silurian Gabbro in the Cathaysia Block: Geochronological and Geochemical Evidence. Lithos, 160: 37-54. https://doi.org/10.1016/j.lithos.2012.11.004

[43]

Wang, Z. Q., Yan, Q. R., Yan, Z., et al., 2009. New Division of the Main Tectonic Units of the Qinling Orogenic Belt, Central China. Acta Geologica Sinica, 83(11): 1527-1546 (in Chinese with English abstract).

[44]

Wu, H. R., 2000. A Discussion on the Tectonic Palaeogeography Related to the Caledonian Movement in Guangxi. Journal of Palaeogeography, 2(1): 70-76 (in Chinese with English abstract).

[45]

Wu, Y. B., Hanchar, J. M., Gao, S., et al., 2009. Age and Nature of Eclogites in the Huwan Shear Zone, and the Multi-Stage Evolution of the Qinling-Dabie-Sulu Orogen, Central China. Earth and Planetary Science Letters, 277(3-4): 345-354. https://doi.org/10.1016/j.epsl.2008.10.031

[46]

Xiang, Z. J., Yan, Q. R., Yan, Z., et al., 2010. Facies Succession and Architecture of Volcaniclastic Rocks of the Taohekou Formation: Implication for Early Silurian Volcanism in the North Dabashan Area, China. Acta Geologica Sinica, 84(3): 311-328 (in Chinese with English abstract).

[47]

Xu, Y. J., Du, Y. S., 2018. From Periphery Collision to Intraplate Orogeny: Early Paleozoic Orogenesis in Southeastern Part of South China. Earth Science, 43(2): 333-353 (in Chinese with English abstract).

[48]

Yao, W. H., Li, Z. X., Li, W. X., et al., 2012. Post- Kinematic Lithospheric Delamination of the Wuyi–Yunkai Orogen in South China: Evidence from Ca. 435 Ma High-Mg Basalts. Lithos, 154: 115-129. https://doi.org/10.1016/j.lithos.2012.06.033

[49]

Zha, X. F., Dong, Y. P., He, D. F., et al., 2022. Early Palaeozoic Arc-Continent Collision in East Kunlun, Northern Tibet: Evidence from Minerology, Geochemistry, and Geochronology of the Adatan Garnet Amphibolites. International Geology Review, 65(3): 357-377 https://doi.org/10.1080/00206814.2022. 2045641

[50]

Zha, X. F., Gu, P. Y., Dong, Z. C., et al., 2016. Geological Record of Tectono-Thermal Event at Early Paleozoic and Its Tectonic Setting in West Segment of the North Qaidam. Earth Science, 41(4): 586-604 (in Chinese with English abstract).

[51]

Zhang, C. L., Gao, S., Yuan, H. L., et al., 2007. Early Paleozoic Mantle Properties in South Qinling: Sr-Nd-Pb Isotopic Evidence from Ultramafic Dikes and Volcanic Rocks. Science in China (Series D), 37(7): 857-865 (in Chinese).

[52]

Zhang, C. L., Santosh, M., Zhu, Q. B., et al., 2015. The Gondwana Connection of South China: Evidence from Monazite and Zircon Geochronology in the Cathaysia Block. Gondwana Research, 28(3): 1137-1151. https://doi.org/10.1016/j.gr.2014.09.007

[53]

Zhang, C.L., Gao, S., Zhang, G.W., et al., 2002. Geochemistry of Early Paleozoic Alkaline Dykes in South Qinling and Its Geological Significance. Science in China (Series D), 32(10): 819-829 (in Chinese).

[54]

Zhang, G. W., Guo, A. L., Wang, Y. J., et al., 2013. Tectonics of South China Continent and Its Implications. Science China Earth Sciences, 56(11): 1804-1828. https://doi.org/10.1007/s11430-013-4679-1

[55]

Zhang, J. X., Mattinson, C. G., Meng, F. C., et al., 2009. U-Pb Geochronology of Paragneisses and Metabasite in the Xitieshan Area, North Qaidam Mountains, Western China: Constraints on the Exhumation of HP/UHP Metamorphic Rocks. Journal of Asian Earth Sciences, 35(3): 245-258. https://doi.org/10.1016/j.jseaes.2008.08.008

[56]

Zhang, Y. L., Wang, Z. Q., Wang, K. M., et al., 2020. Sandstone Geochemical Constraints on the Provenance and Tectonic Setting of the Banjiuguan Formation in the North Daba Mountain. Acta Geologica Sinica, 94(4): 1192-1207 (in Chinese with English abstract).

[57]

Zhao, J., 1987. The Discovery and Preliminary Study of the Turbidite Deposit in the Silurian Beds from Bajiaokou Shaanxi. Geology of Shaanxi, 5(2): 13-21 (in Chinese with English abstract).

[58]

Zhong, Y. F., Ma, C. Q., Liu, L., et al., 2014. Ordovician Appinites in the Wugongshan Domain of the Cathaysia Block, South China: Geochronological and Geochemical Evidence for Intrusion into a Local Extensional Zone within an Intracontinental Regime. Lithos, 198: 202-216. https://doi.org/10.1016/j.lithos.2014.04.002

[59]

Zou, X. W., Duan, Q. F., Tang, C. Y., et al., 2011. SHRIMP Zircon U-Pb Dating and Lithogeochemical Characteristics of Diabase from Zhenping Area in North Daba Mountain. Geology in China, 38(2): 282-291 (in Chinese with English abstract).

基金资助

中国地质调查局项目(DD20243411;DD20240029;DD20230553;DD20230005;DD20230215)

中国科学院南京地质古生物研究所现代古生物学和地层学国家重点实验室开放课题基金项目(213121)

陕西省自然科学基础研究计划面上项目(2022JM-149;2023-JC-ZD-15;2022JC-DW5-01;2023-JC-YB-268)

国家自然科学基金项目(42242201;40872004;41302006)

AI Summary AI Mindmap
PDF (2569KB)

200

访问

0

被引

详细

导航
相关文章

AI思维导图

/