黄河形成于何时?

林旭 ,  刘静 ,  刘海金 ,  尚敏

地球科学 ›› 2024, Vol. 49 ›› Issue (06) : 2158 -2185.

PDF (15350KB)
地球科学 ›› 2024, Vol. 49 ›› Issue (06) : 2158 -2185. DOI: 10.3799/dqkx.2023.124

黄河形成于何时?

作者信息 +

When was the Yellow River Formed?

Author information +
文章历史 +
PDF (15717K)

摘要

河流是塑造地表地貌的重要地质营力之一.认识大河的发育历史有助于提高人类对大河利用的效率和生态保护,从而更好地促进人类社会的发展.黄河是中华民族的母亲河,百余年来国内外研究者对其开展了广泛的研究,但对黄河何时形成及其具体的演化过程等问题至今都没有清晰的答案.鉴于此,本文在前期已经取得的研究结果基础上,广泛搜集和整理国内外研究者已发表的资料,重建黄河在新生代的演化过程,结果表明:青藏高原东北段古近纪发育沿着高原边界纵向流动的原黄河;中新世祁连山东段发育相互平行的河流汇入沉积中心陇西盆地,在晋陕峡谷北部和南部出现流向不同的大型河流,渤海湾盆地和南黄海盆地此时还未出现黄河物质,黄河在中新世进入分段演化阶段;上新世黄河已经连通西宁盆地、兰州盆地、银川盆地和河套盆地,而贵德盆地和共和盆地依然存在内流水系,此时黄河上游还未深入青藏高原东北段更深的腹地.晋陕峡谷南北异向的黄河格局依然存在.三门峡盆地仍然被大型古湖占据,黄河物质未出现在渤海湾盆地和南黄海盆地.上新世是黄河完成最后连通的重要转折阶段;早更新世黄河完成上游、中游和下游的连通,类似现今串联青藏高原、黄土高原和华北平原,东流入海的黄河此时形成.在晚更新世,受气候变化的影响,黄河各段进入新一期演化过程,局部河道再次被古湖占据,在降水丰沛期完成各河道的再次连通.构造和气候的共同作用对黄河的发育具有重要影响.河流水系腹地高大地形的维持是水系发展的前提条件之一.尤其是中新世和上新世祁连山东段的隆升,塑造了黄河在青藏高原的河流基本形态.鄂尔多斯高原周围的贺兰山、阴山和秦岭的隆升,造就了银川、河套和渭河这些深大地堑,在气候干旱期成为限制黄河全线贯通的重要因素.第四纪是东亚气候变化频繁的时期,黄河的最终贯通与气候变化过程密切相关.反过来讲,对黄河的形成与演化过程的研究,可以有效揭示我国北方新生代的构造演化、气候变化过程.

关键词

黄河 / 构造活动 / 气候变化 / 物源示踪 / 阶地 / 古近纪 / 中新世 / 上新世 / 更新世 / 第四纪地质 / 环境地质.

Key words

Yellow River / tectonic activity / climate change / provenance tracing / river terrace / Paleogene / Miocene / Pliocene / Pleistocene / quaternary geology / environmental geology

引用本文

引用格式 ▾
林旭,刘静,刘海金,尚敏. 黄河形成于何时?[J]. 地球科学, 2024, 49(06): 2158-2185 DOI:10.3799/dqkx.2023.124

登录浏览全文

4963

注册一个新账户 忘记密码

0 引言

河流流域约占陆地面积的69%,是地表地貌塑造的重要地质营力之一(Grimaud et al., 2014).长度长于 2 500 km的河流被定义为大型河流(Potter, 1978Miall, 2006Tandon and Sinha, 2022),例如非洲的尼罗河(6 670 km)、南美洲的亚马孙河(6 400 km)、亚洲的长江(6 300 km)和黄河(5 464 km)、北美洲的密西西比河(6 020 km)都被算作世界级大河(图1).大河对于全球文明、经济发展起到至关重要的作用.因而,认识大河的发育历史有助于在人地相关论的框架下,提高人类对大河利用的效率和生态保护,从而更好地促进人类社会的发展.

印度板块在新生代持续向亚洲大陆南缘俯冲,造就了地势高耸的青藏高原;亚洲东部的岩石圈受西太平洋板块俯冲的影响持续拉张减薄,在陆上发育断陷盆地,在海上出现边缘海扩张,我国西高东低的宏观地貌特征逐渐形成(Wang, 2004).进入新近纪受青藏高原整体隆升的影响,亚洲季风进入增强发展阶段,强烈影响区域内的地质演化过程(Guo et al., 2008).在这一构造和气候背景下,串联青藏高原和亚洲东部断陷盆地、边缘海的黄河(5 464 km)逐渐发育(林旭等,2023).约束黄河的水系演化过程和形成时代成为黄河演化研究的重要内容,这综合反映了黄河流域内的构造运动以及环境变迁.自Pumpelly(1867)首次提出古黄河从河套盆地流向永定河,最终流入渤海的研究成果以来,黄河的演化研究已持续了150多年.然而,时至今日学者们对黄河的贯通时限、具体的演化过程等认识依然未达成共识,并且随着研究程度的加深,由于研究者采用的方法逐渐增多,这一分歧不仅没有减少,反而呈现越来越大的趋势,这主要表现在以下几个方面:(1)黄河上游存在“古黄河和新黄河”之争(Lin et al., 2001Craddock et al., 2010);(2)晋陕峡谷段黄河在中新世的流向存在争议(潘保田等2012;林旭等, 2022a;Liu et al., 2022a);(3)黄河中游存在“中新世内流黄河和中新世外流黄河”之争(Deng et al., 2017Fu et al., 2021;林旭等, 2022b);(4)黄河下游的形成时代不统一(Yao et al., 2017Liu et al., 2020Shen et al., 2022Yang et al., 2022).

因此,基于上述争议问题,本文在广泛搜集国内外已经发表和我们已经取得的黄河形成时代研究结果的基础上,从介绍黄河形成的构造和气候背景入手,对大河研究常用的物源示踪和河流阶地的方法进行介绍,利用盆山耦合的研究思路,详细呈现新生代黄河的演化过程,进而深入理解青藏高原隆升、亚洲季风发育和黄河演化的耦合关系.

1 研究背景

1.1 黄河形成的构造背景

现代大型河流的源头大多位于大型造山带,流经面积广阔的克拉通区(Tandon and Sinha, 2022).构造碰撞是形成造山带的重要机制之一.地球上一旦发生大规模的洋-陆、陆-陆碰撞,构造隆起过程可能产生大型河流(Brookfield, 1998;刘静等, 2018),而长期剥蚀过程会扩大河谷,促进河流不断壮大.黄河的起源与印度板块和亚洲板块的陆-陆碰撞引起的大规模构造变形有关(图1),其壮大过程得益于流动在面积广阔的华北克拉通上.

1.2 黄河形成的气候背景

在构造因素具备的前提下,气候因素对维系流动的大河至关重要(Grimaud et al., 2014).影响大河稳定流动的2个最重要的气候因素包括降水和温度(Lutgens et al., 2013),它们通过控制大河流域内的植被覆盖影响侵蚀过程,从而干扰大河的发展.充足的降水或降雪落在河流源区,河流有足够的力量侵蚀和发展水系网络,从而形成大型河流.黄河流域上游主要流动在青藏高原东北缘,受到冰雪融水的补给(图2),而黄河中游和下游流动在黄土高原和华北平原,受到东亚夏季风的强烈影响(林旭等, 2023).

1.3 地质背景

1.3.1 黄河流域造山带

(1) 祁连山.祁连山位于青藏高原东北端(图3),东西长约1 200 km、南北宽为 200~400 km.低温热年代学、沉积学和古地磁学等方法约束了祁连山新生代在55~40 Ma(Cheng et al., 2019aLin et al., 2019)、30~25 Ma(Lu et al., 2022Wang et al., 2022a)、15~7 Ma(Lin et al., 2010Zheng et al., 2017Hu et al., 2019a)和3.6~0 Ma(Li et al., 2014Fang et al., 2019)存在显著的变形与生长过程.

(2) 贺兰山-阴山.贺兰山为近南北走向(图3),南北绵延约200 km,宽约30 km.磷灰石和锆石裂变径迹年龄约束贺兰山新生代的隆升出现在50~30 Ma(Zhao et al., 2007Shi et al., 2019)、12~10 Ma(Liu et al., 2010)和上新世(Zhao et al., 2007).贺兰山大规模隆起的时间与银川地堑的强烈断陷活动相伴生,反映了新生代以来青藏高原向东北方向扩展对贺兰山构造隆升的影响.

阴山山脉东西走向,长约1 000 km,宽为50~100 km,北与中亚造山带相接,南与河套盆地为界,向东延伸到燕山山脉,西抵阿拉善地块.磷灰石和锆石裂变径结果表明阴山在50~10 Ma发生隆升(徐芹芹等, 2017;Peng et al., 2022),这可能是对新生代印度-亚洲板块碰撞的远程效应的响应.

(3) 吕梁山-太行山.吕梁山西接黄土高原,东临太行山(图3),北北东走向,南北延伸约450 km,宽为40~120 km.吕梁山在65~23 Ma加速抬升及20~10 Ma强烈抬升(Clinkscales et al., 2020Zhang et al., 2021a).太行山呈北东-南西走向,东西宽为50~150 km,南北长约700 km(图3).太行山南、中、北各段的基岩低温热年代学研究广泛开展,结果表明太行山经历了3期快速隆升:58~50 Ma、46~31 Ma和15~10 Ma(Cao et al., 2015Wu et al., 2020).吕梁山和太行山地区新生代以来的隆升演化主要与青藏高原挤压造山作用和太平洋板块俯冲的远程效应有关.

(4) 秦岭.秦岭西与祁连山为界,向东延伸约800 km与华北平原相交,北侧为渭河盆地,南以汉江为界(图3).在晚白垩世到古近纪,秦岭造山带经历了快速隆升(Wang et al., 2022b),随后秦岭整体在32~22 Ma、10~8 Ma 和4 Ma又发生多期次隆升(Enkelmann et al., 2006Yu et al., 2022),并最终形成现今长江和黄河两大水系的分水岭(王斌等, 2017).

(5) 鲁中山区-胶东丘陵.鲁中山区位于华北平原东部(图3),多呈北西向和近东西向展布.磷灰石和锆石裂变径迹以及(U-Th)/He年龄结果表明,鲁中山区新生代以来经历了始新世-早渐新世(62~38 Ma)和新近纪(23~0 Ma)2期快速剥露隆升(李理和钟大赉, 2006;许立青等, 2016).胶东丘陵位于胶东半岛,东西长约300 km,南北宽为75~115 km,地表切割比较破碎,海拔为200~300 m,在丘陵之间存有500~1 000 m的低山.磷灰石年龄-高程对应关系和热历史模拟结果表明,胶东丘陵存在早-中始新世(54~43 Ma)和渐新世(35~25 Ma)2阶段剥露过程(林旭等, 2022c).太平洋板块新生代向西俯冲对鲁中山区和胶东丘陵的隆升起主导作用.

1.3.2 黄河流域的沉积盆地

(1) 共和-贵德-西宁盆地.共和盆地位于青藏高原东北缘,大体以NW-SE向展布,西与柴达木盆地相邻,东与贵德盆地相连(图4a).共和盆地的基底形成于三叠纪,定型于白垩纪中晚期,是新生代断陷盆地,充填了新近系(曲沟组)和第四系(共和组)陆相沉积地层.最新的古地磁年龄限定曲沟组的沉积时代介于>9 Ma和2.5 Ma之间,主要由泥岩、粉砂质泥岩组成的湖相地层为主(Zhang et al., 2012图5a).共和组下部以河流相细砂岩为主,上部出现湖相泥岩和粉砂岩(常宏等,2009).黄河由西南向东北纵穿盆地,在出口处形成龙羊峡.

贵德盆地位于共和盆地东部,北以拉脊山为界与西宁盆地相隔(图4a),基底由元古代、三叠纪基岩组成,盖层为新生代地层(图5b).古近系由革皮匝组和下尕让组构成(Fang et al., 2005图5b).革皮匝组主要为砾岩、泥质粉砂岩和砂岩组成的河流相和三角洲相.下尕让组下段以泥岩、砂岩为主,中段出现厚层石膏,顶部含砾砂岩增多变厚.中新统贵德门组主要为大套角砾岩、泥质砾岩与含砾泥质砂岩构成的洪积扇相(Wang et al., 2018);尕让组主要为河流相的含细砾砂岩、砂质泥岩与砾岩互层;阿什贡组由三角洲相和湖相的泥岩、粉砂岩夹泥灰岩、砂岩组成.上新统贺尔加组分布广泛,主要为河流相的泥岩、砂岩和砾岩互层;甘家组主要为大套厚层砾岩夹泥质砂岩组成,属于冲积扇相(图5c).第四系阿米岗组由三角洲和洪积扇相的粉砂岩和泥岩夹砂质细砾岩和砂岩组成.黄河由西向东横贯盆地并下切超过900 m,形成多级阶地(Fang et al., 2005).

西宁盆地位处于祁连山东段(图4a),盆地新生代地层从下而上分为古近系祁家川组、洪沟组和马哈拉沟组(Fang et al., 2019图5c).古新统祁家川组主要由河流相泥岩、砂岩、砾岩和湖相灰岩组成.始新统洪沟组整体以泥岩、粉砂岩和石膏为主,属于湖相地层.渐新统马哈拉沟组由湖相的石膏和泥岩构成.中新统从下而上为谢家组、车头沟组、咸水河组.谢家组由湖相泥岩和石膏组成;车头沟组和咸水河组以河流相的泥岩和砂岩为主,咸水河组顶部砾岩增多并一直持续到上新统临夏组(Zhang et al., 2017图5c),盆地上覆第四系黄土.

(2) 兰州盆地.兰州盆地位于青藏高原东北缘,盆地内古近系-新近系主要分布于兰州西北的沙井驿、咸水河、野狐城等地(Zhang et al., 2018图6a).底部古新统西柳沟组为一套河流相疏松砂岩(图6b).中部始新统野狐城组为一套含石膏的湖相砂岩.上部中新统咸水河组是河流相、湖相砂质泥岩.此外,在兰州盆地南缘,皋兰山北麓的五泉山地区存在典型的河流相砾石层(临夏组)直覆于古近系-新近系红层上,上覆第四纪不同时期的黄土沉积(Guo et al., 2018).

(3) 银川盆地.银川盆地是贺兰山与黄土高原之间的新生代断陷盆地(Shi et al., 2020图7a).盆地整体呈北北东走向,南北长为180~160 km,东西宽约60 km,黄河北北东向穿越盆地东缘.银川盆地新生代以来经历了3期伸展构造变形,古近纪北西-南东向伸展、中新世北东-南西向伸展以及晚中新世至早上新世的北西-南东向伸展,导致银川盆地持续断陷沉降(Zhang et al., 1998图7b).银川盆地新生界地层自下向上包括寺口子组、清水营组、红柳沟组、干河沟组、第四系(黄兴富, 2014, 图7c).始新统寺口子组为一套冲积扇相中厚层粗砂岩、砾岩.渐新统清水营组为一套河流相、湖相细砂岩夹泥岩,顶部出现石膏.中新统红柳沟组为砂岩与泥岩、砂质泥岩互层夹砂岩透镜体的河流相、湖相地层.上新统干河沟组见于贺兰山南部一带,岩性为含砾砂岩、泥岩,局部含石膏(徐清海等, 2023).第四系覆盖整个盆地之上.

(4) 河套盆地.河套盆地东西长为600~440 km,南北宽为30~90 km,总体走向近东西.河套盆地是新生代断陷盆地,主要由吉东斜坡、吉兰泰深坳陷、北部深坳陷、临河坳陷、呼和坳陷、乌拉山凸起和包头凸起组成(周志成, 2020;图8a).始新世阴山整体抬升,河套盆地断陷(图8b);渐新世河套盆地的沉降中心位于临河坳陷,沉积厚度可达2 600 m(国家地震局, 1988);中新世时,北部阴山断裂继续控制盆地发育,沉降中心依然位于临河坳陷,沉积厚度达3 800 m;上新世时,盆地下沉幅度和范围达到最大,临河坳陷沉积厚度总体超过6 000 m.河套盆地古近系-新近系地层自下而上被划分为乌拉特组、临河组、五原组和乌兰图克组(黄兴富, 2014;张锐锋等, 2020).古新统-始新统乌拉特组为一套湖相泥岩、砂岩和细砂岩,中部夹白云质泥灰岩(图8c).渐新统临河组由泥岩、白云质泥岩、砂质泥岩和粉砂岩组成.中新统五原组包含泥岩、细砂岩和白云岩,以湖相为主.上新统乌兰图克组由湖相泥岩、泥质粉砂岩和粉砂岩组成,底部含厚层块状砂砾岩.第四系下部为河流相地层并含有风成沉积,顶部出现湖相地层.

(5) 晋陕峡谷.晋陕峡谷连接了北侧的河套盆地和南部的汾渭盆地,全长726 km,宽200~400 m,深170~200 m(林旭等, 2022a).晋陕峡谷北部周围主要是早古生代寒武系和奥陶系浅海相地层,岩性以碳酸盐岩为主,沉积厚度相对较大,出露范围最广(Liu et al., 2022a图9);晚古生代沉积环境由海相向内陆湖盆转化,主要为石炭系和二叠系碎屑岩;早-中中生代主要以三叠系、侏罗系砂岩、页岩及泥岩为主;新近系为松散红黏土和砾石层,覆盖于基岩之上,主要出露于沟谷内(潘保田等, 2012);第四系遍布全区,以一套河湖相沉积和黄土沉积为主.

(6) 渭河盆地.渭河盆地东西长约400 km,南北宽30~80 km,整体近东西走向,是发育于秦岭造山带北缘的新生代断陷盆地(王斌等, 2013),主要由西部隆起、西安坳陷、乾县斜坡、咸渭凸起、固市坳陷和蒲城-富平浅坳组成(图10a).渭河盆地新生代地层自晚始新世开始发育(李智超, 2017;李兆雨等, 2021;图10b),自下到上包含红河组、白鹿塬组、冷水沟组、寇家村组、灞河组、蓝田组、三门组、泄湖组和乾县组(图10c).中始新统红河组由一套冲积扇相和河流相沉积组成.上始新统-下渐新统白鹿塬组由砾岩、砂岩和泥岩组成,为冲积扇相与河流相沉积.中新统冷水沟组和寇家村组在盆地边缘由砾岩和砂岩以及少量泥岩组成,代表盆地边缘的冲积扇和辫状河流沉积体系,在盆地内部为细粒湖相沉积.上中新统霸河组和蓝田组、下更新统三门组在盆地内是一套湖相沉积,累计厚度可达2 500~3 000 m.上更新统泄湖组和乾县组为河流相沉积.

(7) 三门峡盆地.三门峡盆地东西长约120 km,南北宽约40 km,位于中条山、秦岭和崤山之间(图11a),是发育在前寒武纪结晶基底之上在新生代形成的断陷盆地(图11b),主要由潼关坳陷、盘头凸起、灵宝坳陷、芮城坳陷、五亩坳陷和平陆坳陷组成(王丹丹等, 2021).古近纪早期三门峡盆地处于拉张环境中,沉积了古新统山麓相和河流相门里组(图11c),以砾岩夹砂质泥岩为主,后期逐渐演变为半封闭式内陆湖盆,发育坡底组、小安组泥岩、钙质泥岩(李兆雨等, 2021;王丹丹等, 2021).在盆地东部的平陆坳陷一带沉积了以砂砾岩夹砾状砂岩的柳林河组地层;而盆地西部潼关、芮城一带柳林河组沉积环境仍以浅湖相、河流相为主.中新世三门峡地区处于隆升状态,未接受沉积.上新世在盆地相对下降期沉积了三门组砂砾层、砂层和砂质黏土层,上覆黄土.三门组在5.0~2.8 Ma 表现为扇三角洲相,2.8~1.0 Ma 为滨-浅湖相,1.00~0.15 Ma 为河流相沉积(Liu et al., 2019).

(8) 渤海湾盆地.渤海湾盆地位于太行山、胶东半岛和辽东半岛之间,盆地包含海域和陆域两部分(图12a),是在华北克拉通基底上发育的中-新生代断陷盆地(Qi and Yang, 2010图12b),其中较大的坳陷分别为:辽河、渤中、黄骅、冀中、临清和济阳(邱燕等, 2016).渤海湾盆地新生代地层自底部向上依次为(图12c):孔店组、沙河街组、东营组、馆陶组、明化镇组和平原组.古新统孔店组以泥岩为主,局部含砂岩和粉砂岩.渤海湾盆地在始新统地层堆积时发生强烈断陷,形成的沙河街组以砂岩、含砾砂岩、杂色砾岩夹泥岩为主.东营组在渤海湾盆地内广泛分布,岩性较稳定,以河湖相泥岩、灰色泥岩及砂泥岩互层为主,经历了从深湖-半深湖-三角洲填充直至河流相完整的沉积演化过程.中新统馆陶组在盆地内分布广泛,主要以河流相、沼泽相厚层块状砂砾岩夹泥岩为主.上新统明化镇组在辽东湾岩性主要以河流相含砾砂岩为主,在渤中和渤西地区则以砂岩和泥岩为主.第四系平原组地层分布稳定,岩性主要以河流相和湖相黏土、砂质黏土与粉砂层、泥质砂层为主,多含钙质团块,并开始出现海相地层.

(9) 苏北-南黄海盆地.苏北-南黄海盆地位于胶东半岛南部,朝鲜半岛西部(图13a),总体北东向延伸超过260 km,西缘宽约110 km,东缘宽约220 km,陆上部分属苏北盆地,海域部分属于南黄海盆地.苏北-南黄海盆地晚白垩纪-古近纪处于区域伸展、强烈断陷阶段(图13b),新近纪以来整体沉降(舒良树等, 2005).苏北盆地主要由东台坳陷、盐城-阜宁坳陷和建湖隆起3大构造单元组成;南黄海盆地主要由北部坳陷、中部隆起、南部坳陷和勿南沙隆起4个一级构造单元组成(图13a).苏北-南黄海盆地地层主体由阜宁组、戴南组、三垛组、盐城组构成(姚翔,2019).

古新统阜宁组主体为泥岩与细砂岩互层,以河流相、湖相和三角洲相为主(邱燕等, 2016;姚翔,2019;图13c).始新统戴南组上部由泥岩与粉砂、细砂岩呈不等厚互层组成,下部出现泥岩与薄层粉砂岩互层,为湖相和三角洲相.始新统三垛组中上部由泥岩夹砂岩构成,下部为块状砂岩、含砾砂岩,属于河流相和三角洲相.中新统盐城组底部为粉砂质泥岩与粗砂岩、含砾砂岩互层;上新统盐城组为河流相砂砾岩层与黏土层.第四系东台组出现河湖相夹海侵层,为砂质黏土与砂砾互层沉积.

2 研究方法

地球上的大河是沉积物从大陆到海洋搬运的重要纽带.由于流域面积大,大型河流的发育、演化和形成都经历了复杂的地质过程,这为研究其何时形成提出了挑战.但通常可以从物源示踪和河流阶地中找到它们何时形成的答案(林旭等, 2023).根据保存在河谷的阶地和河口的沉积地层的时代,研究人员能够了解不同时间尺度上大河的发展情况.

2.1 物源示踪

地球表面的地貌宏观上可分为剥蚀区、搬运区和沉积区,剥蚀区形成的剥蚀产物被河流等搬运到沉积区或汇水盆地沉积下来的过程,称为“源-汇”系统(林旭等, 2023).这一系统中蕴藏着地球表层动力学过程的沉积记录及地球表层对深部岩石圈动力学过程响应的信息.重建“源-汇”系统对于理解区域构造演化、气候变化、物源供给及其相互关系具有重要作用.

广为接受的事实是构造活动和气候变化会引起大型河流的汇-源沉积体系发生变化,并最终对河流体系的沉积过程产生深刻影响(Tandon and Sinha, 2022).在流域内,沉积物输入量的改变揭示了构造活动、气候变化等因素导致沉积物总量和搬运路径的改变(Grimaud et al., 2014).大型河流搬运体系可能导致流域内沉积物在某一河段停留,以及古老沉积物再循环等现象的发生(Schmidt, 1990).从这些沉积物中,利用物源示踪方法对其研究,有助于我们认识整个流域的物源体系演化过程.因而,物源示踪研究主要针对源区剥蚀后产生的碎屑物质进行物源指标的分析,与潜在母岩区的岩石成分、形成年龄进行对比(林旭等, 2022d),从而进行古侵蚀区的判别、古地貌特征的重塑、古河流体系的再现、物源区母岩性质的追踪以及沉积盆地构造背景的确定等,从而重建流域内构造、气候与大河演化的耦合性(林旭等, 2023).

2.2 河流阶地

河流下切侵蚀导致原来的河谷底部超出一般洪水位之上,呈阶梯状分布在河谷谷坡上,这种地形称为河流阶地(图14b).阶地由阶地面、阶地陡坎、阶地前缘、阶地后缘组成.阶地按上下层次分级,级数自下而上按顺序确定,愈向高处年代愈老.阶地物质下部为砂砾石,上部为粉砂、黏土,具二元结构(Lutgens et al., 2013).阶地是重要的河流地貌,它保存了河流过去演化过程的记录,以及向河流系统输送沉积物的性质(Pan et al., 2009).随着时间的推移,河道位置的改变和河岸的侵蚀,阶地部分被清除,最终只剩下原来连续阶地的一部分.阶地的形成由许多不同的边界条件的变化引起(Lutgens et al., 2013).在快速上升、构造活跃的地区,河流下切基岩时留下侵蚀阶地.气候变化间接导致海平面和湖平面的水位升降,驱动侵蚀基准面的变化,导致河流下切形成基座阶地,多分布于河流中下游,是在谷地展宽并发生堆积,后期河流下切深度超过冲积层的情况下形成.河流沉积物供应的变化,通常与气候变化有关,这导致许多河流发生加积,河流后期下蚀形成堆积阶地,在河流的中下游最为常见.

3 研究进展

沉积学研究结果表明同德-共和-贵德盆地及青海湖盆地曾经是水系相连的内流盆地,黄河在0.15~0.10 Ma时切穿共和盆地东部的龙羊峡(Li, 1991;潘保田, 1994;图15-1).埋藏石英的宇宙成因核素的10Be和26Al年龄约束了黄河在同德盆地(Craddock et al., 2010图15-2)、共和盆地(Harkins et al., 2007Perrineau et al., 2011)初始下切的时间发生在0.50~0.25 Ma.最近,黄贤妹(2022)对共和盆地以上的黄河流域开展了详细的宇宙成因核素的10Be和26Al年龄测试,指出黄河在 0.1 Ma上溯至军功盆地,在 35 ka开始与若尔盖盆地相连,认为青藏高原东北缘的黄河发育历史非常年轻(图15-3).然而,石英ESR测年方法的结果表明,黄河最高阶地(T21)在共和盆地内形成于2.47 Ma(Jia et al., 2017;赵希涛等,2021),结合Su et al.(2023)在共和盆地开展的埋藏宇宙核素年龄(1.2~0.8 Ma)分析,表明黄河在早更新世已经出现在共和盆地(图15-4).目前有关黄河上游在共和盆地内出现的时间主要存在早更新世和中-晚更新世的观点.

根据贵德盆地的古地磁年龄结合沉积学分析结果,Fang et al. (2005)发现黄河在1.8 Ma开始下切盆地内新近系地层(图15-5),这也进一步得到野外地质填图和地层构造变形分析结果的支持(Wang et al., 2011).贵德盆地最高的河流阶地ESR年龄集中在0.85~0.41 Ma,指示黄河在此时段稳定出现(Jia et al., 2017),这一结果比贵德盆地地层的宇宙成因核素10Be和26Al年龄约束黄河出现在的时间(1.2 Ma)晚(Zhang et al., 2014).沉积地层学(Wang et al., 2018)和碎屑锆石U-Pb年龄(Saylor et al., 2018)物源示踪结果表明贵德盆地以东在10.0~5.3 Ma发育河流(图15-6);沉积学、地貌学和年代学的综合研究结果表明西宁盆地内在14~10 Ma已经发育河流(Lu et al., 2004Wang et al., 2012图15-7),但主要流入陇西盆地的内陆湖泊中(Zhang et al., 2017Meng et al., 2020).古地磁年龄结合沉积相分析结果约束了西宁盆地内古湟水在4.8~3.6 Ma已经出现(Zhang et al., 2017Yang et al., 2017a图15-8),随后在1.2 Ma继续下切(Ma et al., 2023).明显可以看出,古湟水的形成时代要比贵德盆地内黄河的形成时代早,因而早期黄河水系的源头以湟水为正源(Li and Fang, 1999).

通过对兰州盆地五泉砾岩的定年和物源示踪分析,研究者发现黄河最早在3.6~3.0 Ma流过兰州盆地(Nie et al., 2015Guo et al., 2018图15-9),并在1.7 Ma(Hu et al., 2011)和1.2 Ma(Pan et al., 2009)继续下切形成显著的河流阶地.Wang et al.(2019a)对比黄河兰州阶地沉积物与银川盆地3.3 Ma以来沉积物的重矿物组合和碎屑锆石U-Pb年龄特征发现,银川盆地沉积物与黄河阶地沉积物有极大的相似性,黄河至少在3.3 Ma 已经贯通了兰州-银川地区(王钊等, 2022;图15-10).然而,Bao et al. (2020)的重矿物组合和锆石U-Pb年龄物源示踪结果表明,黄河物质在晚中新世(10 Ma)出现在牛首山地区(图15-11).河套盆地钻孔的磁性地层学和沉积相的分析研究,该段黄河稳定形成于1.6 Ma以前,在晚上新世(2.8 Ma)古黄河已经进入河套盆地(Li et al., 2017, 2020a图15-12).而最近李维东等(2020)对河套盆地内出露的上新统地层开展古流向和碎屑锆石U-Pb年龄测试,结果表明黄河物质至少在5 Ma已经出现(图15-13).对于兰州到河套盆地段的黄河形成历史,形成了晚中新世-上新世和早更新世截然不同的观点.需要指出的是,目前来自银川盆地和河套盆地的地表露头和盆地钻孔的研究结果依然偏少.

晋陕峡谷位于黄河上游和中游的衔接部位,对于研究上游黄河何时进入晋陕峡谷具有无可替代的地理位置优势(林旭等, 2022a).根据分选和磨圆均好的砾石特征,结合砾石层上覆红黏土的古地磁年龄,有研究者指出晋陕峡谷在8 Ma已经存在与现代黄河规模类似的大河(Liu, 2020图15-14).然而古流向和碎屑锆石U-Pb年龄物源示踪数据表明,晋陕峡谷北段在8.0~3.7 Ma发育向北流动的大河(图15-15),分布在黄河晋陕峡谷两岸的中新统和上新统砾石层是吕梁山构造隆升剥蚀的产物,而非北-南向黄河的河流堆积物(潘保田等, 2012;林旭等, 2022a).晋陕峡谷南段的高层河流阶地的宇宙成因核素埋藏年龄揭示黄河在2.5~1.7 Ma出现(Li et al., 2020b图15-16),并在1.5~1.2 Ma发生下切(Hu et al., 2016Li et al., 2020b图15-17).

渭河盆地和三门峡盆地位于我国第二和第三地势阶梯的转折部位,是黄河东流入海的必经之地,因而对于限定贯穿三大地势阶梯的黄河水系何时形成具有重要意义(Hu et al., 2019b).利用宇宙成因核素埋藏测年法,Kong et al. (2014)获得了渭河盆地湖泊环境向河流环境转变和三门峡河流阶地形成的年龄,认为黄河在 1.5~1.3 Ma切穿三门峡东流(图15-18).锆石U-Pb年龄物源示踪结果进一步表明,黄河中上游物质在1.4~1.3 Ma以前出现在三门峡盆地(Kong et al., 2014),与现代黄河中上游相似的河流系统在5 Ma时形成(Zhang et al., 2021b图15-19).Hu et al. (2017)根据古地磁年龄约束三门峡最老的河流阶地形成于3.6 Ma,其重矿物物源示踪结果表明三门峡段的河流与黄河中上游在3.6~1.2 Ma连通(Hu et al., 2019bChen et al., 2022图15-20).然而,Wang et al. (2022c)对三门峡盆地的钻孔开展系统的沉积学、古地磁定年、物源分析,明确了岩心在1.25 Ma首次记录黄河的物质信号.锆石U-Pb年龄谱物源示踪结果表明,晋陕峡谷的物质在1.0 Ma被黄河搬运至三门峡盆地(Liu et al., 2022b),这一时间与邙山黄土剖面(0.9 Ma;Shang et al., 2018图15-21)记录的黄河出现时间相近.但以往的研究结果表明,古三门湖发生部分溢流的最早年龄为0.41~0.35 Ma(Wang et al., 2002),黄河完全切开三门峡东流的时代约为0.15 Ma(Zhang et al., 2004图15-22).

此外,黄河中游的汾河、渭河和洛河等支流的发育时间也为黄河在渭河盆地和三门峡盆地的出现时间提供对比.忻州盆地在2.5 Ma由湖相泥炭沉积向河流砾石沉积转变,指示古汾河在这个时期开始出现(Wang et al., 2022d图15-23).运城盆地沉积钻孔的碎屑锆石U-Pb年龄谱对比结果显示,古汾河在3.6~1.2 Ma已经出现(闫纪元, 2021;图15-24).钻孔碎屑锆石U-Pb年龄谱对比结果显示,洛河至少从1.86 Ma开始为渭河盆地北部提供沉积物(Zhang et al., 2019a图15-25).根据古地磁、电子自旋共振(ESR)、热释光(OSL)测年结果,结合局部黄土-古土壤层序研究,Gao et al.(2017)确定渭河上游最古老的河流阶地在1.4~1.2 Ma形成(图15-26).渭河盆地和三门峡盆地上新统-更新统沉积物的锆石U-Pb年龄谱和重矿物组合结果显示,渭河形成于1.8 Ma以后(Zhang et al., 2021b).综上所述,从渭河盆地和三门峡盆地的河流阶地和盆地钻孔的物源示踪结果来看,黄河和汾河在上新世已经出现,渭河和洛河的出现时间稍晚.但对于三门峡何时被黄河切穿的时间还存在较大的争议.

黄河流出三门峡后,在华北平原上经常发生河道摆动,并不是一直流入渤海湾盆地或南黄海盆地.林旭等(2022b)对渤海湾盆地12个钻孔的中新统地层的碎屑锆石U-Pb年龄谱与其周围的燕山、太行山和鲁中山区的河流,以及黄河和渭河的碎屑锆石U-Pb年龄进行对比,结果显示黄河在中新世未出现在渤海湾盆地.南黄海盆地上中新统地层的碎屑锆石U-Pb年龄物源对比结果也表明,在晚中新世未出现黄河的物质信号(Fu et al., 2021).台湾岛中新统地层的碎屑钾长石Pb同位素物源示踪同样支持黄河物质此时并未出现(林旭等, 2023).渤海湾盆地西部钻孔的重矿物物源示踪结果表明,黄河物质在1.9 Ma已经出现(Liu et al., 2020图15-27),在渤海湾盆地其他钻孔报道的黄河形成时代集中在1.6 Ma(Xiao et al., 2020Yang et al., 2022图15-28)和0.88 Ma(Yao et al., 2017图15-29),这可能说明黄河下游在早更新世已经出现,但河道在不同时期发生摆动.

南黄海盆地沉积钻孔的碎屑锆石U-Pb年龄(何梦颖等,2019)、重矿物组合(Wang et al., 2019b)和全岩Sr-Nd同位素(Zhang et al., 2019b)物源示踪结果表明,黄河物质在0.8 Ma稳定出现(图15-30).然而,全岩地球化学分析结果显示南黄海盆地物源发生重大变化的时间发生在1.7~1.5 Ma(图15-31),该时间点对应黄海盆地主要地震沉积剖面的沉积突变,与黄河中上游河流阶地开始下切的时间相吻合,Huang et al. (2021)据此认为南黄海沉积盆地的物源变化可能与现代黄河的整合有关.苏北盆地(Cheng et al., 2019bShu et al., 2021)和南黄海盆地(Zhang et al., 2019bLiu et al., 2022c)在上新世(5.0~3.5 Ma)的碎屑物质主要由长江和淮河供给,而黄河的影响并不重要.可以明显看出,中国东部陆架海盆地在中新世未出现黄河的物质信号,而黄河的物质直到早更新世开始出现.目前的研究停留在分别对渤海湾盆地和南黄海盆地开展物源示踪研究的阶段,对于这2个盆地中同时出现相似的黄河形成时代(比如0.8 Ma)的研究还不充分.

4 讨论

4.1 古近纪黄河演化

近年来对造山带和新生代山间盆地的研究表明,青藏高原东北缘地壳缩短始于始新世,形成了诸多正断层和逆断层控制的断陷盆地和挤压盆地,比如西宁、贵德、循化等盆地(Fang et al., 2019).这些盆地中广泛发育同沉积正断层,其产状测量结果表明,新生代早期地壳的伸展方向为NW-SE,这与华北克拉通内部NW-SE向裂谷盆地(银川盆地、渭河盆地)古近系的应力场一致(Zhang et al., 1998).青藏高原东北段盆地的古近系与新近系之间存在广泛的不整合面(Fan et al., 2019).青藏高原东北段在古近纪尚未形成,其基本由地壳伸展支配,可能是西太平洋板块俯冲的远程效应的体现(Fan et al., 2019Shi et al., 2020).但在西宁、贵德、循化盆地以西和以南的祁连山和西秦岭在始新世已经存在(Cheng et al., 2019aLin et al., 2022).Lin et al. (2001)根据盆地沉积相对比结果认为始新世黄河沿着兰州盆地流入现今渭河流域.如果这是正确的,那么在始新世青藏高原东北缘很可能发育如同现今流动在伊朗高原南缘的底格里斯河和幼发拉底河(图1),以及喜马拉雅山脉南缘的恒河的水系形态(Lu et al., 2023图16).这可以理解为在高原边缘早期发育的大河通常流动在沿构造轴延伸的挤压盆地中,除了其源头具有横向河流的特征外,其余大部分河段属于纵向河流(Potter, 1978Tandon and Sinha, 2022).考虑到此时东亚地区处于干旱-半干旱行星气候带的控制(Guo et al., 2008),渭河盆地中以河湖相地层为主(图10b),这时沿着祁连山东段和西秦岭北缘流动的纵向黄河可能是规模较小的内流水系,这一时期的黄河可以称为原黄河.与此同时,在银川盆地、河套盆地、渤海湾盆地和苏北盆地-南黄海盆地主要发育冲积扇相或湖相沉积,与邻近的贺兰山、阴山、燕山、鲁中山区和苏鲁造山带的盆山耦合关系初步建立,主要受近源河流物质输入的影响(林旭等,2023).

4.2 新近纪黄河演化

地层学研究和构造变形结果表明,藏东北地区在早中新世(20~15 Ma)发生明显的构造抬升和盆地湖相沉积(Yang et al., 2017b),盆地内正断层在渐新世末的终止和区域不整合的存在表明青藏高原东北段在中新世初开始抬升(Fan et al., 2019),主要受控于印度板块与亚洲大陆碰撞的远程效应的影响(Lin et al., 2019).在此背景下,中新世祁连山地区发生陆内挤压造山与盆地裂解,北西-南东向条带状分布的青海南山、拉脊山、达阪山、积石山、六盘山等山体相继隆起,将古近纪形成的统一大型压陷盆地(陇西盆地)分割为共和、贵德、西宁、兰州、临夏及天水等盆地(Yang et al., 2017b).古近纪形成的原黄河水系也因六盘山的隆升而被打破(Lin et al., 2001).此时,共和盆地与青海南山、贵德盆地与拉脊山、西宁盆地与拉脊山和达阪山、兰州盆地与达阪山、临夏盆地与积石山的盆山耦合关系进一步加强(Li et al., 2014;Fang et al., 2019),在这些盆地内都同时堆积了厚层的河流相和湖相地层,出现沿着条带状山脉流入各个分隔盆地的内流河,黄河上游水系进入重组阶段(Meng et al., 2020).这一河流演化模式可以参考现今依然存在的青海湖及其入湖水系的相关性(图4a).从这个意义来说,其是青藏高原东北段黄河上游水系演化的“活化石”.

青藏高原东北段的地貌边界在中新世沿着北祁连山-六盘山建立起来,高原边界发育向外流动的大河(Bovet et al., 2009Zhang et al., 2022).但此时鄂尔多斯地块受构造挤压发生逆时针旋转,出现地势抬升和地貌破碎(Zhang et al., 1998Shi et al., 2020),并不利于沿着高原前缘压陷前陆盆地流动的纵向河流的形成,而是出现垂直于高原边界流入银川盆地的横向河流(Bao et al., 2020).银川盆地中新统红柳沟组、河套盆地中新统五原组以厚层湖相地层为主,依然属于相互独立的断陷沉积中心(Shi et al., 2020),说明此时连通的外流黄河水系没有出现.但中新世沿着北祁连山形成的横向河流是否绕过银川盆地进入河套盆地,目前还没有相关结果的验证(图17a).而在晋陕峡谷此时已经发育向南流入渭河盆地(Liu, 2020),向北流入河套盆地的大河(潘保田等, 2012;林旭等, 2022a),此时进入始黄河演化阶段.这样的河流发育模式,主要受控于大型地堑的控制,在靠近地堑的内侧发育向心状水系(Cox, 1989).渤海湾盆地中新统物质主要来自北部的燕山、西部的太行山和南部的鲁中山区和胶东丘陵,三门峡以东的黄河下游物质此时并未出现在渤海湾盆地(林旭等, 2022b);苏北盆地和南黄海盆地的物质主要来自长江(Fu et al., 2021),因而黄河下游在中新世并未出现.由于缺乏三门峡以东河南省内的沉积盆地钻孔或者地表同时代沉积地层的物源示踪的结果,不能完全排除三门峡以东的黄河在此时流入临近盆地内(Ju et al., 2021).

青藏高原东北缘上新世进入新一期快速隆升阶段,随着持续的盆地淤积和东亚夏季风的影响,中新世形成的断陷盆地发生溢流或因溯源侵蚀导致黄河水系在4.8~3.3 Ma已经出现在西宁盆地(Yang et al., 2017aZhang et al., 2017)、兰州盆地(Nie et al., 2015Guo et al., 2018)、银川盆地(Wang et al., 2019b)和河套盆地(李维东等, 2020),而贵德盆地和共和盆地依然存在如同青海湖一样的内流水系(图17b),此时黄河上游还未深入青藏高原东北段更深的腹地,而是存在于边缘(Fang et al., 2005Zhang et al., 2014).这与北祁连山的黑河水系的发育模式相似,其中新世沿着北祁连山横向流动,但在上新世已经深入到北祁连山与疏勒南山之间的盆地(Zhang et al., 2022).因而,上新世是黄河上游水系奠定基本形态的重要阶段,但考虑到河套盆地此时依然存在厚层湖相沉积(国家地震局, 1988;黄兴富, 2014;Shi et al., 2020图8c),而晋陕峡谷北段在3.7 Ma依然存在向北流动的大河(潘保田等, 2012;林旭等, 2022a),黄河此时上游和中游的连通还未完成.晋陕峡谷南段的黄河在5.0~3.6 Ma时已经将碎屑物质带入渭河盆地(Kong et al., 2014Hu et al., 2019bZhang et al., 2021b),此时古汾河与晋陕峡谷南段的古黄河同步发育(闫纪元, 2021).渤海湾盆地持续受到发源于周围山脉大河的碎屑物质补给(蔡向民等, 2010;Xu et al., 2017Yang et al., 2022),而南黄海盆地和苏北盆地的物质主要来自长江和淮河(Fu et al., 2021Shu et al., 2021).上新世黄河的上游、中游和下游依然没有连通,处于分段发育的转折阶段.

4.3 第四纪黄河演化

青藏高原东北段在1.8~1.7 Ma、1.2~0.6 Ma和0.15 Ma发生阶段性隆升(Li et al., 2014Yin and Huang, 2020Yi et al., 2022).黄河上游水系在1.8 Ma溯源侵蚀切穿贵德盆地(Fang et al., 2005),这是在青藏高原阶梯式隆升作用下,其逐步向高原内部迁移而形成(图17c).同期的河流阶地也出现在西宁盆地的湟水流域(Zhang et al., 2017)、兰州盆地的黄河干流(Hu et al., 2011).至此,兰州盆地到贵德盆地段的黄河与先前形成的湟水流域交汇(Li and Fang, 1999),组成了类似现今黄河上游在青藏高原部分的河流形态.晋陕峡谷在1.8 Ma发育的河流阶地指示稳定的黄河水系已经建立(Li et al., 2022),结合古汾河(闫纪元, 2021)、古洛河(Zhang et al., 2019a)和古渭河(Zhang et al., 2021b)在1.8 Ma已经出现,这说明黄河中游的水系格局在早更新世已经与现今类似.渤海湾盆地和南黄海盆地的沉积钻孔记录了黄河下游在1.9~1.6 Ma(Liu et al., 2020Xiao et al., 2020Yang et al., 2022)和1.7 Ma(Huang et al., 2021)已经出现.但黄河上游物质在1. 5 Ma 前没有出现在河套盆地东南缘,盆地依然接受近源沉积(李雪梅,2020),这说明黄河上游物质在1.8 Ma依然没有进入晋陕峡谷,这也进一步体现在三门峡盆地的河流阶地(Kong et al., 2014;Hu et al., 2019b;Liu et al., 2022b)、沉积钻孔(Wang et al., 2022c)物源示踪结果表明黄河上游和中游的贯通时间出现在1.3~1.0 Ma.来自渤海湾盆地和南黄海盆地物源示踪的结果表明,黄河上游和中游物质在早更新世(杨守业等, 2001)和0.8 Ma(何梦颖等, 2019;Zhang et al., 2019b)开始出现;渤海(Yi et al., 2016)和黄海(Sun et al., 2022)陆架海在1.0 Ma稳定出现.因此,贯穿青藏高原、黄土高原、华北平原和东部陆架海的现代意义上的黄河形成于早更新世.共和古湖在0.50~0.25 Ma发生溢出形成龙羊峡,黄河干流从贵德盆地深入共和盆地(Craddock et al., 2010Zhang et al., 2014),并在流出青藏高原东北段沿途形成河流阶地(Su et al., 2020).渭河盆地和三门峡盆地在0.22~0.15 Ma发生湖泊快速消退(Zhang et al., 2004Liang et al., 2015),促使晋陕峡谷的侵蚀基准面下降,晋陕峡谷段黄河快速向北溯源侵蚀,导致河套盆地的古湖在0.10~0.05 Ma外泄(Chen et al., 2008Liang et al., 2015图17d).因而,在中、晚更新世,黄河流域又发生了阶段性演化过程,主要是对区域内的气候变化做出的响应.

4.4 构造和气候因素控制黄河演化

大河的形成需要长期稳定的一级构造地貌单元(造山带)的存在,从而驱动流域内的降水从抬升区流向临近的沉积盆地和/或海洋,同时大河流域的径流系数较高,拥有足够的降水维持大河的流动(林旭等, 2023).

新生代早期,印度板块和西太平洋板块向亚洲大陆俯冲(图18a),青藏高原的出现、东部陆架海的发育导致东亚的地貌发生显著改变,彻底打破了中生代东高西低的地貌形态,为黄河等大河自西向东入海奠定了构造基础(Wang, 2004).但受控于当时东亚地区干旱-半干旱的气候因素的影响(Liu and Ding, 1998Guo et al., 2008),同时以吕梁山-太行山为界的华北克拉通西部和东部都发育深大断陷盆地(Shi et al., 2020Ju et al., 2021),因而发源于青藏高原东北段东流入海的黄河没有出现(图18b).

进入新近纪,青藏高原北部边界开始确立,高原无论从面积上还是高度上,都比古近纪发生了显著变化(Guo et al., 2002Miao et al., 2022).这也进一步体现在对区域甚至全球的环境效应以及鄂尔多斯地块周缘造山带隆升的影响上(Zhang et al., 1998).从新近纪开始,我国东部以季风气候为主,西北被干旱-半干旱气候控制,青藏高原出现高寒气候,但此时季风区还未延伸至太行山以西的区域,黄河流域中游处于干旱-半干旱气候的影响(Guo et al., 2008),C4草本植被扩张和喜冷软体动物类群增加与地表降温和东亚干旱化加剧同步(Wen et al., 2023).因而在银川盆地(徐清海等, 2023)、河套盆地(Li et al., 2017)和渭河盆地(Wang et al., 2002)堆积了厚层的盐湖地层.受青藏高原东北段向外扩展的影响,鄂尔多斯地块周围的银川盆地、河套盆地和渭河盆地在上新世处于断陷最盛期(国家地震局,1988;Shi et al., 2020;图21a),这为上述盐湖的发育提供了构造空间.同时祁连山东段各条形山脉、贺兰山、阴山、吕梁山-太行山、中条山和秦岭在中新世的隆升架构了黄河后续演化的路径(林旭等, 2022a).此时在构造和气候因素的影响下,连通的黄河依然没有出现,但黄河局部开始发育,经历了中新世的开始演化阶段到上新世的演化转折阶段(图18c18d).

第四纪以来,受北极冰盖扩张 (Polyak et al., 2013)和青藏高原隆升的影响(Li et al., 2014Shen et al., 2021),亚洲夏季风在2.4、1.8、1.6、1.2、0.5、0.2和0.15 Ma呈现波动式逐渐增强(Liu and Ding, 1998图18e),而这与黄河在第四纪关键时间节点出现的河流阶地、湖泊外泄、溯源侵蚀,以及渤海和黄海沉积速率加快的时间节点有很好的相关性(Métivier et al., 1999),因而黄河在早更新世已经完全贯通(图18f).随着青藏高原进入冰冻圈(Zhou et al., 2006),夏季更多的冰雪融水补给黄河上游;亚洲夏季风逐渐深入黄河中游,更多的夏季降水有助于湖泊外泄,气候因素对黄河上游、中游和下游的连通施加了更多的影响(Craddock et al., 2010).受到古近纪已经存在的鲁中山区-胶东丘陵的地形屏障的影响,发育成熟的黄河在华北平原南北摆动,将黄土高原带来的大量碎屑物质搬运至华北平原和渤海、黄海,对华北克拉通第四纪的地貌演化起到重要控制作用(林旭等, 2023).在第四纪冰期,干冷的气候可能对黄河造成影响,导致河道萎缩,甚至断流(Liu and Ding, 1998).在此背景下,黄河的各段又出现新的演化过程.

4.5 研究展望

今后有关黄河研究的思路应将物源示踪与河流阶地二者相结合,集中在黄河上游的青藏高原部分、银川盆地和河套盆地,开展多个钻孔的研究结果的交叉对比.在晋陕峡谷段黄河的研究应注重峡谷北部和南部多个剖面古流向的分析和物源示踪、阶地形成时代的研究结果的结合.在三门峡以东的河南省境内的沉积盆地开展钻孔物源示踪分析,弥补目前无数据结果对比的缺憾.加大渤海湾盆地和南黄海盆地的沉积钻孔的物源示踪分析,呈现详细的黄河演化过程.

5 结论

通过对国内外有关黄河形成、发育和演化过程的研究结果的梳理,黄河的演化过程如下.

(1)青藏高原东北段古近纪发育沿着高原边界纵向流动的原黄河,受干旱气候的影响,此时其属于内流水系;(2)中新世祁连山地区发生陆内挤压造山与盆地裂解,北西-南东向条带状分布的山脉约束了河流的基本流向,陇西盆地成为黄河上游青藏高原部分的汇水中心.在晋陕峡谷北部和南部已经出现大型河流,此时黄河物质还未出现在渤海湾盆地和南黄海盆地,黄河进入分段演化阶段;(3)上新世黄河已经出现在西宁盆地、兰州盆地、银川盆地和河套盆地,而贵德盆地和共和盆地依然存在如同青海湖一样的内流水系,此时黄河上游还未深入青藏高原东北段更深的腹地.晋陕峡谷南北异向的黄河格局依然存在.三门峡盆地被古湖占据,而渤海湾盆地和南黄海盆地依然未出现黄河物质.上新世是黄河完成最后连通的重要转折阶段;(4)早更新世黄河完成上游、中游和下游的连通,渤海和黄海稳定出现,类似现今串联青藏高原、黄土高原和华北平原,东流入海的黄河此时形成.在晚更新世,受气候变化的影响,黄河各段进入新一期演化过程,河道萎缩,局部河道再次被古湖占据,在降水丰沛期时完成各河道的再次连通.

参考文献

[1]

Bao,G.D.,Chen,H.,Zhao,X.T.,2020.Late Miocene Yellow River Formation in Qingtongxia Area,North China:Detrital Zircon and Heavy Mineral Analysis at Niushou Mountain,Ningxia.Geological Journal,55(11):7304-7321.https://doi.org/10.1002/gj.3910

[2]

Bovet,P.M.,Ritts,B.D.,Gehrels,G.,et al.,2009.Evidence of Miocene Crustal Shortening in the North Qilian Shan from Cenozoic Stratigraphy of the Western Hexi Corridor,Gansu Province,China.American Journal of Science,309(4):290-329.https://doi.org/10.2475/00.4009.02

[3]

Brookfield,M.E.,1998.The Evolution of the Great River Systems of Southern Asia during the Cenozoic India-Asia Collision:Rivers Draining Southwards.Geomorphology,22(3-4):285-312.https://doi.org/10.1016/s0169-555x(97)00082-2

[4]

Cao,X.Z.,Li,S.Z.,Xu,L.Q.,et al.,2015.Mesozoic-Cenozoic Evolution and Mechanism of Tectonic Geomorphology in the Central North China Block:Constraint from Apatite Fission Track Thermochronology.Journal of Asian Earth Sciences,114:41-53.https://doi.org/10.1016/j.jseaes.2015.03.041

[5]

Cai,X.M.,Guo,G.X.,Luan,Y.B.,et al.,2010.Forming Time for the Yongdinghe River.Quaternary Sciences,30(1):167-174 (in Chinese with English abstract).

[6]

Chang,H.,Jin,Z.D.,An,Z.S.,2009.Sedimentary Evidences of the Uplift of the Qinghai Nanshan (the Mountains South to Qinhai Lake) and Its Implication for Structural Evolution of the Lake Qinghai-Gonghe Basin.Geological Review,55(1):49-57 (in Chinese with English abstract).

[7]

Cox,K.G.,1989.The Role of Mantle Plumes in the Development of Continental Drainage Patterns.Nature,342:873-877.https://doi.org/10.1038/342873a0

[8]

Clinkscales,C.,Kapp,P.,Wang,H.Q.,2020.Exhumation History of the North-Central Shanxi Rift,North China,Revealed by Low-Temperature Thermochronology.Earth and Planetary Science Letters,536:116146.https://doi.org/10.1016/j.epsl.2020.116146

[9]

Craddock,W.H.,Kirby,E.,Harkins,N.W.,et al.,2010.Rapid Fluvial Incision along the Yellow River during Headward Basin Integration.Nature Geoscience,3:209-213.https://doi.org/10.1038/ngeo777

[10]

Chen,F.H.,Fan,Y.X.,Chun,X.,et al.,2008.Preliminary Research on Megalake Jilantai-Hetao in the Arid Areas of China during the Late Quaternary.Chinese Science Bulletin,53(11):1725-1739.https://doi.org/10.1007/s11434-008-0227-3

[11]

Chen,Q.,Liu,X.M.,Zhao,G.Y.,et al.,2022.0.2 Ma or 1.2 Ma? Timing of the Linking of the Middle and Lower Reaches of the Yellow River Inferred from Loess-Palaeosol Sequences.Geophysical Research Letters,49(6):e2021GL097510.https://doi.org/10.1029/2021gl097510

[12]

Cheng,F.,Garzione,C.N.,Jolivet,M.,et al.,2019a.Initial Deformation of the Northern Tibetan Plateau:Insights from Deposition of the Lulehe Formation in the Qaidam Basin.Tectonics,38(2):741-766.https://doi.org/10.1029/2018tc005214

[13]

Cheng,Y.,Li,X.Q.,Shu,J.W.,et al.,2019b.Sedimentary Evolution and Transgressions of the Western Subei Basin in Eastern China since the Late Pliocene.Acta Geologica Sinica (English Edition),93(1):155-166.https://doi.org/10.1111/1755-6724.13774

[14]

Deng,K.,Yang,S.Y.,Li,C.,et al.,2017.Detrital Zircon Geochronology of River Sands from Taiwan:Implications for Sedimentary Provenance of Taiwan and Its Source Link with the East China Mainland.Earth-Science Reviews,164:31-47.https://doi.org/10.1016/j.earscirev.2016.10.015

[15]

Enkelmann,E.,Ratschbacher,L.,Jonckheere,R.,et al.,2006.Cenozoic Exhumation and Deformation of Northeastern Tibet and the Qinling:Is Tibetan Lower Crustal Flow Diverging around the Sichuan Basin? Geological Society of America Bulletin,118(5-6):651-671.https://doi.org/10.1130/b25805.1

[16]

Fan,L.G.,Meng,Q.R.,Wu,G.L.,et al.,2019.Paleogene Crustal Extension in the Eastern Segment of the NE Tibetan Plateau.Earth and Planetary Science Letters,514:62-74.https://doi.org/10.1016/j.epsl.2019.02.036

[17]

Fang,X.M.,Yan,M.D.,van der Voo,R.,et al.,2005.Late Cenozoic Deformation and Uplift of the NE Tibetan Plateau:Evidence from High-Resolution Magnetostratigraphy of the Guide Basin,Qinghai Province,China.Geological Society of America Bulletin,117(9-10):1208-1225.https://doi.org/10.1130/b25727.1

[18]

Fang,X.M.,Fang,Y.H.,Zan,J.B.,et al.,2019.Cenozoic Magnetostratigraphy of the Xining Basin,NE Tibetan Plateau,and Its Constraints on Paleontological,Sedimentological and Tectonomorphological Evolution.Earth-Science Reviews,190:460-485.https://doi.org/10.1016/j.earscirev.2019.01.021

[19]

Fu,X.W.,Zhu,W.L.,Geng,J.H.,et al.,2021.The Present-Day Yangtze River Was Established in the Late Miocene:Evidence from Detrital Zircon Ages.Journal of Asian Earth Sciences,205:104600.https://doi.org/10.1016/j.jseaes.2020.104600

[20]

Gao,H.S.,Li,Z.M.,Liu,X.F.,et al.,2017.Fluvial Terraces and Their Implications for Weihe River Valley Evolution in the Sanyangchuan Basin.Science China:Earth Sciences,60(3):413-427.https://doi.org/10.1007/s11430-016-5037-8

[21]

Grimaud,J.L.,Chardon,D.,Beauvais,A.,2014.Very Long-Term Incision Dynamics of Big Rivers.Earth and Planetary Science Letters,405:74-84.https://doi.org/10.1016/j.epsl.2014.08.021

[22]

Guo,Z.T.,Ruddiman,W.F.,Hao,Q.Z.,et al.,2002.Onset of Asian Desertification by 22 Myr Ago Inferred from Loess Deposits in China.Nature,416:159-163.https://doi.org/10.1038/416159a

[23]

Guo,Z.T.,Sun,B.,Zhang,Z.S.,et al.,2008.A Major Reorganization of Asian Climate by the Early Miocene.Climate of the Past,4:153-174.https://doi.org/10.5194/CP-4-153-2008

[24]

Guo,B.H.,Liu,S.P.,Peng,T.J.,et al.,2018.Late Pliocene Establishment of Exorheic Drainage in the Northeastern Tibetan Plateau as Evidenced by the Wuquan Formation in the Lanzhou Basin.Geomorphology,303:271-283.https://doi.org/10.1016/j.geomorph.2017.12.009

[25]

Harkins,N.,Kirby,E.,Heimsath,A.,et al.,2007.Transient Fluvial Incision in the Headwaters of the Yellow River,Northeastern Tibet,China.Journal of Geophysical Research:Earth Surface,112(F3):1-21.https://doi.org/10.1029/2006jf000570

[26]

He,M.Y.,Mei,X.,Zhang,X.H.,et al.,2019.Provenance Discrimination of Detrital Zircon U-Pb Dating in the Core CSDP-1 in the Continental Shelf of South Yellow Sea.Journal of Jilin University (Earth Science Edition),49(1):85-95 (in Chinese with English abstract).

[27]

Hu,X.F.,Kirby,E.,Pan,B.T.,et al.,2011.Cosmogenic Burial Ages Reveal Sediment Reservoir Dynamics along the Yellow River,China.Geology,39(9):839-842

[28]

Hu,Z.B.,Pan,B.T.,Guo,L.Y.,et al.,2016.Rapid Fluvial Incision and Headward Erosion by the Yellow River along the Jinshaan Gorge during the Past 1.2 Ma as a Result of Tectonic Extension.Quaternary Science Reviews,133:1-14.https://doi.org/10.1016/j.quascirev.2015.12.003

[29]

Hu,Z.B.,Pan,B.T.,Bridgland,D.,et al.,2017.The Linking of the Upper-Middle and Lower Reaches of the Yellow River as a Result of Fluvial Entrenchment.Quaternary Science Reviews,166:324-338.https://doi.org/10.1016/j.quascirev.2017.02.026

[30]

Hu,X.F.,Chen,D.B.,Pan,B.T.,et al.,2019a.Sedimentary Evolution of the Foreland Basin in the NE Tibetan Plateau and the Growth of the Qilian Shan since 7 Ma.Geological Society of America Bulletin,131(9-10):1744-1760.https://doi.org/10.1130/b35106.1

[31]

Hu,Z.B.,Li,M.H.,Dong,Z.J.,et al.,2019b.Fluvial Entrenchment and Integration of the Sanmen Gorge,the Lower Yellow River.Global and Planetary Change,178:129-138.https://doi.org/10.1016/j.gloplacha.2019.04.010

[32]

Huang,X.F.,2014.Tectonic Evolution of Cenozoic Faulted Basin in the Northwestern Margin of Ordos Block (Dissertation).China University of Geosciences,Beijing(in Chinese with English abstract).

[33]

Huang,X.T.,Mei,X.,Yang,S.Y.,et al.,2021.Disentangling Combined Effects of Sediment Sorting,Provenance,and Chemical Weathering from a Pliocene-Pleistocene Sedimentary Core (CSDP-1) in the South Yellow Sea.Geochemistry,Geophysics,Geosystems,22(5):e2020GC009569.https://doi.org/10.1029/2020gc009569

[34]

Huang,X.M.,2022.Chronology of Fluvial,Lacustrine and Aeolian Sediments in the Upper Reaches of the Yellow River and Implications for Drainage Evolution (Dissertation).Shantou University,Shantou(in Chinese with English abstract).

[35]

Jia,L.Y.,Hu,D.G.,Wu,H.H.,et al.,2017.Yellow River Terrace Sequences of the Gonghe-Guide Section in the Northeastern Qinghai-Tibet:Implications for Plateau Uplift.Geomorphology,295:323-336.https://doi.org/10.1016/j.geomorph.2017.06.007

[36]

Ju,Y.W.,Yu,K.,Wang,G.Z.,et al.,2021.Coupling Response of the Meso-Cenozoic Differential Evolution of the North China Craton to Lithospheric Structural Transformation.Earth-Science Reviews,223:103859.https://doi.org/10.1016/j.earscirev.2021.103859

[37]

Kong,P.,Jia,J.,Zheng,Y.,2014.Time Constraints for the Yellow River Traversing the Sanmen Gorge.Geochemistry,Geophysics,Geosystems,15(2):395-407.https://doi.org/10.1002/2013gc004912

[38]

Li,J.J.,1991.The Environmental Effects of the Uplift of the Qinghai-Xizang Plateau.Quaternary Science Reviews,10(6):479-483.https://doi.org/10.1016/0277-3791(91)90041-r

[39]

Li,J.J.,Fang,X.M.,1999.Uplift of the Tibetan Plateau and Environmental Changes.Chinese Science Bulletin,44(23):2117-2124.https://doi.org/10.1007/bf03182692

[40]

Li,L.,Zhong,D.L.,2006.Fission Track Evidence of Cenozoic Uplifting Events of the Taishan Mountain,China.Acta Petrologica Sinica,22(2):457-464 (in Chinese with English abstract).

[41]

Li,J.J.,Fang,X.M.,Song,C.H.,et al.,2014.Late Miocene-Quaternary Rapid Stepwise Uplift of the NE Tibetan Plateau and Its Effects on Climatic and Environmental Changes.Quaternary Research,81(3):400-423.https://doi.org/10.1016/j.yqres.2014.01.002

[42]

Li,B.F.,Sun,D.H.,Xu,W.H.,et al.,2017.Paleomagnetic Chronology and Paleoenvironmental Records from Drill Cores from the Hetao Basin and Their Implications for the Formation of the Hobq Desert and the Yellow River.Quaternary Science Reviews,156:69-89.https://doi.org/10.1016/j.quascirev.2016.11.023

[43]

Li,Z.P.,Wang,H.L.,Chen,X.L.,et al.,2019.Geological Map of the People’s Republic of China (Northwest China,1∶1 500 000).Geological Publishing House,Beijing(in Chinese).

[44]

Li,X.M.,Zhang,H.P.,Wang,Y.Z.,et al.,2020a.Inversion of Bedrock Channel Profiles in the Daqing Shan in Inner Mongolia,Northern China:Implications for Late Cenozoic Tectonic History in the Hetao Basin and the Yellow River Evolution.Tectonophysics,790:228558.https://doi.org/10.1016/j.tecto.2020.228558

[45]

Li,Z.Y.,Zhang,K.,Liang,H.,et al.,2020b.Initial Incision of the Jinshan Gorge of the Yellow River,China,Constrained by Terrestrial In Situ Cosmogenic Nuclides Chronology.Quaternary International,550:111-119.https://doi.org/10.1016/j.quaint.2020.03.047

[46]

Li,W.D.,Zhao,X.T.,Yang,Y.,et al.,2020.Formation Age and Provenance Analysis of the Gravel Layer in the Yellow River Terraces of the Hetao Basin.Acta Geoscientica Sinica,41(4):515-524 (in Chinese with English abstract).

[47]

Li,X.M.,2020.Bedrock Rivers in the Daqing Shan in Inner Mongolia,Northern China:Implications for Late Cenozoic Tectonic History in the Hetao Basin and the Yellow River Evolution (Dissertation).China Earthquake Administration,Beijing(in Chinese with English abstract).

[48]

Li,Z.Y.,Li,Y.X.,Li,W.H.,et al.,2021.Sedimentary Characteristics of Paleogene-Neogene in Fenwei Basin.Chinese Journal of Geology (Scientia Geologica Sinica),56(4):1120-1133 (in Chinese with English abstract).

[49]

Li,Z.Y.,Zhang,K.,Liang,H.,et al.,2022.Large River Chronology along the Jinshaan Gorge on the Yellow River and Its Implications for Initialization.Geomorphology,400:108092.https://doi.org/10.1016/j.geomorph.2021.108092

[50]

Liang,H.,Zhang,K.,Fu,J.L.,et al.,2015.Bedrock River Incision Response to Basin Connection along the Jinshan Gorge,Yellow River,North China.Journal of Asian Earth Sciences,114:203-211.https://doi.org/10.1016/j.jseaes.2015.07.010

[51]

Lin,A.M.,Yang,Z.Y.,Sun,Z.M.,et al.,2001.How and when Did the Yellow River Develop Its Square Bend? Geology,29(10):951.https://doi.org/10.1130/0091-7613(2001)0290951:hawdty>2.0.co;2

[52]

Lin,X.B.,Chen,H.L.,Wyrwoll,K.H.,et al.,2010.Commencing Uplift of the Liupan Shan since 9.5 Ma:Evidences from the Sikouzi Section at Its East Side.Journal of Asian Earth Sciences,37(4):350-360.https://doi.org/10.1016/j.jseaes.2009.09.005

[53]

Lin,X.,Tian,Y.T.,Donelick,R.A.,et al.,2019.Mesozoic and Cenozoic Tectonics of the Northeastern Edge of the Tibetan Plateau:Evidence from Modern River Detrital Apatite Fission-Track Age Constraints.Journal of Asian Earth Sciences,170:84-95.https://doi.org/10.1016/j.jseaes.2018.10.028

[54]

Lin,X.,Jolivet,M.,Jing,L.Z.,et al.,2021.Mesozoic-Cenozoic Cooling History of the Eastern Qinghai Nan Shan (NW China):Apatite Low-Temperature Thermochronology Constraints.Palaeogeography,Palaeoclimatology,Palaeoecology,572:110416.https://doi.org/10.1016/j.palaeo.2021.110416

[55]

Lin,X.,Jolivet,M.,Jing,L.Z.,et al.,2022.The Formation of the North Qilian Shan through Time:Clues from Detrital Zircon Fission-Track Data from Modern River Sediments.Geosciences,12(4):166.https://doi.org/10.3390/geosciences12040166

[56]

Lin,X.,Li,L.L.,Liu,H.J.,et al.,2022a.Sediments from the Upper Reaches of Yellow River Did Not Enter into Shanxi-Shaanxi Gorge in the Neogene.Journal of Palaeogeography,24(3):568-58(in Chinese with English abstract).

[57]

Lin,X.,Liu,H.J.,Liu,J.,et al.,2022b.The Yellow River Did Not Enter the Bohai Bay Basin during theMiocene:Constraints from Detrital Zircon U-Pb Ages.Acta Geologica Sinica,96(7):2506-2518(in Chinese with English abstract).

[58]

Lin,X.,Wu,L.,Jolivet,M.,et al.,2022c.Apatite(U-Th)/He Thermochronology Evidence for Two Cenozoic Denudation Events in Eastern Part of Sulu Orogenic Belt.Earth Science,47(4):1162-1176(in Chinese with English abstract).

[59]

Lin,X.,Li,L.L.,Liu,J.,et al.,2022d.The Yangtze River Contributed Detrital Materials to the Jianghan Basin during the Early Pleistocene:Constraints From Detrital Zircon U-Pb Ages.Earth Sciences(in press)(in Chinese with English abstract).

[60]

Lin,X.,Liu,J.,Liu,W.M.,et al.,2023.Development and Evolution of the Yellow River and Yangtze River.Geological Publishing House,Beijing(in Chinese).

[61]

Liu,J.,Zhang,J.Y.,Ge,Y.K.,et al.,2018.Tectonic Geomorphology:An Interdisciplinary Study of the Interaction among Tectonic Climatic and Surface Processes.Chinese Science Bulletin,63(30):3070-3088 (in Chinese).

[62]

Liu,J.,Chen,X.Q.,Shi,W.,et al.,2019.Tectonically Controlled Evolution of the Yellow River Drainage System in the Weihe Region,North China:Constraints from Sedimentation,Mineralogy and Geochemistry.Journal of Asian Earth Sciences,179:350-364.https://doi.org/10.1016/j.jseaes.2019.05.008

[63]

Liu,J.H.,Zhang,P.Z.,Zheng,D.W.,et al.,2010.Pattern and Timing of Late Cenozoic Rapid Exhumation and Uplift of the Helan Mountain,China.Science China:Earth Sciences,53(3):345-355.https://doi.org/10.1007/s11430-010-0016-0

[64]

Liu,T.,Ding,Z.L.,1998.Chinese Loess and the Paleomonsoon.Annual Review of Earth and Planetary Sciences,26:111-145.https://doi.org/10.1146/annurev.earth.26.1.111

[65]

Liu,Y.M.,2020.Neogene Fluvial Sediments in the Northern Jinshaan Gorge,China:Implications for Early Development of the Yellow River since 8 Ma and Its Response to Rapid Subsidence of the Weihe-Shanxi Graben.Palaeogeography,Palaeoclimatology,Palaeoecology,546:109675.https://doi.org/10.1016/j.palaeo.2020.109675

[66]

Liu,J.,Zhang,J.Q.,Miao,X.D.,et al.,2020.Mineralogy of the Core YRD-1101 of the Yellow River Delta:Implications for Sediment Origin and Environmental Evolution during the Last ~1.9 Myr.Quaternary International,537:79-87.https://doi.org/10.1016/j.quaint.2019.12.025

[67]

Liu,Y.M.,Rui,X.L.,Li,Y.L.,2022a.Long-Term Development Archive of the Yellow River since the Neogene in the Central Jinshaan Gorge,China.Palaeogeography,Palaeoclimatology,Palaeoecology,591:110899.https://doi.org/10.1016/j.palaeo.2022.110899

[68]

Liu,J.,Wang,P.,Chen,X.Q.,et al.,2022b.The Changes in Drainage Systems of Weihe Basin and Sanmenxia Basin since Late Pliocene Give New Insights into the Evolution of the Yellow River.Frontiers in Earth Science,9:1401.https://doi.org/10.3389/feart.2021.820674

[69]

Liu,Y.,Liu,X.B.,Wang,S.J.,et al.,2022c.Late Cenozoic Channel Migration of the Proto-Yangtze River in the Delta Region:Insights from Cosmogenic Nuclide Burial Dating of Onshore Boreholes.Geomorphology,407:108228.https://doi.org/10.1016/j.geomorph.2022.108228

[70]

Lu,H.,Wang,X.,An,Z.,et al.2004.Geomorphologic Evidence of Phased Uplift of the Northeastern Qinghai-Tibet Plateau since 14 Million Years Ago.Science China:Earth Sciences,47(9):822-833.

[71]

Lu,H.J.,Sang,S.P.,Wang,P.,et al.,2022.Initial Uplift of the Qilian Shan,Northern Tibet since ca.25 Ma:Implications for Regional Tectonics and Origin of Eolian Deposition in Asia.Geological Society of America Bulletin,134(9-10):2531-2547.https://doi.org/10.1130/b36242.1

[72]

Lu,H.Y.,Zhang,H.Z.,Feng,H.,et al.,2023.Landform Evolution in Asia during the Cenozoic Revealed by Formation of Drainages of Wei River and Indus River.Palaeogeography,Palaeoclimatology,Palaeoecology,619:111516.https://doi.org/10.1016/j.palaeo.2023.111516

[73]

Lutgens,F.K.,Tarbuck,E.J.,Tasa,D.G.,2013.Foundations of Earth Science:Pearson New International Edition.Pearson Higher Education. Upper Saddle River, Prentice Hall, U.S.A..

[74]

Miall,A.,2006.How Do we Identify Big Rivers? And How Big Is Big? Sedimentary Geology,186:39-50.https://doi.org/10.1016/j.sedgeo.2005.10.001

[75]

Ma,Z.H.,Peng,T.J.,Feng,Z.T.,et al.,2023.Tectonic and Climate Controls on River Terrace Formation on the Northeastern Tibetan Plateau:Evidence from a Terrace Record of the Huangshui River.Quaternary International,656:16-25.https://doi.org/10.1016/j.quaint.2022.11.004

[76]

Métivier,F.,Gaudemer,Y.,Tapponnier,P.,et al.,1999.Mass Accumulation Rates in Asia during the Cenozoic.Geophysical Journal International,137(2):280-318.https://doi.org/10.1046/j.1365-246x.1999.00802.x

[77]

Meng,K.,Wang,E.,Chu,J.J.,et al.,2020.Late Cenozoic River System Reorganization and Its Origin within the Qilian Shan,NE Tibet.Journal of Structural Geology,138:104128.https://doi.org/10.1016/j.jsg.2020.104128

[78]

Miao,Y.F.,Fang,X.M.,Sun,J.M.,et al.,2022.A New Biologic Paleoaltimetry Indicating Late Miocene Rapid Uplift of Northern Tibet Plateau.Science,378(6624):1074-1079.https://doi.org/10.1126/science.abo2475

[79]

National Seismological Bureau,1988.Active fault system around Ordos Massif.Seismological Press,Beijing(in Chinese).

[80]

Nie,J.S.,Stevens,T.,Rittner,M.,et al.,2015.Loess Plateau Storage of Northeastern Tibetan Plateau-Derived Yellow River Sediment.Nature Communications,6:8511.https://doi.org/10.1038/ncomms9511

[81]

Pan,B.T.,1994.A Study on the Geomorphic Evolution and Development of the Upper Reaches of Yellow River in Guide Basin.Arid Land Geography,17(3):43-50 (in Chinese with English abstract).

[82]

Pan,B.T.,Su,H.,Hu,Z.B.,et al.,2009.Evaluating the Role of Climate and Tectonics during Non-Steady Incision of the Yellow River:Evidence from a 1.24 Ma Terrace Record near Lanzhou,China.Quaternary Science Reviews,28(27-28):3281-3290.https://doi.org/10.1016/j.quascirev.2009.09.003

[83]

Perrineau,A.,van der Woerd,J.,Gaudemer,Y.,et al.,2011.Incision Rate of the Yellow River in Northeastern Tibet Constrained by 10 and 26 Cosmogenic Isotope Dating of Fluvial Terraces:Implications for Catchment Evolution and Plateau Building.Geological Society,London,Special Publications,353(1):189-219.https://doi.org/10.1144/sp353.10

[84]

Pan,B.T.,Hu,Z.B.,Hu,X.F.,et al.,2012.Time-Slice of the Fluvial Evolution in the Northern Jinshaan Gorge during Late Cenozoic.Quaternary Sciences,32(1):111-121 (in Chinese with English abstract).

[85]

Peng,H.,Wang,J.,Liu,C.,et al.,2022.Mesozoic Exhumation and ca.10 Ma Reactivation of the Southern Yin Shan,North China,Revealed by Low-Temperature Thermochronology.Tectonophysics,823:229189.https://doi.org/10.1016/j.tecto.2021.229189

[86]

Potter,P.E.,1978.Significance and Origin of Big Rivers.The Journal of Geology,86(1):13-33.https://doi.org/10.1086/649653

[87]

Polyak,L.,Best,K.M.,Crawford,K.A.,et al.,2013.Quaternary History of Sea Ice in the Western Arctic Ocean Based on Foraminifera.Quaternary Science Reviews,79:145-156.https://doi.org/10.1016/j.quascirev.2012.12.018

[88]

Pumpelly,R.,1867.Geological Researches in China,Mongolia,and Japan,during the Years 1862 to 1865.Smithsonian Institution,New York.

[89]

Qi,J.,Yang,Q.,2010.Cenozoic Structural Deformation and Dynamic Processes of the Bohai Bay Basin Province,China.Marine and Petroleum Geology,27(4):757-771.https://doi.org/10.1016/j.marpetgeo.2009.08.012

[90]

Qiu,Y.,Wang,L.F.,Huang,W.K.,2016.Meso-Cenozoic Sedimentary Basins in Sea Areas of China.Geological Publishing House,Beijing(in Chinese).

[91]

Saylor,J.E.,Jordan,J.C.,Sundell,K.E.,et al.,2018.Topographic Growth of the Jishi Shan and Its Impact on Basin and Hydrology Evolution,NE Tibetan Plateau.Basin Research,30(3):544-563.https://doi.org/10.1111/bre.12264

[92]

Schmidt,J.C.,1990.Recirculating Flow and Sedimentation in the Colorado River in Grand Canyon,Arizona.The Journal of Geology,98(5):709-724.https://doi.org/10.1086/629435

[93]

Shi,G.Z.,Shen,C.B.,Zattin,M.,et al.,2019.Late Cretaceous-Cenozoic Exhumation of the Helanshan Mt Range,Western Ordos Fold-Thrust Belt,China:Insights from Structural and Apatite Fission Track Analyses.Journal of Asian Earth Sciences,176:196-208.https://doi.org/10.1016/j.jseaes.2019.02.016

[94]

Shi,W.,Dong,S.W.,Hu,J.M.,2020,Neotectonics around the Ordos Block,North China:A Review and New Insights.Earth-Science Reviews,200:102969.https://doi.org/10.1016/j.earscirev.2019.102969

[95]

Shu,L.S.,Wang,B.,Wang,L.S.,et al.,2005.Analysis of Northern Jiangsu Prototype Basin from Late Cretaceous to Neogene.Geological Journal of China Universities,11(4):534-543 (in Chinese with English abstract).

[96]

Shu,Q.,Zhao,Z.J.,Zhao,Y.F.,et al.,2021.Magnetic Properties of Late Cenozoic Sediments in the Subei Basin:Implications for the Yangtze River Run-Through Time.Journal of Coastal Research,37(1):122-131.https://doi.org/10.2112/jcoastres-d-20-00039.1

[97]

Shang,Y.,Prins,M.A.,Beets,C.J.,et al.,2018.Aeolian Dust Supply from the Yellow River Floodplain to the Pleistocene Loess Deposits of the Mangshan Plateau,Central China:Evidence from Zircon U-Pb Age Spectra.Quaternary Science Reviews,182:131-143.https://doi.org/10.1016/j.quascirev.2018.01.001

[98]

Shen,X.,Tian,Y.,Wang,Y.,et al.,2021.Enhanced Quaternary Exhumation in the Central Three Rivers Region,Southeastern Tibet.Frontiers in Earth Science.https://doi.org/10.3389/feart.2021.741491

[99]

Shen,Y.F.,Liang,M.Y.,Wu,J.X.,et al.,2022.Detrital-Zircon Evidence for the Origin of the Late Quaternary Loess in Qingzhou,Shandong Province and Its Implications for the Evolution of the Yellow River.Journal of Earth Science,33(1):205-214.https://doi.org/10.1007/s12583-021-1489-9

[100]

Su,Q.,Kirby,E.,Ren,Z.,et al.,2020.Chronology of the Yellow River Terraces at Qingtong Gorge (NE Tibet):Insights into Evolution of the Yellow River since the Middle Pleistocene.Geomorphology,349:106889.https://doi.org/10.1016/j.geomorph.2019.106889

[101]

Su,Q.,Wang,X.Y.,Yuan,D.Y.,et al.,2023.Fluvial Entrenchment of the Gonghe Basin and Integration of the Upper Yellow River - Evidence from the Cosmogenically Dated Geomorphic Surfaces.Geomorphology,429:108654.https://doi.org/10.1016/j.geomorph.2023.108654

[102]

Sun,J.,Guo,F.,Wu,H.C.,et al.,2022.The Sedimentary Succession of the Last 2.25 Myr in the Bohai Strait:Implications for the Quaternary Paleoenvironmental Evolution of the Bohai Sea.Palaeogeography,Palaeoclimatology,Palaeoecology,585:110704.https://doi.org/10.1016/j.palaeo.2021.110704

[103]

Tandon,S.K.,Sinha,R.,2022.Geology of Large River Systems.Large Rivers:Geomorphology and Management,Second Edition. Wiley Blackwell, Oxford, UK.

[104]

Wang,S.M.,Wu,X.H.,Zhang,Z.K.,et al.,2002.Sedimentary Records of Environmental Evolution in the Sanmen Lake Basin and the Yellow River Running through the Sanmenxia Gorge Eastward into the Sea.Science in China:Earth Sciences,45(7):595-608.https://doi.org/10.1360/02yd9061

[105]

Wang,P.X.,2004.Cenozoic Deformation and the History of Sea-Land Interactions in Asia.Geophysical Monograph Series,149:1-22.https://doi.org/10.1029/149gm01

[106]

Wang,E.,Shi,X.H.,Wang,G.,et al.,2011.Structural Control on the Topography of the Laji-Jishi and Riyue Shan Belts in the NE Margin of the Tibetan Plateau:Facilitation of the Headward Propagation of the Yellow River System.Journal of Asian Earth Sciences,40(4):1002-1014.https://doi.org/10.1016/j.jseaes.2010.05.007

[107]

Wang,X.Y.,Lu,H.Y.,Vandenberghe,J.,et al.,2012.Late Miocene Uplift of the NE Tibetan Plateau Inferred from Basin Filling,Planation and Fluvial Terraces in the Huang Shui Catchment.Global and Planetary Change,88:10-19.https://doi.org/10.1016/j.gloplacha.2012.02.009

[108]

Wang,B.,Zheng,H.B.,Wang,P.,et al.,2013.The Cenozoic Strata and Depositional Evolution of Weihe Basin:Progresses and Problems.Advances in Earth Science,28(10):1126-1135 (in Chinese with English abstract).

[109]

Wang,B.,Chang,H.,Duan,K.Q.,2017.The Tectonic Uplift and Its Environmental Effects of the Qinling Mountains during the Cenozoic Era:Progress and Problems.Advances in Earth Science,32(7):707-715 (in Chinese with English abstract).

[110]

Wang,Z.X.,Shen,Y.J.,Licht,A.,et al.,2018.Cyclostratigraphy and Magnetostratigraphy of the Middle Miocene Ashigong Formation,Guide Basin,China,and Its Implications for the Paleoclimatic Evolution of NE Tibet.Paleoceanography and Paleoclimatology,33(10):1066-1085.https://doi.org/10.1029/2018pa003409

[111]

Wang,Z.,Nie,J.S.,Wang,J.P.,et al.,2019a.Testing Contrasting Models of the Formation of the Upper Yellow River Using Heavy-Mineral Data from the Yinchuan Basin Drill Cores.Geophysical Research Letters,46(17-18):10338-10345.https://doi.org/10.1029/2019gl084179

[112]

Wang,K.S.,Shi,X.F.,Yao,Z.Q.,et al.,2019b.Heavy-Mineral-Based Provenance and Environment Analysis of a Pliocene Series Marking a Prominent Transgression in the South Yellow Sea.Sedimentary Geology,382:25-35.https://doi.org/10.1016/j.sedgeo.2019.01.005

[113]

Wang,D.D.,Zhang,J.D.,Liu,X.F.,et al.2021.Structural Framework of Sanmenxia Basin,Henan Province and Its Oil and Gas Resources Potential Analysis.Geology in China(in press)(in Chinese with English abstract).

[114]

Wang,W.T.,Zhang,P.Z.,Garzione,C.N.,et al.,2022a.Pulsed Rise and Growth of the Tibetan Plateau to Its Northern Margin since ca.30 Ma.Proceedings of the National Academy of Sciences of the United States of America,119(8):e2120364119.https://doi.org/10.1073/pnas.2120364119

[115]

Wang,M.M.,Tian,Y.T.,Zhou,B.G.,et al.,2022b.Instant Far-Field Effects of Continental Collision:An Example Study in the Qinling Orogen,Northeast of the Tibetan Plateau.Tectonophysics,833:229334.https://doi.org/10.1016/j.tecto.2022.229334

[116]

Wang,X.,Hu,G.,Saito,Y.,et al.,2022c.Did the Modern Yellow River Form at the Mid-Pleistocene Transition? Science Bulletin,67(15):1603-1610.https://doi.org/10.1016/j.scib.2022.06.003

[117]

Wang,Z.X.,Mao,Y.D.,Geng,J.Z.,et al.,2022d.Pliocene-Pleistocene Evolution of the Lower Yellow River in Eastern North China:Constraints on the Age of the Sanmen Gorge Connection.Global and Planetary Change,213:103835.https://doi.org/10.1016/j.gloplacha.2022.103835

[118]

Wang,Z.,Nie,J.S.,Peng,W.B.,et al.,2022.Late Pliocene Sedimentary Provenance of the Yinchuan Basin and Its Constraints on the Formation Age of the Upper Yellow River.Acta Sedimentologica Sinica,40(4):924-930 (in Chinese with English abstract).

[119]

Wen,Y.X.,Zhang,L.M.,Holbourn,A.E.,et al.,2023.CO2-Forced Late Miocene Cooling and Ecosystem Reorganizations in East Asia.Proceedings of the National Academy of Sciences of the United States of America,120(5):e2214655120.https://doi.org/10.1073/pnas.2214655120

[120]

Wu,L.,Wang,F.,Yang,J.H.,et al.,2020.Meso-Cenozoic Uplift of the Taihang Mountains,North China:Evidence from Zircon and Apatite Thermochronology.Geological Magazine,157(7):1097-1111.https://doi.org/10.1017/s0016756819001377

[121]

Xiao,G.Q.,Sun,Y.Q.,Yang,J.L.,et al.,2020.Early Pleistocene Integration of the Yellow River I:Detrital-Zircon Evidence from the North China Plain.Palaeogeography,Palaeoclimatology,Palaeoecology,546:109691.https://doi.org/10.1016/j.palaeo.2020.109691

[122]

Xiao,G.Q.,Pan,Q.,Zhao,Q.Y.,et al.,2021.Early Pleistocene Integration of the Yellow River II:Evidence from the Plio-Pleistocene Sedimentary Record of the Fenwei Basin.Palaeogeography,Palaeoclimatology,Palaeoecology,577:110550.https://doi.org/10.1016/j.palaeo.2021.110550

[123]

Xu,L.Q.,Li,S.Z.,Guo,L.L.,et al.,2016.Impaction of the Tan-Lu Fault Zone on Uplift of the Luxi Rise:Constraints from Apatite Fission Track Thermochronology.Acta Petrologica Sinica,32(4):1153-1170 (in Chinese with English abstract).

[124]

Xu,Q.M.,Yuan,G.B.,Yang,J.L.,et al.,2017.Plio-Pleistocene Magnetostratigraphy of Northern Bohai Bay and Its Implications for Tectonic Events since ca.2.0 Ma.Journal of Geodynamics,111:1-14.https://doi.org/10.1016/j.jog.2017.08.002

[125]

Xu,Q.Q.,Ji,J.Q.,Zhao,W.T.,et al.,2017.Uplift-Exhumation History of Daqing Mountain,Inner Mongolia since Late Mesozoic.Acta Scientiarum Naturalium Universitatis Pekinensis,53(1):57-65 (in Chinese with English abstract).

[126]

Xu,Q.H.,Wu,N.,Wang,J.,et al.,2023.Sedimentary Characteristics and Lake Basin Evolution of Salinized Lake Basin of Qingshuiying Formation in Yinchuan Basin.Earth Science,48(1):317-328 (in Chinese with English abstract).

[127]

Yao,Z.Q.,Shi,X.F.,Qiao,S.Q.,et al.,2017.Persistent Effects of the Yellow River on the Chinese Marginal Seas Began at Least ~880 ka ago.Scientific Reports,7(1):2827.https://doi.org/10.1038/s41598-017-03140-x

[128]

Yao,X.,2019.Residual Subsidence of the Cenozoic Rift Basin in the East Asian Continental Margin and Its Genesis Analysis (Dissertation).China University of Geosciences,Beijing(in Chinese with English abstract).

[129]

Yan,J.Y.,2021.Late Cenozoic Tectonic-Sedimenatary,Uplifting and Denudational Process of the Yuncheng Basin and Northern Gushan Mountain (Dissertation).Chinese Academy of Geological Sciences,Beijing(in Chinese with English abstract).

[130]

Yang,S.Y.,Cai,J.G.,Li,C.X.,et al.,2001.New Discussion about the Run-Through Time of the Yellow River.Marine Geology & Quaternary Geology,21(2):15-20 (in Chinese with English abstract).

[131]

Yang,R.S.,Fang,X.M.,Meng,Q.Q.,et al.,2017a.Paleomagnetic Constraints on the Middle Miocene-Early Pliocene Stratigraphy in the Xining Basin,NE Tibetan Plateau,and the Geologic Implications.Geochemistry,Geophysics,Geosystems,18(11):3741-3757.https://doi.org/10.1002/2017GC006945

[132]

Yang,L.R.,Li,J.X.,Yue,L.P.,et al.,2017b.Paleogene-Neogene Stratigraphic Realm and Tectonic-Sedimentary Evolution of the Qilian Mountains and Their Surrounding Areas.Science China:Earth Sciences,60(5):992-1009.https://doi.org/10.1007/s11430-016-9030-2

[133]

Yang,J.L.,Yuan,H.F.,Hu,Y.Z.,et al.,2022.Significance of Sedimentary Provenance Reconstruction Based on Borehole Records of the North China Plain for the Evolution of the Yellow River.Geomorphology,401:108077.https://doi.org/10.1016/j.geomorph.2021.108077

[134]

Yi,L.,Deng,C.,Tian,L.,et al.,2016.Plio-Pleistocene evolution of Bohai Basin (East Asia):Demise of Bohai Paleolake and Transition to Marine Environment.Scientific Reports,6(1):1-9.

[135]

Yi,K.X.,Cheng,F.,Yang,Y.Z.,et al.,2022.Pleistocene Northward Thrusting of the Danghe Nanshan:Implications for the Growth of the Qilian Shan,Northeastern Tibetan Plateau.Tectonophysics,838:229476.https://doi.org/10.1016/j.tecto.2022.229476

[136]

Yin,M.S.,Huang,H.P.,2020.Quaternary Exhumation History of the NE Tibetan Plateau Revealed by Peculiar Distributions of Polycyclic Aromatic Hydrocarbons in Core Extracts from the Sanhu Depression,Eastern Qaidam Basin.Journal of Quaternary Science,35(7):869-880.https://doi.org/10.1002/jqs.3235

[137]

Yu,J.X.,Zheng,D.W.,Pang,J.Z.,et al.,2022.Cenozoic Mountain Building in Eastern China and Its Correlation with Reorganization of the Asian Climate Regime.Geology,50(7):859-863.https://doi.org/10.1130/g49917.1

[138]

Zhao,H.G.,Liu,C.Y.,Wang,F.,et al.,2007.Uplift and Evolution of Helan Mountain.Science China:Earth Sciences,50(2):217-226.https://doi.org/10.1007/s11430-007-6010-5

[139]

Zhao,X.T.,Yang,Y.,Jia,L.Y.,et al.,2021.A Discussion on the Age and Evolution Process of the Late Gonghe Paleolake and Its Relations with the Crustal Movement and the Development of the Yellow River.Acta Geoscientica Sinica,42(4):451-471 (in Chinese with English abstract).

[140]

Zhang,Y.Q.,Mercier,J.L.,Vergély,P.,1998.Extension in the Graben Systems around the Ordos (China),and Its Contribution to the Extrusion Tectonics of South China with Respect to Gobi-Mongolia.Tectonophysics,285(1-2):41-75.https://doi.org/10.1016/s0040-1951(97)00170-4

[141]

Zhang,Z.K.,Wang,S.M.,Yang,X.D.,et al.,2004.Evidence of a Geological Event and Environmental Change in the Catchment Area of the Yellow River at 0.15 Ma.Quaternary International,117(1):35-40.https://doi.org/10.1016/s1040-6182(03)00114-9

[142]

Zhang,H.P.,Craddock,W.H.,Lease,R.O.,et al.,2012.Magnetostratigraphy of the Neogene Chaka Basin and Its Implications for Mountain Building Processes in the North-Eastern Tibetan Plateau.Basin Research,24(1):31-50.https://doi.org/10.1111/j.1365-2117.2011.00512.x

[143]

Zhang,H.,Zhang,P.,Champagnac,J.D.,et al.,2014.Pleistocene Drainage Reorganization Driven by the Isostatic Response to Deep Incision into the Northeastern Tibetan Plateau.Geology,42(4):303-306.https://doi.org/10.1130/g35115.1

[144]

Zhang,W.L.,Zhang,T.,Song,C.H.,et al.,2017.Termination of Fluvial-Alluvial Sedimentation in the Xining Basin,NE Tibetan Plateau,and Its Subsequent Geomorphic Evolution.Geomorphology,297:86-99.https://doi.org/10.1016/j.geomorph.2017.09.008

[145]

Zhang,P.,Ao,H.,Dekkers,M.J.,et al.,2018.Magnetochronology of the Oligocene Mammalian Faunas in the Lanzhou Basin,Northwest China.Journal of Asian Earth Sciences,159:24-33.https://doi.org/10.1016/j.jseaes.2018.03.021

[146]

Zhang,X.Y.,He,M.Y.,Wang,B.,et al.,2019a.Provenance Evolution of the Northern Weihe Basin as an Indicator of Environmental Changes during the Quaternary.Geological Magazine,156(11):1915-1923.https://doi.org/10.1017/s0016756819000244

[147]

Zhang,J.,Wan,S.M.,Clift,P.D.,et al.,2019b.History of Yellow River and Yangtze River Delivering Sediment to the Yellow Sea since 3.5 Ma:Tectonic or Climate Forcing? Quaternary Science Reviews,216:74-88.https://doi.org/10.1016/j.quascirev.2019.06.002

[148]

Zhang,R.F.,Yu,F.S.,Liu,X.H.,et al.,2020.Evolutionary Characteristics of Linhe Depression and Its Surrounding Areas in Hetao Basin from the Mesozoic to Cenozoic.Oil & Gas Geology,41(6):1139-1150 (in Chinese with English abstract).

[149]

Zhang,J.,Wang,Y.N.,Zhang,B.H.,et al.,2021a.Tectonothermal Events in the Central North China Craton since the Mesozoic and Their Tectonic Implications:Constraints from Low-Temperature Thermochronology.Tectonophysics,804:228769.https://doi.org/10.1016/j.tecto.2021.228769

[150]

Zhang,H.Z.,Lu,H.Y.,Zhou,Y.L.,et al.,2021b.Heavy Mineral Assemblages and UPb Detrital Zircon Geochronology of Sediments from the Weihe and Sanmen Basins:New Insights into the Pliocene-Pleistocene Evolution of the Yellow River.Palaeogeography,Palaeoclimatology,Palaeoecology,562:110072.https://doi.org/10.1016/j.palaeo.2020.110072

[151]

Zhang,J.,Geng,H.P.,Pan,B.T.,et al.,2022.Coupling of Tectonic Uplift and Climate Change as Influences on Drainage Evolution:A Case Study at the NE Margin of the Tibetan Plateau.CATENA,216:106433.https://doi.org/10.1016/j.catena.2022.106433

[152]

Zheng,D.,Wang,W.T.,Wan,J.L.,et al.,2017.Progressive Northward Growth of the Northern Qilian Shan-Hexi Corridor (Northeastern Tibet) during the Cenozoic.Lithosphere,9:408-416.https://doi.org/10.1130/l587.1

[153]

Zhou,S.Z.,Wang,X.L.,Wang,J.,et al.,2006.A Preliminary Study on Timing of the Oldest Pleistocene Glaciation in Qinghai-Tibetan Plateau.Quaternary International,154:44-51.https://doi.org/10.1016/j.quaint.2006.02.002

[154]

Zhou,Z.C.,2020.Fault Structural Style Analysis and Favorable Tectonic Zone Evaluation of Linhe Depression in Hetao Basin (Dissertation).China University of Geosciences,Beijing(in Chinese with English abstract).

基金资助

国家自然科学基金(41972212;42030305)

三峡库区地质灾害教育部重点实验室(三峡大学)开放研究基金(2023KDZ14)

湖北省楚天学者人才计划(8210403)

AI Summary AI Mindmap
PDF (15350KB)

454

访问

0

被引

详细

导航
相关文章

AI思维导图

/