拉萨地块钾质‒超钾质火山岩或为高分异岩石:来自铷、铯富集的证据

车东 ,  郑绵平 ,  赵元艺 ,  张照志

地球科学 ›› 2024, Vol. 49 ›› Issue (03) : 850 -867.

PDF (6577KB)
地球科学 ›› 2024, Vol. 49 ›› Issue (03) : 850 -867. DOI: 10.3799/dqkx.2023.135

拉萨地块钾质‒超钾质火山岩或为高分异岩石:来自铷、铯富集的证据

作者信息 +

Potassic-Ultrapotassic Volcanic Rocks in the Lhasa Block may be Highly Differentiated Rocks: Evidence from Rubidium and Cesium Enrichment

Author information +
文章历史 +
PDF (6733K)

摘要

青藏地区拉萨地块、羌塘地块、松潘甘孜‒可可西里地块中,广泛发育后碰撞以来的钾质‒超钾质火山岩.在上述众多钾质‒超钾质火山岩研究数据中,拉萨地块的Rb、Cs等稀碱元素的超常富集程度远高于其他两地块,为了将此现象量化表述,并且尝试对富集原因进行探究.本文通过实测和已公开发表的数据,运用箱线图等统计方法,以及系统的矿物学、地球化学分析手段,量化了三大地块稀碱元素富集程度,对富集成因有了初步认识.结果表明拉萨地块钾质‒超钾质火山岩存在较高程度的岩浆分异是导致Rb、Cs等稀碱元素超常富集的主要原因,超常富集区主要分布于火山岩年龄范围为25~13 Ma之间的拉萨地块中西部.并且类比高分异花岗岩的研究成果划分了拉萨地块钾质‒超钾质火山岩较高程度分异的Zr/Hf和Nb/Ta判别范围.

关键词

拉萨地块 / 钾质‒超钾质火山岩 / 稀碱元素富集 / 高分异 / 西藏 / 矿物学 / 地球化学

Key words

Lhasa terrane / potassic-ultrapotassic volcanic rocks / rare alkaline elements enrichment / high differentiation / Xizang / mineralogy / geochemistry

引用本文

引用格式 ▾
车东,郑绵平,赵元艺,张照志. 拉萨地块钾质‒超钾质火山岩或为高分异岩石:来自铷、铯富集的证据[J]. 地球科学, 2024, 49(03): 850-867 DOI:10.3799/dqkx.2023.135

登录浏览全文

4963

注册一个新账户 忘记密码

青藏高原拉萨地块、羌塘地块、松潘甘孜‒可可西里地块中广泛发育后碰撞以来的钾质‒超钾质火山岩,国内外众多学者对以上地区火山岩侧重从形成时代、构造背景、源区性质等方面进行了数十年的深入研究(Coulon et al.,1986Harrison et al.,1997Miller et al.,1999Ding et al.,2003Guo et al.,2006;孙晨光等,2008;莫宣学等,2009;赵志丹等,2009;刘栋,2017),取得了众多进展.例如,后碰撞岩浆活动的空间分布受到东‒西向伸展构造的控制(丁林等,2006;赵志丹等,2009);后碰撞阶段(25~10 Ma)加厚岩石圈地幔底部发生了对流减薄/拆沉作用(刘栋,2017);拉萨地块中麻江地区富钾火山岩产出于伸展的构造环境(Coulon et al.,1986);拉萨地块雄巴地区后碰撞钾质中酸性火山岩起源于地壳的部分熔融(Miller et al.,1999);印度大陆地壳物质和俯冲的特提斯洋壳沉积物对超钾质岩石地幔源区具有交代富集作用(孙晨光等,2008;赵志丹等,2009;刘栋,2017);拉萨地块部分钾质中酸性火山岩具有埃达克岩的地球化学特征,并且含有俯冲的印度大陆地壳物质(Chen et al.,2010;刘栋,2017).羌塘地块位于班公湖‒怒江缝合带以北,后碰撞岩浆作用开始于始新世早期,包括羌塘北部45~27 Ma和羌塘南部鱼鳞山组~30 Ma的钾质‒超钾质火山岩(Ding et al.,2003Guo et al.,2006).松潘甘孜‒可可西里地块位于金沙江缝合带以北,岩浆活动记录较少,零散分布钾质‒超钾质粗玄岩(Guo et al.,2006)(图1).
岩体中Li、Rb、Cs等稀碱金属富集的研究表明高分异花岗岩和伟晶岩为其主要载体,并将Zr/Hf<38和Nb/Ta<17作为区分高分异花岗岩的主要标志(吴福元等,2017).在Li、Rb、Cs富集程度较高的花岗片麻岩分异研究中,高利娥等(2022)认为富Nb-Ta的花岗片麻岩分离结晶程度更高,并认为当Zr/Hf=20时,花岗质熔体从富钾质变成富钠质.富钾质岩石稀碱金属元素富集现象并不常见,因为在岩体中稀碱金属元素富集程度不能达到可开采利用的级别,所以在前人众多的研究中并没有对其富集现象进行总结论述.虽然青藏高原钾质‒超钾质火山岩中的稀碱金属元素不能单独成矿,但是可以为现代热泉型Cs- B-Li-Au矿和盐湖类矿产提供重要的成矿物质.
对于现代热泉型Cs-B-Li-Au矿,与成矿相关的热水流体和富B、高Li、Cs岩石发生水岩反应,导致了区域热泉流体中稀碱金属的高度富集.热泉中Cs常赋存于蛋白石等矿物中,并进一步富集成矿(郑绵平等,1995).与风化‒沉积作用相关的盐湖型Li、Rb、Cs矿床是稀有金属成矿的重要类型(蒋少涌和王微,2022).盐湖中为稀碱金属的大量浓集提供成矿物质的两个主要途径分别为:含矿热泉流体注入和岩体风化淋滤并通过河流向盐湖注入.青藏高原大量盐湖高度富集Li、Rb、Cs等稀碱金属,所以有理由猜测盐湖附近的火山岩岩体也存在Rb、Cs等稀碱元素的富集.例如,雄巴盆地钾质‒超钾质火山岩中存在较高的B、Li、Rb和Cs异常(郑绵平等,2016),为邻区的聂尔错盐湖提供了大量的B、Li和Cs成矿物质.本文对青藏高原后碰撞钾质‒超钾质火山岩Rb和Cs含量进行统计分析,总结Rb和Cs的富集状况,并尝试通过地球化学手段对富集成因进行解释.通过本文分析,希望对青藏高原现代热泉型矿和盐湖类矿产成矿物质来源、火山岩源区研究提供更多素材.

1 三大地块钾质‒超钾质火山岩分布及特征

青藏高原后碰撞岩浆活动的岩石类型多样,且广泛分布于藏南拉萨地块、藏北的羌塘地块和松潘甘孜‒可可西里地块(Coulon et al.,1986;Harrison et al.,1997;Ding et al.,2003;莫宣学等,2009).

拉萨地块钾质‒超钾质火山岩主要分布于狮泉河、革吉、查加寺、亚热、雄巴、学那、赛利普、麦嘎乡、扎布耶、布嘎寺、孔隆乡、贡木淌、措勤县、许如错、当惹雍错、文部、查孜、仪仟、米巴勒、Pabbai zong、南木林、麻江、羊应等地区(刘栋,2017).藏南拉萨地块超钾质火山岩主要为以火山熔岩形式产出的粗面安山岩、玄武粗安岩和碱玄岩(赵志丹等,2009),钾质火山岩主要岩性包括粗面岩、粗面英安岩、英安岩和流纹岩(刘栋,2017).拉萨地块钾质‒超钾质火山岩斑状结构中,斑晶所占比例10%~20%,斑晶矿物包括钾长石、斜长石、透长石、角闪石、黑云母、辉石、橄榄石、金云母等,以上斑晶组合显示岩浆结晶分异作用广泛存在;基质为粗玄结构、粗面结构和隐晶质结构,成分基本与斑晶相同(董彦辉等,2008;张蕊,2018).

羌塘地块钾质‒超钾质火山岩分布于鱼鳞山、火车头山、尖顶包、半岛湖、浩波湖、戈木错、走构油茶错、多格错仁、枕头崖等地.岩石类型主要以碱玄岩‒玄武粗安岩‒粗面安山岩‒粗面岩‒流纹岩等组合为主(丁林等,1999;赖绍聪等,2001;王成善,2001;林金辉,2003).岩石多具斑状结构,斑晶所占比例10%~20%.斑晶矿物以斜长石、单斜辉石、橄榄石、石英、角闪石和黑云母为主.基质多具有玻晶交织结构、隐晶质结构(董春艳,2006).

松潘甘孜‒可可西里地块钾质‒超钾质火山岩分布于涌波错、黑驼峰、马兰山、饮马湖、五雪峰山、可考湖等地区.岩石类型为安粗岩和粗面岩,其次是石英粗面岩及流纹岩.火山岩具有斑状结构,斑晶所占比例为20%左右,斑晶矿物多为单斜辉石、斜方辉石、斜长石、角闪石,基质为长石微晶,具有交织结构(林金辉,2003).

2 样品测试与文献数据来源

本文用于主量、微量和稀土元素分析的实测样品为8件雄巴盆地色卡执地区钾质‒超钾质火山岩,包括粗面安山岩(SKZ-5-2、SKZ-7-6、SKZ-14-2、SKZ-10-2)、粗面岩(SKZ-7-7、SKZ-14-1)、流纹岩(SKZ-5-1、SKZ-10-1)(附表1).主、微量元素测试实验在核工业北京地质研究院完成.选取去除风化壳后的新鲜未蚀变样品,然后分别用破碎机和球磨仪将样品处理至粒级为200目.主量元素测试仪器为AxiosmAX型X射线荧光光谱仪,分析精度优于2%;微量元素测试仪器为Agilent-7500a型等离子体质谱仪,样品测定值和推荐值的相对误差小于10%,且大多数微量元素的分析误差在5%以内,分析方法的实验流程及其误差、精度等详见李献华等(2002).薄片显微观察在自然资源部盐湖资源与环境重点实验室显微照相实验室完成,仪器型号为LEICA-DM4500.

三大地块钾质‒超钾质火山岩Rb、Cs含量以及年龄的统计数据列于表1.(本文测试的8件雄巴盆地色卡执地区火山岩样品与文献中雄巴盆地65组数据范围存在重合,所以在数据分析时未做区分标注处理).

3 钾质‒超钾质火山岩分类及稀碱元素含量

3.1 三大地块钾质‒超钾质火山岩类别

将三大地块火山岩主量元素数据去掉烧失量、换算后投入Nb/Y-SiO2图解(图2a),显示大部分数据投入粗面安山岩、粗面岩、钠闪碱流纹岩、碱性玄武岩区域,少部分投入流纹岩、流纹英安岩、响岩区域.在SiO2-K2O图解中(图2b),三大地块钾质‒超钾质火山岩投点全部位于高钾钙碱性系列和橄榄玄粗岩系.

拉萨地块雄巴盆地色卡执地区钾质‒超钾质火山岩类型主要为粗面岩、粗面安山岩、流纹岩等(图3a~3d).火山岩斑状结构中斑晶矿物包括钾长石、斜长石、角闪石、黑云母、辉石、橄榄石、金云母等(图3e~3j).

3.2 三大地块钾质‒超钾质火山岩Rb、Cs含量统计

钾质‒超钾质火山岩Rb含量的平均值分别为:拉萨地块517.23×10-6,共331组数据;羌塘地块165.14×10-6,共188组数据;松潘甘孜‒可可西里地块平均值为171.29×10-6,共55组数据(表1图4a).

钾质‒超钾质火山岩Cs含量的平均值分别为:拉萨地块40.43×10-6,共235组数据;羌塘地块7.42×10-6,共170组数据;松潘甘孜‒可可西里地块11.09×10-6,共41组数据(表1图4b).

Rb在地壳中的丰度为78×10-6,Cs在地壳中的丰度为2.6×10-6.相比于地壳Rb丰度,三大地块钾质‒超钾质火山岩中(以平均值计)拉萨地块为地壳的6.63倍,羌塘地块为2.11倍,松潘甘孜‒可可西里地块为2.19倍;相比于地壳Cs丰度,拉萨地块为地壳的15.55倍,羌塘地块为2.85倍,松潘甘孜‒可可西里地块为4.27倍.由此可得出拉萨地块钾质‒超钾质火山岩中稀碱元素Rb、Cs含量表现为超常富集,其余两个地块富集程度明显较低.

拉萨地块钾质‒超钾质火山岩不但整体表现出Rb、Cs的超常富集,而且在中西部形成更为明显的Rb、Cs超常富集区(相比于地壳丰度,Rb大于5倍富集,Cs大于7倍富集),火山岩年龄集中分布在25~13 Ma之间(表1图1).羌塘地块和松潘甘孜‒可可西里地块的钾质‒超钾质火山岩年龄分别集中在44.66~22.68 Ma之间和18.6~7.0 Ma之间,Rb、Cs富集程度相对较弱(表1).

4 三大地块钾质‒超钾质火山岩地球化学特征

4.1 主量元素和微量元素特征

拉萨地块钾质‒超钾质火山岩在主量元素分析图解中,TiO2、P2O5、TFe、Eu、CaO和MgO皆与SiO2有明显的负相关性(图5a5c~5e5g5h);Dy/Yb和Sr/Y比值与SiO2未表现出明显的线性相关(图5k5l);Na2O、Al2O3和A/CNK与SiO2表现出正相关关系(图5b5f5i).羌塘地块和可可西里地块火山岩数据也存在类似的相关关系.

三大地块火山岩样品球粒陨石标准化稀土元素配分模式中总体特征为LREE相对富集,HREE相对亏损,松潘甘孜‒可可西里地块Eu亏损程度较大(图6e);拉萨地块呈现较弱的Eu亏损(图6a);羌塘地块几乎未出现Eu亏损(图6c),轻重稀土分馏均较弱.

原始地幔标准化微量元素蛛网图中,拉萨地块和羌塘地块钾质‒超钾质火山岩表现出Th、Ce等大离子不相容元素强烈富集,Nb、Ta、Ti等高场强元素强烈亏损的地球化学属性(图6b6d).松潘甘孜‒可可西里地块微量元素富集和亏损程度较低(图6f).

4.2 关键元素比值特征

自然界中Rb不以单独矿物形式存在,地壳中大多数Rb分散在钾矿物中.K/Rb比值是一个很好的大多数火成岩组分异趋势指标.较早的研究表明K/Rb比率在火成岩分化的主要阶段是恒定的240(Ahrens et al.,1952).随着研究程度的深入,众多文献表明K/Rb比值并非恒定,因为K/Rb比率表明了物质来源和上地幔的分化历史,随着岩浆演化的进行,Rb的富集程度普遍高于K. K/Rb比率随K的变化关系表明,该比率随着分异程度增加而降低(Murray and Rogers,1973),更高的分异程度会对应更低的K/Rb比.

笔者对拉萨地块、羌塘地块和可可西里地块的钾质‒超钾质火山岩数据进行整理,在K2O-Rb关系图解中,随着K2O含量的升高,Rb的含量也呈现出上升趋势.明显可以得出,拉萨地块火山岩Rb的含量升高得更快,羌塘地块和松潘甘孜‒可可西里地块的火山岩Rb的含量增速接近且较拉萨地块慢(图7a).通过散点密度图得出拉萨地块火山岩的K/Rb平均值为128.06(n=324),范围是33.77~235.33;羌塘地块的K/Rb平均值为279.07(n=227),范围是73.82 ~1 295.00.松潘甘孜‒可可西里地块的K/Rb平均值为254.81(n=55),范围是189.34~410.25(图7b).羌塘地块和可可西里地块的K/Rb比值表现出随K含量升高而缓慢上升的正相关关系;但在拉萨地块钾质‒超钾质火山岩中不存在这种趋势,其分布均匀且数值较低的K/Rb比率可能是岩浆发生分异作用导致的结果.

Rb在岩浆分异结晶过程中富集于残余熔体,并最终进入钾矿物中.另一方面,Sr从液相中析出,主要集中在早期形成的钙质斜长石中.因此,分异火成岩的Rb/Sr比值往往随着分异程度的增加而增加(Green,1995).拉萨地块钾质‒超钾质火山岩中Rb和Sr的浓度可以反映结晶过程中岩浆残余液体分化程度,Sr的浓度起初下降得非常轻微,但随着分化的增加,随后下降得很快.Rb浓度起初非常轻微地增加,但在高度分化的岩石中浓度显著增加(图8a).拉萨地块Rb/Sr比率起初增长很慢,随着分异程度的增加,Rb/Sr比值急剧增加至3,羌塘地块与松潘甘孜‒可可西里地块的Rb/Sr比率增长缓慢,仅表现出略微起伏的趋势(图8b).

在一般的岩浆体系中K/Rb、Nb/Ta等地球化学行为一致的元素比值不发生数值变化(Green,1995;吴福元等,2017),但在岩浆发生分异作用时,这些比值将明显减小(Linnen and Keppler,2002).相比于羌塘和可可西里地块,拉萨地块钾质‒超钾质火山岩分异程度相关参数明显低于球粒陨石,可能暗示较高程度分异的发生(图9).结合拉萨地块钾质‒超钾质火山岩具有较高的分异指数(DI=88.4~95.1,通过标准矿物计算(CIPW)),笔者认为该岩体存在较高程度的分异.

5 讨论

5.1 岩浆演化与结晶分异

大陆地壳中Rb的地球化学丰度与K关系密切,自然界中绝大多数Rb分散在钾矿物中.Li、Rb和Cs属于强不相容元素,随着岩浆结晶分异过程的发生,其在残余岩浆中得以保留,从基性岩到酸性岩稀碱元素将更加富集.Cs和Rb含量的显著增高则表明岩体更倾向于属于高分异岩石(Lee and Morton,2015).

拉萨地块钾质‒超钾质火山岩SiO2含量介于47.92%~75.3%,MgO含量(0.45%~12.5%)与Mg# (23.74~51.15)较低,相容元素如Co (2.69×10-6~36.10×10-6)与Ni (3.70×10-6~231.00×10-6)的含量亦较低,反映这些岩石可能形成于经过分离结晶作用演化的岩浆.借助瑞利分馏模型,再结合微量元素含量及特定元素在不同熔体和矿物相之间的分配系数进行定量模拟(图10).

拉萨地块火山岩具明显Ba、Sr、Eu、Ti元素负异常(图6),通常Ba、Sr、Eu富集于斜长石,而Ba和Ti元素异常分别与钾长石和金红石有关,因此上述元素负异常可能指示了岩浆在结晶过程中发生了不同程度的斜长石、钾长石和金红石分离结晶作用(Li et al.,2017)(图3i图5a图6b).与拉萨地块火山岩样品表现出的斜长石和钾长石分离结晶趋势(图10a)和残余岩浆Rb富集并具有较高的Rb/Sr比值(图8b)的现象相一致.拉萨地块火山岩具有较低的Zr含量(图5j)和Zr/Hf比值(21.9~40.8),可能与锆石的分离结晶有关(King et al.,1997),与明显锆石分馏结晶趋势相一致(图10b).拉萨地块火山岩具有更低的REE总量(图6),通常REE含量的明显偏低,多与岩浆演化过程中副矿物(磷灰石、褐帘石和独居石等)的结晶分离作用有关,与P的亏损现象相一致(图5h图6b),并且与拉萨地块火山岩样品表现出磷灰石、褐帘石和独居石分馏结晶趋势一致(图10c).此外,拉萨地块钾质‒超钾质火山岩中TFe、MgO和CaO均与SiO2表现出了明显的负相关性(图5c~5e),暗示岩浆演化过程中有明显的镁铁矿物分离结晶作用发生(图10d).石榴石的分异通常会导致Sr/Y和Dy/Yb比值随SiO2增加而增加(Castillo et al.,1999),而Dy/Yb和Sr/Y比值显示岩浆演化过程中石榴石的分异并不明显(图5k5l图10b).

稀土元素四分组效应是指在岩浆发生高度分异后,流体与熔体之间的水‒岩相互作用使得岩浆中稀土元素的地球化学行为发生改变,从而呈现特殊的配分模式 (Jahn et al.,2001).拉萨地块钾质‒超钾质火山岩稀土元素含量较低,而且具有稀土四分组效应增强的趋势(TE1,3=0.86~1.38),暗示岩浆演化过程中发生了独居石、榍石、褐帘石和磷灰石等副矿物的分离结晶(Irber,1999)(图9a9b图10c).

在正常的岩浆演化过程中,Zr和Hf不会发生分离,Zr/Hf比值应保持一致.但是,如果岩浆发生锆石的分离结晶作用,或者古老继承性锆石发生差异性溶解,或者外来流体发生交代作用,岩浆中的Zr/Hf比值会被改变(高利娥等,2022).黑云母和角闪石的分离结晶将导致残余岩浆富集Nb和Ta,并且导致岩浆的Ba/Sr和Nb/Ta比值降低 (Linnen and Keppler,2002Stepanov et al.,2014).由于地幔和地壳物质具有较低的Zr和Nb含量,Zr/Hf值在中地幔约为34.3,地壳约为36.7;Nb/Ta值在中地幔约为19.9,地壳约为13.4(Münker et al.,2003Rudnick and Gao,2014).地幔物质的参与会使岩体具有较高的Zr/Hf和Nb/Ta比值和低的Zr和Nb含量,而不会产生随着Zr含量降低,Zr/Hf比值降低的趋势(图11a).地壳物质的参与不会出现Nb/Ta比值降低,Nb和Ta含量升高的趋势(图11b11c).所以岩浆演化过程中若Zr/Hf值的降低仅由锆石结晶分异所致,那么此过程没有地壳或地幔物质的参与.

综上所述,拉萨地块钾质‒超钾质火山岩岩浆演化过程中存在较高程度的分异作用,岩浆演化后期主要以斜长石、钾长石等矿物分异为主,同时伴有部分独居石、榍石等副矿物的分离结晶.岩体高硅和富碱,较低的铁、镁、钙、钛、磷含量,Ba、Sr、P、Ti、Eu等元素显著亏损,以及较高的Rb/Sr比值和较低的K/Rb比值,均充分表明岩浆经历了高程度的分异演化.

5.2 岩石成因与Rb和Cs的富集

粗面岩、粗安岩、流纹英安岩等共生火山岩组合的成因普遍被认为是玄武质岩浆分异导致的(Clague,1978).而拉萨地块在53~40 Ma时间段,新特提斯洋壳的板片断离引发了大量幔源玄武质岩浆底侵作用(刘栋,2017).玄武质岩浆需经历55%分离结晶作用才能产生粗面玄武质岩浆,从粗面玄武质岩浆到粗面质岩浆需经历15%的分离结晶作用(Clague,1978).岩浆不同程度的结晶分异作用可能是造成钾质中酸性火山岩在岩性和地球化学组成上多样性的重要原因之一.

地壳中Rb的地球化学丰度与K关系密切,(Li et al.,2017)自然界中绝大多数Rb分散在钾矿物中.Rb和Cs属于强不相容元素,伴随岩浆结晶分异程度的增加,富集程度更高,富钾矿物大量出现,为稀碱元素赋存提供载体.以Cs-Ta型伟晶岩为例,分异程度较高的锂辉石、锂云母亚类中,Rb的富集度为4~10倍,Cs的富集度为16~25倍;但是在分异程度较低的亚类中,Rb仅富集1倍,Cs仅富集3~5倍(高利娥等,2022).同为后碰撞形成的羌塘地块和可可西里地块同类型的钾质‒超钾质火山岩组合中Li未出现富集,Rb仅2倍富集,Cs为2~5倍富集.本区的Li为2倍富集,Rb为6.63倍富集,Cs为15.55倍富集.由此对比表明本区的钾质‒超钾质火山岩存在更高程度的分异.

钾质‒超钾质岩石的年龄与拉萨地块伸展构造发育时间有重叠,表明二者具有成因关联(赵志丹等,2009).25~13 Ma中相同类型的岩浆作用在相同的时间内发生,说明这些岩石具有相同或者相近的成因机制、构造环境以及岩浆的源区物质组成(Ding et al., 2003).关于拉萨地块火山岩成因,综合岩石圈地幔对流减薄模型和俯冲板片断离模型,岩石圈地幔减薄可能源于板片断离产生的软流圈上涌和热扰动(Williams et al., 2004).当岩石圈减薄大陆开始裂解,在应力释放的作用下,岩石圈地幔中减压熔融产生的玄武质岩浆沿着构造薄弱带向上侵位并经历了高程度的分离结晶作用,最终形成区域内这套Li、Rb、Cs富集的粗面岩‒粗安岩‒流纹英安岩组合.原始岩浆形成时,印度大陆北缘的地壳物质贡献或仅限于南部拉萨地块产出的后碰撞岩浆岩(Hou et al.,2015;刘栋,2017).羌塘地块和可可西里地块火山岩中未出现Rb、Cs超常富集现象,可能是原始岩浆贡献物质成分及伴生伸展构造差异和缺乏长距离运移所致.

5.3 拉萨地块钾质‒超钾质火山岩与高分异花岗岩对比

结晶分异作用是指岩浆发生结晶时,析出的矿物移出后,岩浆的成分势必将发生改变.所以矿物与岩浆的分离,是岩浆成分发生变化或分异的关键.晶粥体模型认为花岗岩与流纹岩是同空间、同物源构成的液‒固互补关系(Hildreth,2004),依据此理论既然花岗岩能够发生高度结晶分异作用,那分异的岩浆亦能喷出地表形成流纹岩.高分异花岗岩具有以下特征:(1)花岗质岩浆在结晶分异过程中Ni、Cr、Co、Sr、Ba和Zr等微量元素的显著降低,以及Li、Rb和Cs等含量的显著升高(Lee and Morton,2015).(2)K/Rb、Zr/Hf、Nb/Ta和Y/Ho等元素比值,当岩浆分异作用发生时都将显著变小(Green,1995Linnen and Keppler,2002).(3)全岩的Zr/Hf和Nb/Ta比值可以作为判别花岗质岩浆结晶分异程度的标志(吴福元等,2017).(4)高分异花岗岩稀土元素含量趋低、轻重稀土比值趋小和Eu负异常加大,指示富含稀土元素的锆石、独居石、褐帘石等及长石类矿物的分离.此外,它们多显示稀土元素的四分组效应(吴福元等,2017).

K和Rb之间的强相干性使得很难使用K/Rb比率来追踪中等分化过程.Ba/Rb 比值比 K/Rb比值在追踪钾长石分化方面更敏感(Taylor and Heier, 1960).Sr在正常花岗岩组中显示出或多或少的均匀分布,而Ba的增加伴随着Rb的减少.Rb富集发生在高分异的花岗岩中(Ahrens et al.,1952).强分异花岗岩区,其K/Rb比值在156~207 范围内,拉萨地块钾质‒超钾质火山岩为33.77~235.33,平均值为128.4,具有更低的K/Rb.高分异花岗岩是Ba贫化明显、Rb富集的花岗岩.Rb、Ba和Sr在碱性长石中的分布:Sr很容易随着分化而减少,因为它取代了斜长石中的Ca以及钾长石中的K;而Ba仅取代了钾长石中的K;从闪长岩到石英闪长岩再到花岗闪长岩,Rb含量基本保持不变.在高分异花岗岩Rb-Ba-Sr三元判别图解中,羌塘地块和可可西里地块的钾质‒超钾质火山岩的Rb含量基本保持不变,而拉萨地块钾质‒超钾质火山岩中的Rb含量呈现明显的升高趋势,并且逐步向高分异花岗岩投图区域靠近(图12a),表现出具有较高分异程度的特点.将拉萨地块钾质‒超钾质火山岩数据投点到Nb/Ta-Zr/Hf图解中,相比于高分异花岗岩的分布范围(Zr/Hf<38,Nb/Ta<17)(吴福元等,2017),本文认为存在较高分异程度的拉萨地块钾质‒超钾质火山岩的分布范围是Zr/Hf<40,Nb/Ta<20(图12b).

综合来看,拉萨地块钾质‒超钾质火山岩岩浆结晶分异过程中Cr、Ni、Co、Sr、Ba和Zr等微量元素的显著降低,K/Rb、Zr/Hf、Nb/Ta等元素比值显著变小,Rb、Cs等稀碱元素富集,亏损高场强元素,具有明显的稀土元素四分组效应,更低的K/Rb比值,更高的Rb/Sr比值,岩浆演化过程中经历了钾长石、斜长石、黑云母、磷灰石、金红石、锆石等矿物的分离结晶,均表明该岩体可能为高分异岩石.

6 结论

(1)拉萨地块钾质‒超钾质火山岩Rb平均含量为517.23×10-6,是地壳克拉克值的6.63倍,Cs平均含量为40.43×10-6,是地壳克拉克值的15.55倍,具有Rb、Cs的超常富集现象.超常富集区主要分布于火山岩年龄范围为25~13 Ma之间的拉萨地块中西部.

(2)拉萨地块钾质‒超钾质火山岩中,富集大离子不相容元素,亏损高场强元素,具有稀土元素四分组效应增强的趋势,结合元素分异的指标笔者认为岩浆演化过程中经历了钾长石、斜长石、黑云母、角闪石、磷灰石、金红石、锆石等矿物的分离结晶.

(3)通过揭示Rb、Cs富集现象,结合地球化学特征和岩浆演化趋势,以及与高分异花岗岩的对比,笔者认为拉萨地块钾

质‒超钾质火山岩可能为高分异岩石.

参考文献

[1]

Ahrens, L. H., Pinson, W. H., Kearns, M. M., 1952. Association of Rubidium and Potassium and Their Abundance in Common Igneous Rocks and Meteorites. Geochimica et Cosmochimica Acta, 2(4): 229-242. https://doi.org/10.1016/0016-7037(52)90017-3

[2]

Bouseily, A. M., Sokkary, A. A., 1975. The Relation between Rb, Ba and Sr in Granitic Rocks. Chemical Geology, 16(3): 207-219. https://doi.org/10.1016/0009-2541(75)90029-7

[3]

Castillo, P. R., Janney, P. E., Solidum, R. U., 1999. Petrology and Geochemistry of Camiguin Island, Southern Philippines: Insights to the Source of Adakites and other Lavas in a Complex Arc Setting. Contributions to Mineralogy and Petrology, 134(1): 33-51. https://doi.org/10.1007/s004100050467

[4]

Chen, J. L., Xu, J. F., Kang, Z. Q., et al., 2006. Origin of the Miocene Bugasi Group Volcanic Rocks in the Cuoqin County, Western Tibetan Plateau. Acta Petrologica Sinica, 22(3): 585-594 (in Chinese with English abstract).

[5]

Chen, J. L., Xu, J. F., Kang, Z. Q., et al., 2007. Geochemistry and Origin of Miocene Volcanic Rocks in Cazé Area, South-Western Qinghai-Xizang Plateau. Geochimica, 36(5): 437-447 (in Chinese with English abstract).

[6]

Chen, J. L., Xu, J. F., Wang, B. D., et al., 2010. Origin of Cenozoic Alkaline Potassic Volcanic Rocks at KonglongXiang, Lhasa Terrane, Tibetan Plateau: Products of Partial Melting of a Mafic Lower-Crustal Source? Chemical Geology, 273(3-4): 286-299. https://doi.org/10.1016/j.chemgeo.2010.03.003

[7]

Chi, X. G., Dong, C. Y., Liu, J. F., et al., 2006. High Mg# and Low Mg# Potassic-Ultrapotassic Volcanic Rocks and Their Source Nature on the Tibetan Plateau. Acta Petrologica Sinica, 22(3): 595-602 (in Chinese with English abstract).

[8]

Clague, D. A., 1978. The Oceanic Basalt-Trachyte Association: An Explanation of the Daly Gap. Journal of Geology, 86(6): 739-743. https://doi.org/10.1086/649740

[9]

Coulon, C., Maluski, H., Bollinger, C., et al., 1986. Mesozoic and Cenozoic Volcanic Rocks from Central and Southern Tibet: 39Ar-40Ar Dating, Petrological Characteristics and Geodynamical Significance. Earth and Planetary Science Letters, 79(3-4): 281-302. https://doi.org/10.1016/0012-821X(86)90186-X

[10]

Ding, L., Kapp, P., Zhong, D., et al., 2003. Cenozoic Volcanism in Tibet: Evidence for a Transition from Oceanic to Continental Subduction. Journal of Petrology, 44(10): 1833-1865. https://doi.org/10.1093/petrology/egg061

[11]

Ding, L., Yue, Y. H., Cai, F. L., et al., 2006. 40Ar/39Ar Geochronology, Geochemical and Sr-Nd-O Isotopic Characteristics of the High-Mg Ultrapotassic Rocks in Lhasa Block of Tibet: Implications in the Onset Time and Depth of NS-Striking Rift System. Acta Geologica Sinica, 80(9): 1252-1261 (in Chinese with English abstract).

[12]

Ding, L., Zhang, J. J., Zhou, Y., et al., 1999. Tectonic Implication on the Lithosphere Evolution of the Tibet Plateau: Petrology and Geochemistry of Sodic and Ultrapotassic Volcanism in Northern Tibet. Acta Petrologica Sinica, 15(3): 408-420 (in Chinese with English abstract).

[13]

Dong, C. Y., 2006. Genesis Study on Cenozoic High Mg# Potassic Volcanic Rocks in Qiangtang, Northern Qinghai-Tibet Plateau (Dissertation). Jilin University, Changchun (in Chinese with English abstract).

[14]

Dong, Y. H., Wang, Q., Xu, J. F., et al., 2008. Dongyue Lake Adakitic Volcanic Rocks with High Mg# in North Qiangtang Block: Petrogenesis and Its Tectonic Implication. Acta Petrologica Sinica, 24(2): 291-302 (in Chinese with English abstract).

[15]

Fan, L. F., 2015.Geochemistry of the Cenozoic Bamaoqiongzong Voicanic Rocksin Qiangtang and Its Tectonic Evolution of Lithosphere (Dissertation). Jilin University, Changchun (in Chinese with English abstract).

[16]

Gao, L. E., Zeng, L.S., Yan, L. L., et al., 2022. Changes in the Melt Structure and Enrichment of Rare Metals W-Sn-Nb-Ta in Granitic Magma: An Example from the Xiaru Early Paleozoic Granites. Acta Petrologica Sinica, 38(11): 3281-3301 (in Chinese with English abstract).

[17]

Green, T. H., 1995. Significance of Nb/Ta as an Indicator of Geochemical Processes in the Crust-Mantle System. Chemical Geology, 120(3-4): 347-359. https://doi.org/10.1016/0009-2541(94)00145-X

[18]

Guo, Z. F., Wilson, M., Liu, J. Q., et al., 2006. Post-Collisional, Potassic and Ultrapotassic Magmatism of the Northern Tibetan Plateau: Constraints on Characteristics of the Mantle Source, Geodynamic Setting and Uplift Mechanisms. Journal of Petrology, 47(6): 1177-1220. https://doi.org/10.1093/petrology/egl007

[19]

Harrison, T. M., Lovera, O. M., Grove, M., 1997. New Insights into the Origin of Two Contrasting Himalayan Granite Belts. Geology, 25(10): 899. https://doi.org/10.1130/0091-7613(1997)0250899: niitoo>2.3.co;2

[20]

Hildreth, W., 2004. Volcanological Perspectives on Long Valley, Mammoth Mountain, and Mono Craters: Several Contiguous but Discrete Systems. Journal of Volcanology and Geothermal Research, 136(3-4): 169-198. https://doi.org/10.1016/j.jvolgeores.2004.05.019

[21]

Hou, Z. Q., Duan, L. F., Lu, Y. J., et al., 2015. Lithospheric Architecture of the Lhasa Terrane and Its Control on Ore Deposits in the Himalayan-Tibetan Orogen. Economic Geology, 110(6): 1541-1575. https://doi.org/10.2113/econgeo.110.6.1541

[22]

Hu, W. J., Tian, S. H., Yang, Z. S., et al., 2012.Petrogenesis of Miocene Chajiasi Potassic Rocks in Western Lhasa Block Tibetan Plateau: Constraints from Litho Geochemistry Geochronology and Sr-Nd Isotopes. Mineral Deposits,31(4):813-830 (in Chinese with English abstract).

[23]

Irber, W., 1999. The Lanthanide Tetrad Effect and Its Correlation with K/Rb, Eu/Eu, Sr/Eu, Y/Ho, and Zr/Hf of Evolving Peraluminous Granite Suites. Geochimica et Cosmochimica Acta, 63(3-4): 489-508. https://doi.org/10.1016/s0016-7037(99)00027-7

[24]

Jahn, B. M., Wu, F. Y., Capdevila, R., et al., 2001. Highly Evolved Juvenile Granites with Tetrad REE Patterns: The Woduhe and Baerzhe Granites from the Great Xing’an Mountains in NE China. Lithos, 59(4): 171-198. https://doi.org/10.1016/S0024-4937(01)00066-4

[25]

Jiang, D. H., Liu, J. Q., Ding, L., 2008. Geochemistry and Petrogenesis of Cenozoic Potassic Volcanic Rocks in the Hoh Xil Area, Northern Tibet Plateau. Acta Petrologica Sinica, 24(2): 279-290 (in Chinese with English abstract).

[26]

Jiang, S. Y., Wang, W., 2022. How does Hyper- Enrichment of Strategic Key Metals Occur in Mineralization? Earth Science, 47(10): 3869-3871 (in Chinese with English abstract).

[27]

Jiang, Y. S., Zhou, Y. Y., Wang, M. G., et al., 2003. Characteristics and Geological Significance of Quaternary Volcanic Rocks in the Central Segment of the Gangdise Area. Regional Geology of China, 22(1): 16-20 (in Chinese with English abstract).

[28]

King, P. L., White, A. J. R., Chappell, B. W., et al., 1997. Characterization and Origin of Aluminous A-Type Granites from the Lachlan Fold Belt, Southeastern Australia. Journal of Petrology, 38(3): 371-391. https://doi.org/10.1093/petroj/38.3.371

[29]

Lai, S. C., Liu, C. Y., Yi, H. S., 2003. Geochemistry and Petrogenesis of Cenozoic Andesite-Dacite Associations from the Hoh Xil Region, Tibetan Plateau. International Geology Review, 45(11): 998-1019. https://doi.org/10.2747/0020-6814.45.11.998

[30]

Lai, S. C., Liu, C. Y., O’Reilly, S. Y., et al., 2001. The Genesis of the Neotertiary High-Potassium Calc-Alkaline Volcanic System of North Qiangtang and Its Continental Dynamics Significance. Science in China (Series D), 31(Suppl.): 34-42 (in Chinese).

[31]

Lai, S. C., Qin, J. F., Li, Y. F., et al., 2007. Geochemistry and Petrogenesis of the Alkaline and Caic-Alkaline Series Cenozoic Volcanic Rocks from Huochetou Mountain, Tibetan Plateau. Acta Petrologica Sinica, 23(4): 709-718 (in Chinese with English abstract).

[32]

Lee, C. T. A., Morton, D. M., 2015. High Silica Granites: Terminal Porosity and Crystal Settling in Shallow Magma Chambers. Earth and Planetary Science Letters, 409: 23-31. https://doi.org/10.1016/j.epsl.2014.10.040

[33]

Li, X. H., Liu, Y., Tu, X. L., et al., 2002. Precise Determination of Chemical Compositions in Silicate Rocks Using ICP AESand ICP MS: A Comparative Study of Sample Digestion Techniquesof Alkali Fusion and Acid Dissolution. Geochimica, 31(3): 289-294 (in Chinese with English abstract).

[34]

Li, Y. L., Zhang, H. F., Guo, J. H., et al., 2017. Petrogenesis of the Huili Paleoproterozoic Leucogranite in the Jiaobei Terrane of the North China Craton: a Highly Fractionated Albite Granite Forced by K-Feldspar Fractionation. Chemical Geology, 450: 165-182. https://doi.org/10.1016/j.chemgeo.2016.12.029

[35]

Lin, J. H., 2003. Cenozoic High-Potassium Calc-Alkaline Volcanic Rocks and Crust-Mantle Interaction in Northern Tibet Plateau (Dissertation). Chengdu University of Technology, Chengdu (in Chinese with English abstract).

[36]

Linnen, R. L., Keppler, H., 2002. Melt Composition Control of Zr/Hf Fractionation in Magmatic Processes. Geochimica et Cosmochimica Acta, 66(18): 3293-3301. https://doi.org/10.1016/S0016-7037(02)00924-9

[37]

Liu, D., 2017. Geochemistry and Petrogenesis of the Postcollisional Potassic-Ultrapotassic Rocks in Tibetan Plateau (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).

[38]

Liu, S., Hu, R. Z., Chi, X. G., et al., 2003. Geochemical Characteristics and Petrogenesis of the Post Collision Ultrapotassium Volcanic Rocks in Qiangtang Rock Zone. Geotectonica et Metallogenia, 27(2): 167-175 (in Chinese with English abstract).

[39]

Liu, Y. F., Xu, J. F., Zhang, Z. F., et al., 2018. Ca-Mg Isotopic Compositions of Ultra-Potassic Volcanic Rocks in the Lhasa Terrane, Southern Tibet and Their Geological Implications. Acta Geologica Sinica, 92(3): 545-559 (in Chinese with English abstract).

[40]

Mahood, G., Hildreth, W., 1983. Large Partition Coefficients for Trace Elements in High-Silica Rhyolites. Geochimica et Cosmochimica Acta, 47(1): 11-30. https://doi.org/10.1016/0016-7037(83)90087-X

[41]

Miller, C., Schuster, R., Klötzli, U., et al., 1999. Post-Collisional Potassic and Ultrapotassic Magmatism in SW Tibet: Geochemical and Sr-Nd-Pb-O Isotopic Constraints for Mantle Source Characteristics and Petrogenesis. Journal of Petrology, 40(9): 1399-1424. https://doi.org/10.1093/petroj/40.9.1399

[42]

Mo, X. X., Zhao, Z. D., Yu, X. H., et al., 2009. Cenozoic Collisional-Post-Collisional Igneous Rocks of the Qinghai-Tibet Plateau. Geological Publishing House, Beijing (in Chinese).

[43]

Murray, M. M., Rogers, J. J. W., 1973. Distribution of Rubidium and Strontium in the Potassium Feldspars of Two Granite Batholiths. Geochemical Journal, 6(3): 117-130. https://doi.org/10.2343/geochemj.6.117

[44]

Münker, C., Pfänder, J. A., Weyer S., et al., 2003. Evolution of Planetary Cores and the Earth-Moon System from Nb/Ta Systematics. Science, 301(5629): 84-87. https://doi.org/10.1126/science.1084662

[45]

Nomade, S., Renne, P. R., Mo, X. X., et al., 2004. Miocene Volcanism in the Lhasa Block, Tibet: Spatial Trends and Geodynamic Implications. Earth and Planetary Science Letters, 221(1-4): 227-243. https://doi.org/10.1016/S0012-821X(04)00072-X

[46]

Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81. https://doi.org/10.1007/BF00384745

[47]

Rollinson, H. R., 1993. Using Geochemical Data: Evaluation, Presentation, Interpretation. Longman, Harlow. https://doi.org/10.1017/9781108777834

[48]

Rudnick, R. L., Gao, S., 2014. Composition of the Continental Crust. In: Holland, H. D., Turekianeds, K. K., eds., Treatise on Geochemistry. Elsevier, Amsterdam. https://doi.org/10.1016/b978- 0-08-095975-7.00301-6

[49]

Stepanov, A. S., Mavrogenes, J.A., Meffre, S., et al., 2014. The Key Role of Mica during Igneous Concentration of Tantalum. Contributions to Mineralogy and Petrology, 167(6): 1009. https://doi.org/10.1007/s00410-014-1009-3

[50]

Sun, C. G., Zhao, Z. D., Mo, X. X., et al., 2008. Enriched Mantle Source and Petrogenesis of Sailipu Ultrapotassic Rocks in Southwestern Tibetan Plateau: Constraints from Zircon U-Pb Geochronology and Hf Isotopic Compositions. Acta Petrologica Sinica, 24(2): 249-264 (in Chinese with English abstract).

[51]

Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19

[52]

Taylor, S. R., Heier, K. S., 1960. The Petrological Significance of Trace Element Variations in Alkali Feldspars. The XXI International Geological Congress, Copenhagen.

[53]

Wang, B. D., Chen, L. K., Xu, J. F., et al., 2011. Identification and Petrogenesis of Potassic Volcanic Rocks with “Ultrapotassic” Characteristics from Maqiang Area in Lhasa Block. Acta Petrologica Sinica, 27(6): 1662-1674 (in Chinese with English abstract).

[54]

Wang, B. D., Xu, J. F., Zhang, X. G., et al., 2008. Petrogenesis of Miocene Volcanic Rocks in the Sailipu Area, Western Tibetan Plateau: Geochemical and Sr-Nd Isotopic Constraints. Acta Petrologica Sinica, 24(2): 265-278 (in Chinese with English abstract).

[55]

Wang, C. S., 2001. The Geological Evolution and Prospective Oil and Gas Assessment of the Qiangtang Basin in Northern Tibetan Plateau. Geological Publishing House, Beijing (in Chinese).

[56]

Williams, H. M., Turner, S. P., Pearce, J. A., et al., 2004. Nature of the Source Regions for Post-Collisional, Potassic Magmatism in Southern and Northern Tibet from Geochemical Variations and Inverse Trace Element Modelling. Journal of Petrology, 45(3): 555-607. https://doi.org/10.1093/petrology/egg094

[57]

Winchester, J. A., Floyd, P. A., 1977. Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements. Chemical Geology, 20: 325-343. https://doi.org/10.1016/0009-2541(77)90057-2

[58]

Wu, F. Y., Lu, X. C., Ji, W. Q., et al., 2017. Highly Fractionated Granites: Recognition and Research. Science in China (Series D), 47(7): 745-765 (in Chinese).

[59]

Xia, B., Lin, Q. C., Zhang, Y. Q., et al., 2006. The Types of Volcanic Rocks for the Bamaoqiongzong-Yongbocuo and Qiangbaqian in the Northern Tibet the Dating of 40Ar-39Ar and Its Geological Implications. Acta Geologica Sinica, 80(11): 1676-1682 (in Chinese with English abstract).

[60]

Xiang, Y. X., Yang, J. H., Chen, J. Y., et al., 2017. Petrogenesis of Lingshan Highly Fractionated Granites in the Southeast China: Implication for Nb-Ta Mineralization. Ore Geology Reviews, 89: 495-525. https://doi.org/10.1016/j.oregeorev.2017.06.029

[61]

Xu, B., Jiang, S. Y., Wang, R., et al., 2015. Late Cretaceous Granites from the Giant Dulong Sn-Polymetallic Ore District in Yunnan Province, South China: Geochronology, Geochemistry, Mineral Chemistry and Nd-Hf Isotopic Compositions. Lithos, 218-219: 54-72. https://doi.org/10.1016/j.lithos.2015.01.004

[62]

Xu, L. K., 2019. Chronology, Geochemistry and Rock Genesis of Potassium-Ultrapotassium Volcanic Rocks in the Temple Group of the Middle Section of Lhasa Block (Disseration). Chengdu University of Technology, Chengdu (in Chinese with English abstract).

[63]

Zhai, Q. G., Li, C., Wang, J., et al., 2009. 40Ar/39Ar Dating for Cenozoic Potassic Volcanic Rocks in Northern Gemucuo from Qiangtang, Northern Tibet, China. Geological Bulletin of China, 28(9): 1221-1228 (in Chinese with English abstract).

[64]

Zhang, R., 2018. Petrogenesis of the Cenozoic Alkaline Potassic Ultrapotassic Volcanic Rocks from Qiangtang, Northern Tibet (Disseration). Jilin University, Changchun (in Chinese with English abstract).

[65]

Zhang, Y. L., 2018. Geological Characteristics of Cenozoic Volcanic Rocks and Its Geodynamic Implication in Shiquanhe-Gerze Area on Qinghai-Tibet Pleatue (Disseration). China University of Geoscience, Beijing (in Chinese with English abstract).

[66]

Zhao, Z., Chi, X. G., Liu, J. F., et al., 2009. Geochemical Feature and Its Tectonic Significance of Gemucuo Oligocene Potassic Volcanic Rocks in the Qiangtang Area, Tibet, China. Geological Bulletin of China, 28(4): 463-473 (in Chinese with English abstract).

[67]

Zhao, Z. D., Mo, X. X., Zhu, D. C., et al., 2009. Petrogenesis and Implications of the Volcanic Rocks in Zabuye Salt Lake Area, Western Lhasa Terrane, Tibet, China. Geological Bulletin of China, 28(12): 1730-1740 (in Chinese with English abstract).

[68]

Zheng, M. P., Wang, Q. X., Duo, J., et al., 1995. A New Type of Hydrothermal Deposit: Cesium Bearing Geyserite in Tibet. Geological Publishing House, Beijing (in Chinese).

[69]

Zheng, M. P., Chen, W. X., Qi, W., 2016. New Findings and Perspective Analysis of Prospecting for Volcanic Sedimentary Boron Deposits in the Tibetan Plateau. Acta Geoscientica Sinica, 37(4): 407-418 (in Chinese with English abstract).

基金资助

国家自然科学基金项目(91962219)

西藏自治区科技计划重大专项(XZ202201ZD0004G01)

第二次青藏高原综合科学考察研究专题(2022QZKK0201)

AI Summary AI Mindmap
PDF (6577KB)

246

访问

0

被引

详细

导航
相关文章

AI思维导图

/