拉萨地块钾质‒超钾质火山岩或为高分异岩石:来自铷、铯富集的证据
车东 , 郑绵平 , 赵元艺 , 张照志
地球科学 ›› 2024, Vol. 49 ›› Issue (03) : 850 -867.
拉萨地块钾质‒超钾质火山岩或为高分异岩石:来自铷、铯富集的证据
Potassic-Ultrapotassic Volcanic Rocks in the Lhasa Block may be Highly Differentiated Rocks: Evidence from Rubidium and Cesium Enrichment
青藏地区拉萨地块、羌塘地块、松潘甘孜‒可可西里地块中,广泛发育后碰撞以来的钾质‒超钾质火山岩.在上述众多钾质‒超钾质火山岩研究数据中,拉萨地块的Rb、Cs等稀碱元素的超常富集程度远高于其他两地块,为了将此现象量化表述,并且尝试对富集原因进行探究.本文通过实测和已公开发表的数据,运用箱线图等统计方法,以及系统的矿物学、地球化学分析手段,量化了三大地块稀碱元素富集程度,对富集成因有了初步认识.结果表明拉萨地块钾质‒超钾质火山岩存在较高程度的岩浆分异是导致Rb、Cs等稀碱元素超常富集的主要原因,超常富集区主要分布于火山岩年龄范围为25~13 Ma之间的拉萨地块中西部.并且类比高分异花岗岩的研究成果划分了拉萨地块钾质‒超钾质火山岩较高程度分异的Zr/Hf和Nb/Ta判别范围.
拉萨地块 / 钾质‒超钾质火山岩 / 稀碱元素富集 / 高分异 / 西藏 / 矿物学 / 地球化学
Lhasa terrane / potassic-ultrapotassic volcanic rocks / rare alkaline elements enrichment / high differentiation / Xizang / mineralogy / geochemistry
| [1] |
Ahrens, L. H., Pinson, W. H., Kearns, M. M., 1952. Association of Rubidium and Potassium and Their Abundance in Common Igneous Rocks and Meteorites. Geochimica et Cosmochimica Acta, 2(4): 229-242. https://doi.org/10.1016/0016-7037(52)90017-3 |
| [2] |
Bouseily, A. M., Sokkary, A. A., 1975. The Relation between Rb, Ba and Sr in Granitic Rocks. Chemical Geology, 16(3): 207-219. https://doi.org/10.1016/0009-2541(75)90029-7 |
| [3] |
Castillo, P. R., Janney, P. E., Solidum, R. U., 1999. Petrology and Geochemistry of Camiguin Island, Southern Philippines: Insights to the Source of Adakites and other Lavas in a Complex Arc Setting. Contributions to Mineralogy and Petrology, 134(1): 33-51. https://doi.org/10.1007/s004100050467 |
| [4] |
Chen, J. L., Xu, J. F., Kang, Z. Q., et al., 2006. Origin of the Miocene Bugasi Group Volcanic Rocks in the Cuoqin County, Western Tibetan Plateau. Acta Petrologica Sinica, 22(3): 585-594 (in Chinese with English abstract). |
| [5] |
Chen, J. L., Xu, J. F., Kang, Z. Q., et al., 2007. Geochemistry and Origin of Miocene Volcanic Rocks in Cazé Area, South-Western Qinghai-Xizang Plateau. Geochimica, 36(5): 437-447 (in Chinese with English abstract). |
| [6] |
Chen, J. L., Xu, J. F., Wang, B. D., et al., 2010. Origin of Cenozoic Alkaline Potassic Volcanic Rocks at KonglongXiang, Lhasa Terrane, Tibetan Plateau: Products of Partial Melting of a Mafic Lower-Crustal Source? Chemical Geology, 273(3-4): 286-299. https://doi.org/10.1016/j.chemgeo.2010.03.003 |
| [7] |
Chi, X. G., Dong, C. Y., Liu, J. F., et al., 2006. High Mg# and Low Mg# Potassic-Ultrapotassic Volcanic Rocks and Their Source Nature on the Tibetan Plateau. Acta Petrologica Sinica, 22(3): 595-602 (in Chinese with English abstract). |
| [8] |
Clague, D. A., 1978. The Oceanic Basalt-Trachyte Association: An Explanation of the Daly Gap. Journal of Geology, 86(6): 739-743. https://doi.org/10.1086/649740 |
| [9] |
Coulon, C., Maluski, H., Bollinger, C., et al., 1986. Mesozoic and Cenozoic Volcanic Rocks from Central and Southern Tibet: 39Ar-40Ar Dating, Petrological Characteristics and Geodynamical Significance. Earth and Planetary Science Letters, 79(3-4): 281-302. https://doi.org/10.1016/0012-821X(86)90186-X |
| [10] |
Ding, L., Kapp, P., Zhong, D., et al., 2003. Cenozoic Volcanism in Tibet: Evidence for a Transition from Oceanic to Continental Subduction. Journal of Petrology, 44(10): 1833-1865. https://doi.org/10.1093/petrology/egg061 |
| [11] |
Ding, L., Yue, Y. H., Cai, F. L., et al., 2006. 40Ar/39Ar Geochronology, Geochemical and Sr-Nd-O Isotopic Characteristics of the High-Mg Ultrapotassic Rocks in Lhasa Block of Tibet: Implications in the Onset Time and Depth of NS-Striking Rift System. Acta Geologica Sinica, 80(9): 1252-1261 (in Chinese with English abstract). |
| [12] |
Ding, L., Zhang, J. J., Zhou, Y., et al., 1999. Tectonic Implication on the Lithosphere Evolution of the Tibet Plateau: Petrology and Geochemistry of Sodic and Ultrapotassic Volcanism in Northern Tibet. Acta Petrologica Sinica, 15(3): 408-420 (in Chinese with English abstract). |
| [13] |
Dong, C. Y., 2006. Genesis Study on Cenozoic High Mg# Potassic Volcanic Rocks in Qiangtang, Northern Qinghai-Tibet Plateau (Dissertation). Jilin University, Changchun (in Chinese with English abstract). |
| [14] |
Dong, Y. H., Wang, Q., Xu, J. F., et al., 2008. Dongyue Lake Adakitic Volcanic Rocks with High Mg# in North Qiangtang Block: Petrogenesis and Its Tectonic Implication. Acta Petrologica Sinica, 24(2): 291-302 (in Chinese with English abstract). |
| [15] |
Fan, L. F., 2015.Geochemistry of the Cenozoic Bamaoqiongzong Voicanic Rocksin Qiangtang and Its Tectonic Evolution of Lithosphere (Dissertation). Jilin University, Changchun (in Chinese with English abstract). |
| [16] |
Gao, L. E., Zeng, L.S., Yan, L. L., et al., 2022. Changes in the Melt Structure and Enrichment of Rare Metals W-Sn-Nb-Ta in Granitic Magma: An Example from the Xiaru Early Paleozoic Granites. Acta Petrologica Sinica, 38(11): 3281-3301 (in Chinese with English abstract). |
| [17] |
Green, T. H., 1995. Significance of Nb/Ta as an Indicator of Geochemical Processes in the Crust-Mantle System. Chemical Geology, 120(3-4): 347-359. https://doi.org/10.1016/0009-2541(94)00145-X |
| [18] |
Guo, Z. F., Wilson, M., Liu, J. Q., et al., 2006. Post-Collisional, Potassic and Ultrapotassic Magmatism of the Northern Tibetan Plateau: Constraints on Characteristics of the Mantle Source, Geodynamic Setting and Uplift Mechanisms. Journal of Petrology, 47(6): 1177-1220. https://doi.org/10.1093/petrology/egl007 |
| [19] |
Harrison, T. M., Lovera, O. M., Grove, M., 1997. New Insights into the Origin of Two Contrasting Himalayan Granite Belts. Geology, 25(10): 899. https://doi.org/10.1130/0091-7613(1997)0250899: niitoo>2.3.co;2 |
| [20] |
Hildreth, W., 2004. Volcanological Perspectives on Long Valley, Mammoth Mountain, and Mono Craters: Several Contiguous but Discrete Systems. Journal of Volcanology and Geothermal Research, 136(3-4): 169-198. https://doi.org/10.1016/j.jvolgeores.2004.05.019 |
| [21] |
Hou, Z. Q., Duan, L. F., Lu, Y. J., et al., 2015. Lithospheric Architecture of the Lhasa Terrane and Its Control on Ore Deposits in the Himalayan-Tibetan Orogen. Economic Geology, 110(6): 1541-1575. https://doi.org/10.2113/econgeo.110.6.1541 |
| [22] |
Hu, W. J., Tian, S. H., Yang, Z. S., et al., 2012.Petrogenesis of Miocene Chajiasi Potassic Rocks in Western Lhasa Block Tibetan Plateau: Constraints from Litho Geochemistry Geochronology and Sr-Nd Isotopes. Mineral Deposits,31(4):813-830 (in Chinese with English abstract). |
| [23] |
Irber, W., 1999. The Lanthanide Tetrad Effect and Its Correlation with K/Rb, Eu/Eu, Sr/Eu, Y/Ho, and Zr/Hf of Evolving Peraluminous Granite Suites. Geochimica et Cosmochimica Acta, 63(3-4): 489-508. https://doi.org/10.1016/s0016-7037(99)00027-7 |
| [24] |
Jahn, B. M., Wu, F. Y., Capdevila, R., et al., 2001. Highly Evolved Juvenile Granites with Tetrad REE Patterns: The Woduhe and Baerzhe Granites from the Great Xing’an Mountains in NE China. Lithos, 59(4): 171-198. https://doi.org/10.1016/S0024-4937(01)00066-4 |
| [25] |
Jiang, D. H., Liu, J. Q., Ding, L., 2008. Geochemistry and Petrogenesis of Cenozoic Potassic Volcanic Rocks in the Hoh Xil Area, Northern Tibet Plateau. Acta Petrologica Sinica, 24(2): 279-290 (in Chinese with English abstract). |
| [26] |
Jiang, S. Y., Wang, W., 2022. How does Hyper- Enrichment of Strategic Key Metals Occur in Mineralization? Earth Science, 47(10): 3869-3871 (in Chinese with English abstract). |
| [27] |
Jiang, Y. S., Zhou, Y. Y., Wang, M. G., et al., 2003. Characteristics and Geological Significance of Quaternary Volcanic Rocks in the Central Segment of the Gangdise Area. Regional Geology of China, 22(1): 16-20 (in Chinese with English abstract). |
| [28] |
King, P. L., White, A. J. R., Chappell, B. W., et al., 1997. Characterization and Origin of Aluminous A-Type Granites from the Lachlan Fold Belt, Southeastern Australia. Journal of Petrology, 38(3): 371-391. https://doi.org/10.1093/petroj/38.3.371 |
| [29] |
Lai, S. C., Liu, C. Y., Yi, H. S., 2003. Geochemistry and Petrogenesis of Cenozoic Andesite-Dacite Associations from the Hoh Xil Region, Tibetan Plateau. International Geology Review, 45(11): 998-1019. https://doi.org/10.2747/0020-6814.45.11.998 |
| [30] |
Lai, S. C., Liu, C. Y., O’Reilly, S. Y., et al., 2001. The Genesis of the Neotertiary High-Potassium Calc-Alkaline Volcanic System of North Qiangtang and Its Continental Dynamics Significance. Science in China (Series D), 31(Suppl.): 34-42 (in Chinese). |
| [31] |
Lai, S. C., Qin, J. F., Li, Y. F., et al., 2007. Geochemistry and Petrogenesis of the Alkaline and Caic-Alkaline Series Cenozoic Volcanic Rocks from Huochetou Mountain, Tibetan Plateau. Acta Petrologica Sinica, 23(4): 709-718 (in Chinese with English abstract). |
| [32] |
Lee, C. T. A., Morton, D. M., 2015. High Silica Granites: Terminal Porosity and Crystal Settling in Shallow Magma Chambers. Earth and Planetary Science Letters, 409: 23-31. https://doi.org/10.1016/j.epsl.2014.10.040 |
| [33] |
Li, X. H., Liu, Y., Tu, X. L., et al., 2002. Precise Determination of Chemical Compositions in Silicate Rocks Using ICP AESand ICP MS: A Comparative Study of Sample Digestion Techniquesof Alkali Fusion and Acid Dissolution. Geochimica, 31(3): 289-294 (in Chinese with English abstract). |
| [34] |
Li, Y. L., Zhang, H. F., Guo, J. H., et al., 2017. Petrogenesis of the Huili Paleoproterozoic Leucogranite in the Jiaobei Terrane of the North China Craton: a Highly Fractionated Albite Granite Forced by K-Feldspar Fractionation. Chemical Geology, 450: 165-182. https://doi.org/10.1016/j.chemgeo.2016.12.029 |
| [35] |
Lin, J. H., 2003. Cenozoic High-Potassium Calc-Alkaline Volcanic Rocks and Crust-Mantle Interaction in Northern Tibet Plateau (Dissertation). Chengdu University of Technology, Chengdu (in Chinese with English abstract). |
| [36] |
Linnen, R. L., Keppler, H., 2002. Melt Composition Control of Zr/Hf Fractionation in Magmatic Processes. Geochimica et Cosmochimica Acta, 66(18): 3293-3301. https://doi.org/10.1016/S0016-7037(02)00924-9 |
| [37] |
Liu, D., 2017. Geochemistry and Petrogenesis of the Postcollisional Potassic-Ultrapotassic Rocks in Tibetan Plateau (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract). |
| [38] |
Liu, S., Hu, R. Z., Chi, X. G., et al., 2003. Geochemical Characteristics and Petrogenesis of the Post Collision Ultrapotassium Volcanic Rocks in Qiangtang Rock Zone. Geotectonica et Metallogenia, 27(2): 167-175 (in Chinese with English abstract). |
| [39] |
Liu, Y. F., Xu, J. F., Zhang, Z. F., et al., 2018. Ca-Mg Isotopic Compositions of Ultra-Potassic Volcanic Rocks in the Lhasa Terrane, Southern Tibet and Their Geological Implications. Acta Geologica Sinica, 92(3): 545-559 (in Chinese with English abstract). |
| [40] |
Mahood, G., Hildreth, W., 1983. Large Partition Coefficients for Trace Elements in High-Silica Rhyolites. Geochimica et Cosmochimica Acta, 47(1): 11-30. https://doi.org/10.1016/0016-7037(83)90087-X |
| [41] |
Miller, C., Schuster, R., Klötzli, U., et al., 1999. Post-Collisional Potassic and Ultrapotassic Magmatism in SW Tibet: Geochemical and Sr-Nd-Pb-O Isotopic Constraints for Mantle Source Characteristics and Petrogenesis. Journal of Petrology, 40(9): 1399-1424. https://doi.org/10.1093/petroj/40.9.1399 |
| [42] |
Mo, X. X., Zhao, Z. D., Yu, X. H., et al., 2009. Cenozoic Collisional-Post-Collisional Igneous Rocks of the Qinghai-Tibet Plateau. Geological Publishing House, Beijing (in Chinese). |
| [43] |
Murray, M. M., Rogers, J. J. W., 1973. Distribution of Rubidium and Strontium in the Potassium Feldspars of Two Granite Batholiths. Geochemical Journal, 6(3): 117-130. https://doi.org/10.2343/geochemj.6.117 |
| [44] |
Münker, C., Pfänder, J. A., Weyer S., et al., 2003. Evolution of Planetary Cores and the Earth-Moon System from Nb/Ta Systematics. Science, 301(5629): 84-87. https://doi.org/10.1126/science.1084662 |
| [45] |
Nomade, S., Renne, P. R., Mo, X. X., et al., 2004. Miocene Volcanism in the Lhasa Block, Tibet: Spatial Trends and Geodynamic Implications. Earth and Planetary Science Letters, 221(1-4): 227-243. https://doi.org/10.1016/S0012-821X(04)00072-X |
| [46] |
Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81. https://doi.org/10.1007/BF00384745 |
| [47] |
Rollinson, H. R., 1993. Using Geochemical Data: Evaluation, Presentation, Interpretation. Longman, Harlow. https://doi.org/10.1017/9781108777834 |
| [48] |
Rudnick, R. L., Gao, S., 2014. Composition of the Continental Crust. In: Holland, H. D., Turekianeds, K. K., eds., Treatise on Geochemistry. Elsevier, Amsterdam. https://doi.org/10.1016/b978- 0-08-095975-7.00301-6 |
| [49] |
Stepanov, A. S., Mavrogenes, J.A., Meffre, S., et al., 2014. The Key Role of Mica during Igneous Concentration of Tantalum. Contributions to Mineralogy and Petrology, 167(6): 1009. https://doi.org/10.1007/s00410-014-1009-3 |
| [50] |
Sun, C. G., Zhao, Z. D., Mo, X. X., et al., 2008. Enriched Mantle Source and Petrogenesis of Sailipu Ultrapotassic Rocks in Southwestern Tibetan Plateau: Constraints from Zircon U-Pb Geochronology and Hf Isotopic Compositions. Acta Petrologica Sinica, 24(2): 249-264 (in Chinese with English abstract). |
| [51] |
Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 |
| [52] |
Taylor, S. R., Heier, K. S., 1960. The Petrological Significance of Trace Element Variations in Alkali Feldspars. The XXI International Geological Congress, Copenhagen. |
| [53] |
Wang, B. D., Chen, L. K., Xu, J. F., et al., 2011. Identification and Petrogenesis of Potassic Volcanic Rocks with “Ultrapotassic” Characteristics from Maqiang Area in Lhasa Block. Acta Petrologica Sinica, 27(6): 1662-1674 (in Chinese with English abstract). |
| [54] |
Wang, B. D., Xu, J. F., Zhang, X. G., et al., 2008. Petrogenesis of Miocene Volcanic Rocks in the Sailipu Area, Western Tibetan Plateau: Geochemical and Sr-Nd Isotopic Constraints. Acta Petrologica Sinica, 24(2): 265-278 (in Chinese with English abstract). |
| [55] |
Wang, C. S., 2001. The Geological Evolution and Prospective Oil and Gas Assessment of the Qiangtang Basin in Northern Tibetan Plateau. Geological Publishing House, Beijing (in Chinese). |
| [56] |
Williams, H. M., Turner, S. P., Pearce, J. A., et al., 2004. Nature of the Source Regions for Post-Collisional, Potassic Magmatism in Southern and Northern Tibet from Geochemical Variations and Inverse Trace Element Modelling. Journal of Petrology, 45(3): 555-607. https://doi.org/10.1093/petrology/egg094 |
| [57] |
Winchester, J. A., Floyd, P. A., 1977. Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements. Chemical Geology, 20: 325-343. https://doi.org/10.1016/0009-2541(77)90057-2 |
| [58] |
Wu, F. Y., Lu, X. C., Ji, W. Q., et al., 2017. Highly Fractionated Granites: Recognition and Research. Science in China (Series D), 47(7): 745-765 (in Chinese). |
| [59] |
Xia, B., Lin, Q. C., Zhang, Y. Q., et al., 2006. The Types of Volcanic Rocks for the Bamaoqiongzong-Yongbocuo and Qiangbaqian in the Northern Tibet the Dating of 40Ar-39Ar and Its Geological Implications. Acta Geologica Sinica, 80(11): 1676-1682 (in Chinese with English abstract). |
| [60] |
Xiang, Y. X., Yang, J. H., Chen, J. Y., et al., 2017. Petrogenesis of Lingshan Highly Fractionated Granites in the Southeast China: Implication for Nb-Ta Mineralization. Ore Geology Reviews, 89: 495-525. https://doi.org/10.1016/j.oregeorev.2017.06.029 |
| [61] |
Xu, B., Jiang, S. Y., Wang, R., et al., 2015. Late Cretaceous Granites from the Giant Dulong Sn-Polymetallic Ore District in Yunnan Province, South China: Geochronology, Geochemistry, Mineral Chemistry and Nd-Hf Isotopic Compositions. Lithos, 218-219: 54-72. https://doi.org/10.1016/j.lithos.2015.01.004 |
| [62] |
Xu, L. K., 2019. Chronology, Geochemistry and Rock Genesis of Potassium-Ultrapotassium Volcanic Rocks in the Temple Group of the Middle Section of Lhasa Block (Disseration). Chengdu University of Technology, Chengdu (in Chinese with English abstract). |
| [63] |
Zhai, Q. G., Li, C., Wang, J., et al., 2009. 40Ar/39Ar Dating for Cenozoic Potassic Volcanic Rocks in Northern Gemucuo from Qiangtang, Northern Tibet, China. Geological Bulletin of China, 28(9): 1221-1228 (in Chinese with English abstract). |
| [64] |
Zhang, R., 2018. Petrogenesis of the Cenozoic Alkaline Potassic Ultrapotassic Volcanic Rocks from Qiangtang, Northern Tibet (Disseration). Jilin University, Changchun (in Chinese with English abstract). |
| [65] |
Zhang, Y. L., 2018. Geological Characteristics of Cenozoic Volcanic Rocks and Its Geodynamic Implication in Shiquanhe-Gerze Area on Qinghai-Tibet Pleatue (Disseration). China University of Geoscience, Beijing (in Chinese with English abstract). |
| [66] |
Zhao, Z., Chi, X. G., Liu, J. F., et al., 2009. Geochemical Feature and Its Tectonic Significance of Gemucuo Oligocene Potassic Volcanic Rocks in the Qiangtang Area, Tibet, China. Geological Bulletin of China, 28(4): 463-473 (in Chinese with English abstract). |
| [67] |
Zhao, Z. D., Mo, X. X., Zhu, D. C., et al., 2009. Petrogenesis and Implications of the Volcanic Rocks in Zabuye Salt Lake Area, Western Lhasa Terrane, Tibet, China. Geological Bulletin of China, 28(12): 1730-1740 (in Chinese with English abstract). |
| [68] |
Zheng, M. P., Wang, Q. X., Duo, J., et al., 1995. A New Type of Hydrothermal Deposit: Cesium Bearing Geyserite in Tibet. Geological Publishing House, Beijing (in Chinese). |
| [69] |
Zheng, M. P., Chen, W. X., Qi, W., 2016. New Findings and Perspective Analysis of Prospecting for Volcanic Sedimentary Boron Deposits in the Tibetan Plateau. Acta Geoscientica Sinica, 37(4): 407-418 (in Chinese with English abstract). |
国家自然科学基金项目(91962219)
西藏自治区科技计划重大专项(XZ202201ZD0004G01)
第二次青藏高原综合科学考察研究专题(2022QZKK0201)
/
| 〈 |
|
〉 |