华南埃迪卡拉纪晚期深水相氮循环过程重建
Reconstruction of Deep-Water Nitrogen Cycle during the Late Ediacaran in South China
,
重建地质历史时期的古海洋氮循环过程有助于了解当时的海洋氧化还原状态,而目前埃迪卡拉纪晚期的海洋氮循环研究程度较低,因此对桂北泗里口和黔东南上地坪剖面开展了详细的全岩氮(δ15N)和有机碳同位素(δ13Corg)研究.结果显示,泗里口和上地坪剖面的δ15N平均值分别为(1.6±2.0)‰和(3.5±1.1)‰,总体上均表现为由老到新逐渐降低,两个剖面的δ13Corg平均值分别为(-30.0±1.4)‰和(-30.6±1.4)‰.较高的δ15N值表明该时期为硝化‒反硝化作用相耦合的好氧氮循环,海洋中存在一个稳定的硝酸盐库.研究剖面δ15N值由老到新均表现为逐渐降低,可解释为底层缺氧水体的扩张,反硝化作用和厌氧氨氧化作用消耗了表层水体中大量的NO3 ‒,刺激了固氮作用.因此,埃迪卡拉纪末期深部缺氧水体的扩张可能加剧了~542 Ma埃迪卡拉生物群的灭绝.
氮同位素 / 埃迪卡拉纪晚期 / 深水相 / 华南 / 地球化学 / 地层学.
nitrogen isotope / Late Ediacaran / deep water facies / South China / geochemistry / stratigraphy
| [1] |
Ader, M., Thomazo, C., Sansjofre, P., et al., 2016. Interpretation of the Nitrogen Isotopic Composition of Precambrian Sedimentary Rocks: Assumptions and Perspectives. Chemical Geology, 429: 93-110. https://doi.org/10.1016/j.chemgeo.2016.02.010 |
| [2] |
Algeo, T. J., Meyers, P. A., Robinson, R. S., et al., 2014. Icehouse-Greenhouse Variations in Marine Denitrification. Biogeosciences, 11(4): 1273-1295. https://doi.org/10.5194/bg-11-1273-2014 |
| [3] |
Bhattacharya, S., Dutta, S., 2015. Neoproterozoic-Early Cambrian Biota and Ancient Niche: A Synthesis from Molecular Markers and Palynomorphs from Bikaner-Nagaur Basin, Western India. Precambrian Research, 266: 361-374. https://doi.org/10.1016/j.precamres.2015.05.029 |
| [4] |
Brocks, J. J., Jarrett, A. J. M., Sirantoine, E., et al., 2017. The Rise of Algae in Cryogenian Oceans and the Emergence of Animals. Nature, 548(7669): 578-581. https://doi.org/10.1038/nature23457 |
| [5] |
Canfield, D. E., Poulton, S. W., Knoll, A. H., et al., 2008. Ferruginous Conditions Dominated Later Neoproterozoic Deep-Water Chemistry. Science, 321(5891): 949-952. https://doi.org/10.1126/science.1154499 |
| [6] |
Chang, H. J., Chu, X. L., Feng, L. J., et al., 2010a. The Major and REE Geochemistry of the Silikou Chert in Northern Guangxi Province. Acta Sedimentologica Sinica, 28(6): 1098-1107 (in Chinese with English abstract). |
| [7] |
Chang, H. J., Chu, X. L., Feng, L. J., et al., 2012. Progressive Oxidation of Anoxic and Ferruginous Deep- Water during Deposition of the Terminal Ediacaran Laobao Formation in South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 321-322: 80-87. https://doi.org/10.1016/j.palaeo.2012.01.019 |
| [8] |
Chang, H. J., Chu, X., Feng, L. J., et al., 2010b. Iron Speciation in Cherts from the Laobao Formation, South China: Implications for Anoxic and Ferruginous Deep-Water Conditions. Chinese Science Bulletin, 55(20): 2010-2017 (in Chinese). |
| [9] |
Charvet, J., 2013. The Neoproterozoic-Early Paleozoic Tectonic Evolution of the South China Block: An Overview. Journal of Asian Earth Sciences, 74: 198-209. https://doi.org/10.1016/j.jseaes.2013.02.015 |
| [10] |
Chen, Y., Diamond, C. W., Stüeken, E. E., et al., 2019. Coupled Evolution of Nitrogen Cycling and Redoxcline Dynamics on the Yangtze Block across the Ediacaran-Cambrian Transition. Geochimica et Cosmochimica Acta, 257: 243-265. https://doi.org/10.1016/j.gca.2019.05.017 |
| [11] |
Cremonese, L., Shields-Zhou, G., Struck, U., et al., 2013. Marine Biogeochemical Cycling during the Early Cambrian Constrained by a Nitrogen and Organic Carbon Isotope Study of the Xiaotan Section, South China. Precambrian Research, 225: 148-165. https://doi.org/10.1016/j.precamres.2011.12.004 |
| [12] |
Dong, L., Shen, B., Lee, C. A., et al., 2015. Germanium/Silicon of the Ediacaran-Cambrian Laobao Cherts: Implications for the Bedded Chert Formation and Paleoenvironment Interpretations. Geochemistry, Geophysics, Geosystems, 16(3): 751-763. https://doi.org/10.1002/2014gc005595 |
| [13] |
Du, Y., Song, H. Y., Grasby, S. E., et al., 2023. Recovery from Persistent Nutrient-N Limitation Following the Permian-Triassic Mass Extinction. Earth and Planetary Science Letters, 602: 117944. https://doi.org/10.1016/j.epsl.2022.117944 |
| [14] |
Fu, Y., Wang, F. L., Guo, C., et al., 2022. Re-Os Geochronology of the Liuchapo Formation across the Ediacaran-Cambrian Boundary of the Yangtze Block (South China). Journal of Earth Science, 33(1): 25-35. https://doi.org/10.1007/s12583-021-1473-4 |
| [15] |
Gao, P., Li, S. J., Lash, G. G., et al., 2020. Silicification and Si Cycling in a Silica-Rich Ocean during the Ediacaran-Cambrian Transition. Chemical Geology, 552: 119787. https://doi.org/10.1016/j.chemgeo.2020.119787 |
| [16] |
Grotzinger, J. P., Fike, D. A., Fischer, W. W., 2011. Enigmatic Origin of the Largest-Known Carbon Isotope Excursion in Earth’s History. Nature Geoscience, 4(5): 285-292. https://doi.org/10.1038/ngeo1138 |
| [17] |
Guo, Q. J., Shields, G. A., Liu, C. Q., et al., 2007. Trace Element Chemostratigraphy of Two Ediacaran- Cambrian Successions in South China: Implications for Organosedimentary Metal Enrichment and Silicification in the Early Cambrian. Palaeogeography, Palaeoclimatology, Palaeoecology, 254(1-2): 194-216. https://doi.org/10.1016/j.palaeo.2007.03.016 |
| [18] |
Hu, J., 2008. The Cherty Microbolite in the Deeper Water Facies during the Precambrian-Cambrian Transitional Period in Northeast Guangxi Province, China. Acta Micropalaeontologica Sinica, 25(3): 291-305 (in Chinese with English abstract). |
| [19] |
Jiang, G. Q., Shi, X. Y., Zhang, S. H., et al., 2011. Stratigraphy and Paleogeography of the Ediacaran Doushantuo Formation (Ca. 635-551 Ma) in South China. Gondwana Research, 19(4): 831-849. https://doi.org/10.1016/j.gr.2011.01.006 |
| [20] |
Li, C., Love, G. D., Lyons, T. W., et al., 2010. A Stratified Redox Model for the Ediacaran Ocean. Science, 328(5974): 80-83. https://doi.org/10.1126/science.1182369 |
| [21] |
Mingram, B., Hoth, P., Lüders, V., et al., 2005. The Significance of Fixed Ammonium in Palaeozoic Sediments for the Generation of Nitrogen-Rich Natural Gases in the North German Basin. International Journal of Earth Sciences, 94(5): 1010-1022. https://doi.org/10.1007/s00531-005-0015-0 |
| [22] |
Narbonne, G. M., 2005. The Ediacara Biota: Neoproterozoic Origin of Animals and Their Ecosystems. Annual Review of Earth and Planetary Sciences, 33(1): 421-442. https://doi.org/10.1146/annurev.earth.33.092203.122519 |
| [23] |
Och, L. M., Shields-Zhou, G. A., 2012. The Neoproterozoic Oxygenation Event: Environmental Perturbations and Biogeochemical Cycling. Earth-Science Reviews, 110(1-4): 26-57. https://doi.org/10.1016/j.earscirev.2011.09.004 |
| [24] |
Sigman, D. M., Casciotti, K. L., 2009. Nitrogen Isotopes in the Ocean. In: Steele, J. H., ed., Encyclopedia of Ocean Sciences. Elsevier/Academic Press, London, 1884-1894. https://doi.org/10.1006/rwos.2001.0172 |
| [25] |
Song, H. Y., An, Z. H., Ye, Q., et al., 2023. Mid- Latitudinal Habitable Environment for Marine Eukaryotes during the Waning Stage of the Marinoan Snowball Glaciation. Nature Communications, 14(1): 1564. https://doi.org/10.1038/s41467-023-37172-x |
| [26] |
Sperling, E. A., Wolock, C. J., Morgan, A. S., et al., 2015. Statistical Analysis of Iron Geochemical Data Suggests Limited Late Proterozoic Oxygenation. Nature, 523(7561): 451-454. https://doi.org/10.1038/nature14589 |
| [27] |
Stüeken, E. E., Kipp, M. A., Koehler, M. C., et al., 2016. The Evolution of Earth’s Biogeochemical Nitrogen Cycle. Earth-Science Reviews, 160: 220-239. https://doi.org/10.1016/j.earscirev.2016.07.007 |
| [28] |
Tian, L., Song, H. Y., Ye, Q., et al., 2020. Recurrent Anoxia Recorded in Shallow Marine Facies at Zhangcunping (Western Hubei, China) Throughout the Ediacaran to Earliest Cambrian. Precambrian Research, 340: 105617. https://doi.org/10.1016/j.precamres.2020.105617 |
| [29] |
Tribovillard, N., Algeo, T. J., Lyons, T., et al., 2006. Trace Metals as Paleoredox and Paleoproductivity Proxies: An Update. Chemical Geology, 232(1-2): 12-32. https://doi.org/10.1016/j.chemgeo.2006.02.012 |
| [30] |
Wang, D., Ling, H. F., Struck, U., et al., 2018a. Coupling of Ocean Redox and Animal Evolution during the Ediacaran-Cambrian Transition. Nature Communications, 9: 2575. https://doi.org/10.1038/s41467-018-04980-5 |
| [31] |
Wang, D., Struck, U., Ling, H. F., et al., 2015. Marine Redox Variations and Nitrogen Cycle of the Early Cambrian Southern Margin of the Yangtze Platform, South China: Evidence from Nitrogen and Organic Carbon Isotopes. Precambrian Research, 267: 209-226. https://doi.org/10.1016/j.precamres.2015.06.009 |
| [32] |
Wang, J. G., Chen, D. Z., Yan, D. T., et al., 2012. Evolution from an Anoxic to Oxic Deep Ocean during the Ediacaran-Cambrian Transition and Implications for Bioradiation. Chemical Geology, 306-307: 129-138. https://doi.org/10.1016/j.chemgeo.2012.03.005 |
| [33] |
Wang, J., Li, Z. X., 2003. History of Neoproterozoic Rift Basins in South China: Implications for Rodinia Break-up. Precambrian Research, 122(1-4): 141-158. https://doi.org/10.1016/s0301-9268(02)00209-7 |
| [34] |
Wang, X. Q., Jiang, G. Q., Shi, X. Y., et al., 2018b. Nitrogen Isotope Constraints on the Early Ediacaran Ocean Redox Structure. Geochimica et Cosmochimica Acta, 240: 220-235. https://doi.org/10.1016/j.gca.2018.08.034 |
| [35] |
Wang, X. Q., Shi, X. Y., Jiang, G. Q., et al., 2014. Organic Carbon Isotope Gradient and Ocean Stratification across the Late Ediacaran-Early Cambrian Yangtze Platform. Science in China (Series D), 44(6): 1142-1160 (in Chinese). |
| [36] |
Xue, J. Z., Wang, J. S., Li, B. X., et al., 2022. Origin and Early Evolution of Land Plants and the Effects on Earth’s Environments. Earth Science, 47(10): 3648-3664 (in Chinese with English abstract). |
| [37] |
Zhang, F. F., Xiao, S. H., Kendall, B., et al., 2018. Extensive Marine Anoxia during the Terminal Ediacaran Period. Science Advances, 4(6): eaan8983. https://doi.org/10.1126/sciadv.aan8983 |
| [38] |
Zhou, M. Z., Luo, T. Y., Liu, S. R., et al., 2013. SHRIMP Zircon Age for a K-Bentonite in the Top of the Laobao Formation at the Pingyin Section, Guizhou, South China. Science in China (Series D), 43(7): 1195-1206 (in Chinese). |
| [39] |
Zhu, M. Y., 2010. The Origin and Cambrian Explosion of Animals: Fossil Evidences from China. Acta Palaeontologica Sinica, 49(3): 269-287 (in Chinese with English abstract). |
| [40] |
Zhu, Y. Y., Sun, T. Y., Xing, T., et al., 2022. Reconstruction of Atmospheric Nitrogen Deposition and Nitrogen Source in Wuhan by the Nitrogen Contents and Isotopic Composition of Camphor Leaves. Earth Science, 47(3): 1136-1142 (in Chinese with English abstract). |
国家重点研发计划项目(2021YFA0718100)
/
| 〈 |
|
〉 |