洛阳盆地龙山‒二里头文化转变与水文气候的关系

王思凯 ,  张玉柱 ,  王宁练 ,  黄春长 ,  朱艳 ,  黄晓玲 ,  金瑶 ,  曹鹏鹏 ,  肖奇立 ,  陈豆

地球科学 ›› 2025, Vol. 50 ›› Issue (05) : 2055 -2071.

PDF (6569KB)
地球科学 ›› 2025, Vol. 50 ›› Issue (05) : 2055 -2071. DOI: 10.3799/dqkx.2023.155

洛阳盆地龙山‒二里头文化转变与水文气候的关系

作者信息 +

Relationship between the Transition of Longshan Culture⁃Erlitou Culture and the Hydro⁃Climate in the Luoyang Basin

Author information +
文章历史 +
PDF (6726K)

摘要

为理解洛阳盆地龙山‒二里头文化转变与水文气候的关系问题,整理了这两个文化时期聚落的位置和规模信息(数量、等级和最大聚落占地面积)、全新世古气候记录和4 000 a BP左右的古洪水事件.分析结果表明:(1)在龙山文化时期(4 900~ 4 000 a BP),聚落的发展壮大可能与中全新世晚期稳定适宜的气候条件有关.然而,在龙山‒二里头文化的转变阶段(4 000~ 3 750 a BP),4 200 a BP气候突变导致极端洪水发生,对众多聚落产生了严重威胁,迫使盆地内泛滥平原区的居民迁往周围高地或外地.(2)在二里头文化时期(3 750~3 500 a BP),极端洪水不再发生,盆地内优越的地理位置和地貌条件为大规模的农业生产和聚落建设提供了广阔的空间.本研究成果对于阐明洛阳盆地龙山‒二里头文化演变与水文气候的关系,具有重要的科学意义.

Abstract

In order to understand the relationship between the transformation of Longshan culture to Erlitou culture in the Luoyang basin and the hydrological climate, in this paper it collects and analyzes the location and scale information of the settlements (quantity, grade and the largest settlement area) in the two cultural periods, the Holocene paleoclimate records and the paleoflood events at ca. 4 000 a BP. The results show follows. (1) During the Longshan Culture period (4 900-4 000 a BP), the scale of settlements grew, which may be closely related to the stable and suitable climate in the late Middle Holocene. In the turning stage of Longshan Culture to Erlitou Culture (4 000-3 750 a BP), the 4 200 a BP climatic event triggered extreme floods in the basin, which destroyed many settlements and prompted residents to move to the surrounding highlands or other places. (2) During the Erlitou Culture period (3 750-3 500 a BP), the extreme floods did not occur again, the superior geographical location and geomorphic conditions in the basin provided a broad space for large-scale agricultural production and settlement construction. The results are of great significance for exploring the relationship between the evolution of Longshan Culture-Erlitou Culture in Luoyang basin and the hydrological climate.

Graphical abstract

关键词

洛阳盆地 / 4 200 a BP气候突变 / 洪水 / 龙山文化 / 二里头文化 / 水文地质 / 环境地质.

Key words

Luoyang basin / 4 200 a BP climatic event / floods / Longshan Culture / Erlitou Culture / hydrogeology / environmental geology

引用本文

引用格式 ▾
王思凯,张玉柱,王宁练,黄春长,朱艳,黄晓玲,金瑶,曹鹏鹏,肖奇立,陈豆. 洛阳盆地龙山‒二里头文化转变与水文气候的关系[J]. 地球科学, 2025, 50(05): 2055-2071 DOI:10.3799/dqkx.2023.155

登录浏览全文

4963

注册一个新账户 忘记密码

防灾减灾、应对气候变化和保护自然环境是目前社会发展的重大课题.过去的气候突变事件不仅塑造了地球自然环境格局,也深刻地影响了地球生命过程和人类文明的发展历程(Weiss et al., 1993; 王会军, 2022;杨劲松等, 2022).在整个地质记录中,存在一系列的气候突变事件(Xiao et al., 2020).如3.05亿年前的石炭纪雨林崩溃事件、新仙女木事件、8 200 a BP(BP为距1950年的年代)事件和4 200 a BP事件等(Demenocal, 2001; Alley et al., 2003Broecker, 2006Sahney et al., 2010).当地球气候系统突然发生广泛的变化时,生态系统和人类文明可能遭受严重影响,甚至是毁灭性的(Wang et al., 2021).其中, 4 200 a BP气候突变事件受到广泛关注,该事件是被广泛记录的快速气候变化之一.其测年误差通常为±100~200年,大致发生在4 200~3 900 a BP,对于该气候突变事件的研究已成为全球变化研究的前沿领域(Anderson et al., 2007).国内外学者研究发现,该气候突变事件直接或间接导致了世界上许多地区的古文化与古文明的衰落和转折变化,如阿卡德帝国、希腊、埃及和巴基斯坦印度河流域早期文明的崩溃(Wright and Johnson, 2010).凭借古气候学、水文学以及考古学等领域的不断发展,学者们对中国新石器文化的普遍衰落与 4 200 a BP气候突变事件的关系问题也进行了探究(Xu et al., 2016).Wu and Liu(2004)对古气候数据的综合分析发现,4 000 a BP左右我国北方干旱、南方洪涝的环境格局是中原周边地区新石器时代文化(黄河上游的齐家文化、内蒙古地区的老虎山文化以及浙江的良渚文化等)崩溃的主要原因.刘浴辉等(2013)搜集近年来发表的全新世高分辨率古气候记录,分析了4 200 a BP气候突变事件在中国的表现,认为该气候事件导致的中国北部大范围持续性干旱是造成中国新石器文化衰落的重要原因.李中轩等(2013)基于ArcGIS10.0平台分析了河南省龙山文化时期遗址的空间分布、濒河性、空间集聚度等指标并结合古气候记录,推测4 000~3 900 a BP的干旱灾害事件造成了河南省史前文化的多次低潮,促进了人类活动范围从豫西山区向东部平原拓展.Sun et al.(2019)汇集了中国97个地点的130份地质记录和众多史前时期的考古聚落数量和位置信息数据,分析了我国南北地区主要的新石器文化(齐家文化、龙山文化、老虎山文化和良渚文化等)衰落的原因,并认为我国在4 000 a BP左右气候总体上寒冷干燥但黄河中下游出现极端洪水事件,质疑了我国于4 000 a BP“南涝北旱”环境格局的观点.以上分析可知,对于我国4 000 a BP左右新石器文化普遍衰落问题的解释尚无确切定论.
洛阳盆地地处中原腹地,是中华文明的核心区域(Liu et al., 2004).历史上建成的都邑,如二里头遗址、偃师商城、东周王城、汉魏洛阳故城,皆分布在盆地北侧宽广的伊洛河一级阶地之上,是四方文化的辐辏之地.洛阳盆地新石器时代至青铜时代的考古年代序列已经建立完善,文中所涉及到的文化时期有龙山文化早期(4 900~4 500 a BP)、龙山文化晚期(4 500~4 000 a BP)、新砦文化时期(4 050~3 750 a BP)、二里头文化Ⅰ期(约3 750 a BP)和二里头文化Ⅱ~Ⅳ期(3 700~3 500 a BP)(Lee and Bestel, 2007; 张雪莲等, 2007; Liu et al., 2019).在盆地内,龙山文化时期(4 900~4 000 a BP)的聚落规模为何发展壮大?龙山文化‒二里头文化转折变化阶段(4 000~3 750 a BP)为何在盆地内的泛滥平原区形成文化缺环?以及二里头文化时期 (3 750~3 500 a BP)的聚落规模为何再度发展至鼎盛?尤其是什么原因促使二里头遗址聚落规模发展壮大,成为二里头文化时期中国乃至东亚最大的都邑,同时也是迄今为止可确认的最早的王国都城遗址(Liu et al., 2004)?这些原因都值得深入探究.史前聚落遗址的数量可以反映人口密度,而聚落遗址的等级和最大聚落遗址占地面积能够反映人口密度、社会的复杂性和文明程度(Liu et al., 2019).因此,亟需结合洛阳盆地最新的考古数据(聚落规模:数量、等级和最大聚落遗址占地面积),盆地内以及周边地区的古气候与古水文记录(石笋氧同位素、孢粉等),来深入探究盆地内龙山文化至二里头文化时期,史前聚落遗址规模的发展演变与水文气候的关系问题.

1 研究区概况

洛阳盆地又称伊洛平原,介于邙山、熊耳山和嵩山之间,地处黄河中下游的河南省西部,属中原腹地(图1).该盆地呈东西狭长的椭圆形,地势自东向西倾斜,长约为150 km,宽为16~30 km,面积约为4 300 km2.该盆地地处黄土高原的东部边缘,覆盖在盆地的黄土大部分沉积于更新世寒冷干燥的气候条件之下(Ren et al., 2021).洛阳盆地地处湿润的暖温带季风气候区,基于1961~2018年巩义站、偃师站和孟津站等气象站点的器测数据,表明该盆地的年平均气温为13~15 ℃,年平均降水量为580~820 mm,其中50%~55%的降水多集中在7月至9月(Zhang et al., 2019b).洛阳盆地内气候、植被和经济作物等要素具有南北过渡的特征.例如,在气候条件方面,该盆地处于亚热带和暖温带的过渡地区;在经济作物方面,该盆地处于粟作和稻作农业的过渡地带.洛阳盆地及其周围地区还是我国地势的第二、三级阶梯的过渡带,包括洛宁凹陷、宜阳凹陷、洛阳凹陷3个次级构造单元,山地和泛滥平原皆有分布.

洛河、伊河流经洛阳盆地,在注入黄河之前汇合形成伊洛河.洛河是黄河的主要支流,全长为446.9 km,流域面积为18 881 km2.洛河白马寺水文站与1958年记录的最大实测洪水流量为 7 230 m3/s(Guo and Zheng, 1995).伊河是洛河最大的支流,全长264.8 km,流域面积为6 029 km2.伊河流域的洪水主要由暴雨诱发,洪峰流量在 3 000 m3/s以上的洪水在7月、8月出现的概率约为90%(Hu et al., 2016).伊河龙门水文站自1936年建站以来实测最大洪峰流量为7 180 m3/s(1937年),其次是1943年测得的6 480 m3/s.

2 材料和方法

本文基于1997~2018年洛阳盆地的考古调查项目——中国社会科学院考古研究所的中澳美伊洛地区协同考古团队和二里头工作队的研究成果,以及《中国文物地图集——河南分册》(国家文物局,1991)和相关学术论文、著作,整理了该盆地龙山文化(4 900~4 000 a BP)和二里头文化时期 (3 750~3 500 a BP)聚落遗址的位置和规模信息(国家文物局, 1991; 陈星灿等, 2003; Liu et al., 2004,2019; 许宏等, 2005;许宏和刘莉, 2008; 乔玉, 2010).聚落位置、规模和年代数据是基于伊洛调查数据库中443个龙山文化和二里头文化时期遗址的信息.该数据库中遗址的年代信息是由伊洛考古调查队成员于现场采集的可供断代的陶片、兽骨和木炭等遗物并结合陶器纪年汇集而成的,分别对应了龙山文化早、晚期和二里头文化Ⅰ~Ⅳ期(中国社会科学院考古研究所二里头工作队, 2005).另外,夏商周断代工程中应用常规碳十四测年对洛阳盆地二里头遗址、偃师灰嘴和稍柴等遗址中采集的60个样品(兽骨、木炭)进行了年代测定,并借助OxCal程序和考古学背景作了专门的论证和评估工作,进一步完善了二里头文化时期各遗址的年代信息,如二里头遗址发掘的木炭和兽骨等材料获得的年代集中在3 900~3 500 a BP(张雪莲等, 2007).

在龙山文化早期(4 900~4 500 a BP),聚落遗址规模很小,面积不超过0.1 km2,61处遗址归为小型聚落;在二里头文化Ⅰ期(约3 750 a BP),为了突出二里头遗址(1 km2)作为城市中心的功能,将其归为大型遗址,而其余18处遗址面积不足0.12 km2,则归为小型遗址;而龙山文化晚期(4 500~4 000 a BP)和二里头文化Ⅱ~Ⅳ期(3 700~3 500 a BP)的聚落遗址较多,分别是156个和207个,因此对这两个时期的遗址进行了聚落层次分析,生成遗址面积直方图(图2)(陈星灿等, 2003; Liu et al., 2004,2019).据图2可知,洛阳盆地龙山文化晚期聚落遗址等级分为大型、中型和小型聚落;二里头文化Ⅱ~Ⅳ期聚落层次为中心城市、大型、中型和小型聚落.然后,利用洛阳盆地及其邻近地区30 m分辨率的DEM数据,龙山文化晚期 (4 500~4 000 a BP)、龙山文化‒二里头文化转折变化阶段(4 000~3 750 a BP)、二里头文化Ⅰ期(约3 750 a BP)和二里头文化Ⅱ~Ⅳ期(3 700~ 3 500 a BP)的聚落遗址坐标位置和规模信息,以及ArcMap10.8叠加而成聚落遗址分布图(图3).

史前聚落遗址的数量可以反映人口密度.聚落遗址的等级和最大占地面积则可以揭示相关文化时期的社会复杂性和文明程度(Liu et al., 2019).当一个地区的聚落等级呈现一级到二、三级的变化时,表明社会组织形式由简单的部落转变为复杂的酋邦;当一个地区的聚落呈现出四级或更高的等级时,很可能表明一个国家的形成(Timothy, 1993Wright and Johnson, 2010).因此,本文归纳整理了洛阳盆地龙山文化时期(4 900~4 000 a BP)和二里头文化时期(3 750~3 500 a BP)聚落遗址的数量、等级和最大占地面积(表1).此外,洛阳盆地龙山文化‒二里头文化转变时期(4 000~3 750 a BP)与 4 200 a BP气候突变事件的发生时段相对应.

由于气候变化也通常存在区域异质性,且气候代用指标通常具有多解性(Chen et al., 2015a,2015b).因此,在古气候重建资料的选取与集成分析方面应予以慎重考虑.本文选用我国季风区不同研究地点的石笋δ18O记录来反映东亚夏季风强弱的变化情况,进而论述洪水发生与季风强弱变化的关系.同时针对气候的区域异质性,本文选用了近几年来中原地区和洛阳盆地内已发表的古气候资料,来进一步论证该盆地龙山文化和二里头文化时期的气候特征,进而能够更加准确地揭示4 000 a BP左右群发性洪灾的气候背景.由此,本文基于国内全新世时期地质载体所记录的古气候变化信息以及洛阳盆地及其周围地区4 000 a BP左右发生的古洪水事件,将考古学、古洪水水文学和古气候学等多学科交叉融合,来深入分析盆地内水文气候因素对龙山文化向二里头文化转折变化的重要影响.

3 结果和讨论

3.1 洛阳盆地龙山文化‒二里头文化时期史前聚落遗址规模变化分析

在龙山文化至二里头文化时期(4 900~ 3 500 a BP),史前聚落遗址在数量、等级、最大聚落遗址占地面积上都发生了剧烈变化(表1).龙山文化早期(4 900~4 500 a BP)仅仅存在小型聚落61处,占地面积均≤0.1 km2.龙山文化晚期(4 500~ 4 000 a BP)聚落总量增至156个,聚落遗址等级由龙山文化早期的一级上升为三级.其中,最大聚落遗址占地面积达到0.5~0.7 km2,是龙山文化早期的5倍以上,这表明人口密度、社会复杂性和文明程度有所提升.龙山文化晚期遗址数量较多且呈现多个聚落遗址集聚区,主要分布于伊洛河谷平原区,沿伊河、洛河及其支流分布(图3a).然而,在龙山文 化‒二里头文化转折变化时期(4 000~3 750 a BP),洛阳盆地史前聚落的发展遭受重创,盆地内泛滥平原区出现了文化缺环.其与花地嘴遗址(地处洛阳盆地以东)和新砦遗址(地处嵩山以东)的稳定发展形成鲜明对比(顾问, 2002; Liu et al., 2004,2005; 袁飞勇, 2020)(图3b).二里头文化Ⅰ期(约3 750 a BP)的聚落遗址总量逐渐恢复至19个,聚落等级升为2级,最大聚落遗址占地面积却由龙山文化晚期的0.5~0.7 km2增至1 km2图3c),这说明二里头文化Ⅰ期的人口密度、社会复杂性和文明程度有所提高.二里头文化II~IV期(3 700~3 500 a BP)史前聚落遗址总量增至262个,聚落等级达到四级且最大聚落遗址占地面积高达3 km2,表明该时期的社会复杂性和文明程度达到了更高的水平(图3d).二里头文化II~IV期四级聚落等级的出现,可能标志着国家级政治组织的开始形成( Timothy, 1993; Wright and Johnson, 2010).

3.2 洛阳盆地龙山文化至二里头文化时期的水文气候分析

龙山文化时期(4 900~4 000 a BP)处于中全新世晚期(Ke et al., 2017).稳定且适宜的气候特征是洛阳盆地龙山文化时期史前聚落遗址数量、等级和最大聚落遗址占地面积的稳步提升的重要原因(Liu, 1994Chen et al., 2015aZhang et al., 2021).然而,黄河流域的史前聚落在4 000 a BP左右受到了不同程度的毁坏(Huang et al., 2011).其中,在洛阳盆地龙山文化‒二里头文化转折变化阶段(4 000~3 750 a BP),史前聚落遗址遭受严重摧毁,盆地内泛滥平原区出现了文化缺环现象,这可能都与4 200 a BP气候突变事件密切相关(Gasse, 2000Liu and Feng, 2012).

全新世时期众多地质载体所记录的信息,对揭示我国4 000 a BP左右的气候特征具有重要意义(胡守云等, 1998; 刘兴起等, 2002; Jiang et al., 2006Sun et al., 2019).我国北方地区的莲花洞(Dong et al., 2015)(图4a)和暖河洞(Tan and Cai, 2005)的高分辨率石笋δ18O记录,揭示出4 200~ 3 900 a BP期间东亚夏季风强度明显减弱.我国北部地区鸭子海的孢粉记录(图4b),揭示出在4 200 a BP气候突变时段呈现出“干‒湿‒干”的水文气候结构(Wang et al., 2022).亚洲夏季风边缘区乌鸦洞的高分辨率石笋δ18O记录,表明4 200 a BP气候突变时段亚洲夏季风强度呈现“弱‒强‒弱”的模式波动(Tan et al., 2020).贵州的董哥洞(图4e)高分辨率石笋δ18O数据,良好地记录了在4 400~3 950 a BP,亚洲夏季风强度存在明显衰弱(Dykoski et al., 2005Wang et al., 2005).Dong et al.(2010)基于对华中地区三宝洞的6根石笋δ18O数据和65个230Th年代数据的分析,表明4 200~3 900 a BP为显著的东亚夏季风减弱阶段(图4c).Zhang et al(2018b)对我国东南地区的神农洞高分辨率石笋δ18O记录分析发现,该地区的东亚夏季风强度于4 000 a BP左右减弱(图4d).豫西山区东石崖洞的DSY1的石笋δ18O记录识别出4 200 a BP气候突变期间的弱季风事件(Zhang et al., 2018a).McManus et al.(2004)认为4 000 a BP左右,北大西洋冰川融化产生的大量淡水可能减缓了北大西洋深水(North Atlantic Deep Water, NADW)的速度,并降低了大西洋经向翻转环流(Atlantic Meridional Overturning Circulation, AMOC)的强度,进而影响东亚夏季风.Knox(2000)认为半球尺度大气环流模式的变化极有可能产生极端水文事件.王会军和贺圣平(2012)揭示东亚夏季风在20世纪70年代中后期开始减弱,河南“75·8”特大洪灾(1975年)发生在此背景下.此外,洛阳盆地内灰嘴(HZ⁃1)剖面的孢粉资料、沉积学资料和AMS14C数据,揭示了洛阳盆地4 990~ 3 890 a BP 期间的气候、植被和水文的变化动态,其中在4 330~4 155 a BP 期间,灰嘴湿地水深较大,AP/NAP值(木本孢粉与非木本孢粉的比值)达到峰值,指示气候湿润;4 155~3 995 a BP 期间的灰嘴湿地萎缩,AP/NAP 值很低,指示气候变得很干; 3 995~3 890 a BP 期间,在湿地沉积顶部发育了一层较强的风化层后被黄土覆盖,AP/NAP 值急剧增加后降低,指示气候短暂变湿后再次变干(陈亮等, 2023)(图4f).HZ⁃1剖面的研究是近几十年来洛阳盆地古气候研究中时间分辨率和气候代用指标密集程度最高的,其气候、水文和植被变化动态反映了4 200 a BP事件期间气候的异常不稳定状态. 4 200 a BP左右东亚夏季风强度减弱且气候失稳的背景下,洛阳盆地极端洪水的发生概率将大为提升.

在4 200 a BP气候突变时段,吴文祥和刘东生(2004)认为我国东亚季风区呈现“南涝北旱”的湿度分布格局.然而,Sun et al.(2019)认为4 200~ 3 800 a BP我国东亚季风区普遍干旱.中原地区茶店陂剖面的乔木孢粉数据显示,全新世早、中期(约9 500~4 300 a BP)区域的植被以乔木为主,而全新世晚期(约4 300~2 800 a BP)该区域乔木的百分含量明显减少(许清海等, 2010).中原地区大河村钻孔的沉积序列和乔木孢粉百分比也显示,全新世早、中期(约9 200~4 000 a BP)该地区湖泊水位稳定且植被以乔木为主,而全新世晚期(约4 000~ 3 700 a BP)湖泊水位急剧下降直至消亡且植被中乔木占比减少(Ren et al., 2021).Marcott et al.(2013)基于南北半球分辨率较高的73个温度重建记录,集成了全新世不同纬度地带的温度变化曲线,显示出4 200 a BP左右30°~90°N地带呈现明显的降温趋势(图4g).Wanner et al.(2015)对全新世的温度重建结果与Marcott et al.(2013)相一致.中国东部和南部季风区,除长江三角洲马桥剖面和中国东北部的镜泊湖沉积的研究之外,大部分地区在 4 200 a BP事件期间都有明显的降温现象(Yu et al., 2000Chen et al., 2015a).由此可见,4 200 a BP事件期间的湿度空间格局目前仍存在争议,而对于此时段我国季风区主要是由降温导致寒冷气候的观点得到了学者们的一致认可(吴文祥和刘东生, 2004).全新世古洪水和现代洪水的研究已揭示出黄河流域气候在寒冷期比暖期更加不稳定,有利于爆发高强度降水(Tan et al., 2018Li and Gao, 2021).Sun et al.(2019)认为4 000 a BP左右太平洋十年际振荡(Pacific Decadal Oscillation, PDO)和厄尔尼诺南方涛动(EI Niño⁃Southern Oscillation, ENSO)的相互作用可能在10年和年际尺度上放大了东亚夏季风降水异常,导致中国一般在冷干气候下发生极端干旱或灾难性洪水.因此,在4 200 a BP左右气候普遍寒冷的背景下,洛阳盆地易发生大洪水事件.

众多学者通过在洛阳盆地开展古洪水水文学研究发现位于盆地内二里头遗址附近的TXC剖面(Zhang et al., 2019b)、ELT1和ELT23剖面(Zhang et al., 2019a)、ELT剖面(张俊娜和夏正楷, 2011)(图5),皆赋存了发生在4 000 a BP左右大洪水事件的沉积学证据,其记录的大洪水不仅淹没了洛河一级阶地,甚至漫到了二级阶地前缘(Zhang et al., 2019a).尤其是位于洛河右岸一级阶地之上,且靠近二里头遗址的TXC剖面(图1b),赋存了发生在 4 000~3 800 a BP的3次大洪水事件的沉积学证据,并认为该时段发生的大洪水对洛阳盆地产生了深远的影响(Zhang et al., 2019b).黄河中游各支流的诸多剖面(图1b),同样识别出了发生在4 000 a BP左右古洪水事件的沉积学证据,如沁河流域的XJC剖面(张俊娜和夏正楷, 2011)和Q02010⁃1剖面(付鹏, 2005),泾河流域的YGZ剖面(顾洪亮等, 2012),北洛河流域的CHZ剖面(Zhang et al., 2015)、ZJC剖面(赵明等, 2011)和LMC剖面(姚平等, 2008),以及汾河流域的ZJZ剖面(张俊娜和夏正楷, 2011)等(表2图5).表2中列出了洛阳盆地及邻近地区4 000 a BP左右的古洪水事件,其测年材料主要为沉积序列中的洪水沉积物(古洪水)和遗存的有机沉积物/炭屑确定,测年技术主要是光释光和AMS14C.通过梳理分析各剖面的年代数据,发现洛阳盆地TXC、ELT、ELT1、ELT23剖面记录了4 100~3 800 a BP期间的古洪水事件;沁河、汾河、泾河和渭河流域等的15个沉积剖面记录了发生在4 500~4 000 a BP的洪水事件.考虑到测年误差,本文将这些古洪水事件的发生年代归纳为4 000 a BP左右.在北洛河宜君段CHZ剖面中(图1a),发生在该时段的极端洪水洪峰流量可达14 100 m3/s(Zhang et al., 2015);在渭河流域漆水河HXZ⁃W剖面中,发生在该时段的极端洪水洪峰流量可达2 309 m3/s(查小春等, 2007),约为研究河段现代实测洪水洪峰流量的2~3倍.这有利地证明了4 000 a BP左右,发生在黄河中游各主要支流的这期大洪水事件规模巨大,有可能对黄河流域河谷平原区的史前聚落产生毁灭性冲击(张俊娜和夏正楷, 2011; Wu et al., 2017).

3.3 古洪水对洛阳盆地文化变迁的影响分析

古文化与古文明的兴衰演替不仅与战争、人口以及宗教等人文因素有关,自然环境变化的影响也不容忽视.洛阳盆地汇集了伊河、洛河及其支流,面积约为4 300 km2,其中凹陷面积约为1 200 km2.在4 200 a BP气候突变时段,洛阳盆地较小的集水面积加之遭遇极端暴雨洪水的影响,极有可能导致伊河、洛河改道,致使洪水在盆地内肆虐.洛阳盆地东部的伊洛河河口十分狭窄,泄洪能力有限,持续时间较长,进而能够加剧洪水对洛阳盆地聚落遗址的威胁(郭喜有和白璐, 2011).结合洛阳盆地及相关地区4 000 a BP左右众多的古洪水事件沉积学记录,推断洛阳盆地的极端洪水事件作为黄河中游群发性洪灾的重要组成部分,波及范围广、规模巨大,为居住在盆地内的史前人类带来了深重灾难.

在全新世中期(约8 500~4 000 a BP),伊洛河河道相对稳定,大致与现代河道相似(图6a, 6d)(方酉生, 1965; Li, 2018).然而,在龙山文化‒二里头文化转折变化时段(4 000~3 750 a BP),极端洪水淹没了广阔的洛阳盆地泛滥平原区,给史前人类的生产生活造成了严重影响(图6b).据考古资料记录,洛阳盆地龙山文化晚期聚落遗址总量为156个,聚落等级为3级;而龙山文化‒二里头文化转折变化阶段,史前聚落的发展遭受重创,出现了文化缺环现象(Wright and Johnson, 2010Liu et al., 2019).到目前为止,洛阳盆地泛滥平原区未发现龙山文化‒二里头文化变迁期的史前人类文化遗存,这几百年的文化缺环可能是气候突变背景下爆发的极端洪水频繁发生所致.由此,洛阳盆地泛滥平原区的史前人类受到频繁洪灾威胁的情况下,极有可能采取迁往周围高地或外地的生存策略.对此,我们利用洛阳盆地及其邻近地区的DEM、遗址坐标位置数据和ArcScene10.8叠加成图,模拟了该盆地龙山文化‒二里头文化转折变化时段 (4 000~3 750 a BP)史前人类的迁移路线(图7).

洛阳盆地东侧的花地嘴遗址,位于较为平坦的台地上,北为断崖,海拔介于90~100 m.其在“新砦期”(处于龙山文化和二里头文化的过渡时期,时间跨度约为4 050~3 750 a BP)一直持续发展,遗址中“新砦期”文化遗存的现存面积为350 000 m2(张莉, 2012; 唐桂桃, 2018).花地嘴遗址发掘出的文化遗存,带有西部龙山文化晚期的文化因素,以单把鬲、蛋形瓮以及制作精美的细石器等器物为代表(顾万发和张松林, 2005; 袁超, 2019).据此推断,洛阳盆地于4 000 a BP左右发生大洪水期间,花地嘴遗址凭借着较高的地势(台地)而躲过了洪水的侵袭,并吸引了盆地内泛滥平原区的先民迁徙到此定居,该遗址借此继续发展壮大(图7).新砦期遗存主要见于嵩山以东、以北地区,往西不过嵩山和洛阳盆地,主要包括了现今嵩山以东的郑州市,嵩山东南的新密市和新郑市,嵩山西北的巩义市(赵春青, 2009).例如,郑州市内的杜寨遗址、大河村遗址和胜岗遗址等15个,新密市内的古城寨遗址、程庄遗址和苏沟遗址等8个,新郑市内的唐户遗址、人和西南场遗址和金钟寨遗址等8个,巩义市内水地河遗址、白河遗址和清中遗址等10个(国家文物局, 1991)(图7).其中,地处嵩山以东的新砦遗址文化遗存呈现“三叠层”,即下层为龙山文化层,中层为新砦期文化层,上层为二里头早期文化层(赵春清等, 2004).该遗址的发现有力地证明了龙山文化与二里头文化之间确实存在“新砦期”,填补了龙山文化晚期到二里头文化早期缺环的空白(赵春清等, 2004).新砦遗址作为河南境内面积最大的新砦期城址,其城墙内面积可达700 000 m2(赵春青等, 2009).考古资料所揭示出的大量信息表明,这一文化变迁过程中,氏族部落间不同文化相互吸收与借用的特征颇为突出(周书灿, 2018).此外,据《中国文物地图集——河南分册》(国家文物局, 1991)记载,龙山文化时期嵩山和外方山之间的山谷地带分布的聚落遗址有20余处,并沿着北汝河向下游沿河分布(国家文物局, 1991).这说明龙山文化时期新砦遗址已与周围部落存在广泛的交流沟通.因此,4 000 a BP左右洛阳盆地发生大洪水期间,极可能导致洛阳盆地泛滥平原区的先民经嵩山、箕山与外方山之间的山谷地带迁往东部中原地区定居下来,从而使得像新砦遗址一样的聚落在此时段继续发展壮大(图7).由此推断,二里头地区依赖较高的地势而躲过洪水的破坏,也可能成为史前人类迁徙的目的地.当然,洛阳盆地泛滥平原区的先民历经 4 000 a BP左右的洪水威胁,并采取迁徙的生存策略,在这过程中加强了各部落之间的协作能力和凝聚力,为之后二里头文化的繁荣发展创造了条件(杨国忠和刘忠伏, 1983; 马兴, 2012; 马斌, 2017).

4 200 a BP气候突变事件之后,洛阳盆地在较长的一段时间内未曾被极端洪水淹没,并且河岸上的古土壤得以发育,一直发育到3 700 a BP左右(图5,TXC)(Cao et al., 2010Zhang et al., 2019b).随着洪水的消退,洛河在二里头遗址西侧与伊河汇合,从而将二里头遗址与伊洛河北岸的冲积平原连接起来(图6c),为史前人类提供更为广阔的发展空间(Li, 2018).洛阳盆地的黄土具有高渗透性,田地在洪水退去后可以继续耕种,房屋也可以重建(Wang, 2005).盆地内泛滥平原区地形平坦、邻近水源且地域广阔,气候较现今仍然温暖潮湿,适合当时以粟、黍农业为主的农耕文明的发展,从而吸引周围地区的先民回迁(Liu, 2000; 宋豫秦等, 2002; 赵志军和刘昶, 2019).特别是二里头遗址的炭化植物遗存,其研究成果揭示了二里头文化Ⅱ、Ⅲ期温暖和潮湿的气候特征(Wang et al., 2021).考古资料表明,二里头遗址作为二里头文化时期规模最大的城市,出土的文化遗存如玉器、铜器,还有海贝、绿松石等奢侈品以及远距离输入产品(杨国忠和刘忠伏, 1983; Shelach, 1994Liu and Xu, 2007).二里头遗址与周边地区存在文化交流,不同于一般聚落.二里头文化时期史前聚落遗址总量增至262个,聚落等级达到四级,中心城市‒二里头遗址的占地面积达3 km2.如此迅速的人口集中只能解释为来自周边地区的人口迁徙(许宏和刘莉, 2008).当一个地区的聚落等级呈现出四级或更高的聚落等级时,很可能表明一个国家的形成(Wright and Johnson, 2010Timothy, 1993).因此,二里头遗址极有可能为夏朝晚期都邑,是中国乃至东亚最大的聚落(Xu et al., 2005).由此,广阔且宜居的伊洛平原吸引周围地区的先民回迁,从而导致多元文化的融合,促进了二里头文明的发展,开启了青铜器文化的历程.

4 结论

通过分析洛阳盆地龙山文化至二里头文化时期聚落遗址规模(聚落的数量、等级和最大聚落遗址占地面积)的变化状况,地质记录所揭示的古气候信息以及4 000 a BP左右古洪水事件等,探索了盆地内水文气候因素对古文化与古文明兴衰演替的影响.主要认识如下:

(1)在龙山文化时期(4 900~4 000 a BP),洛阳盆地聚落遗址规模逐步发展壮大,这与中全新世晚期稳定适宜的气候密切相关.然而,在龙山文化至二里头文化的转折变化阶段(4 000~3 750 a BP),正值4 200 a BP气候突变事件的影响之下.根据盆地内及相关地区发现的4 000 a BP左右古洪水事件记录,推断4 200 a BP气候突变诱发了大洪水事件,导致伊河、洛河发生了河道的变迁,并摧毁了盆地内泛滥平原区的众多聚落遗址.同时,基于洛阳盆地的地形地势,并结合盆地内处于较高地势的花地嘴遗址和盆地外蓬勃发展的新砦遗址群的分析,推断极端洪水迫使居住于盆地内泛滥平原区的人们逃往周围高地或东部平原区,进而导致龙山‒二里头文化变迁时期的聚落遗址规模骤然下降.尤其是龙山文化向二里头文化转折变化的长达几百年的时间里,盆地内泛滥平原区几乎没有史前聚落分布,出现了文化缺环.

(2)在二里头文化时期(3 750~3 500 a BP),洛阳盆地生态环境得到恢复,尤其是伴随着极端洪水的消退,洛盆地内优越的地理位置和地势地貌条件为大规模的农业土地开发和都邑、聚落建设提供了广阔的发展空间.从而使得该时期无论是聚落等级、数量还是最大聚落遗址占地面积皆迅猛发展.其中以二里头遗址最为突出,它被认为是当时中国乃至东亚最大的聚落.需要注意的是,影响古文化与古文明发展的因素并非只有水文气候所决定,人为因素的作用同样不可忽略.本文的论述并不认同文化演变的“环境决定论”观点,但是环境因素在一定程度上影响人类文明的演变.

参考文献

[1]

Alley, R. B., Marotzke, J., Nordhaus, W. D., et al., 2003. Abrupt Climate Change. Science, 299(5615): 2005-2010. https://doi.org/10.1126/science.1081056

[2]

Anderson, D, G., Maasch, K. A., Sandweiss, D. H., 2007. Climate Change and Cultural Dynamics, Academic Press, San Diego, 1-23. https://doi.org/10.1016/B978⁃012088390⁃5.50006⁃6

[3]

Broecker, W. S., 2006. Was the Younger Dryas Triggered by a Flood?. Science, 312(5777): 1146-1148. https://doi.org/10.1126/science.1123253

[4]

Cao, X. Y., Xu, Q. H., Jing, Z. C., et al., 2010. Holocene Climate Change and Human Impacts Implied from the Pollen Records in Anyang, Central China. Quaternary International, 227(1): 3-9. https://doi.org/10.1016/j.quaint.2010.03.019

[5]

Chen, F. H., Xu, Q. H., Chen, J. H., et al., 2015a. East Asian Summer Monsoon Precipitation Variability since the Last Deglaciation. Scientific Reports, 5: 11186. https://doi.org/10.1038/srep11186

[6]

Chen, R., Shen, J., Li, C. H., et al., 2015b. Mid⁃ to Late⁃Holocene East Asian Summer Monsoon Variability Recorded in Lacustrine Sediments from Jingpo Lake, Northeastern China. The Holocene, 25(3): 454-468. https://doi.org/10.1177/0959683614561888

[7]

Chen, L., Feng, Z.D., Ran, M., et al., 2023. The 4.2 ka BP Climate Event and Human Activities in Luoyang Basin of Central Plains of China. Chinese Science Bulletin, 68(5): 546-562 (in Chinese).

[8]

Chen, X. C., Liu, L., Lee, Y. K., et al., 2003. Development of Social Complexity in the Central China: Research into the Settlement Pattern in the Yiluo River Valley. Acta Archaeologica Sinica, 149(2): 161-218 (in Chinese with English abstract).

[9]

DeMenocal, P. B., 2001. Cultural Responses to Climate Change during the Late Holocene. Science, 292(5517): 667-673. https://doi.org/10.1126/science.1059827

[10]

Dong, J. G., Shen, C. C., Kong, X. G., et al., 2015. Reconciliation of Hydroclimate Sequences from the Chinese Loess Plateau and Low⁃Latitude East Asian Summer Monsoon Regions over the Past 14, 500 Years. Palaeogeography, Palaeoclimatology, Palaeoecology, 435: 127-135. https://doi.org/10.1016/j.palaeo.2015.06.013

[11]

Dong, J. G., Wang, Y. J., Cheng, H., et al., 2010. A High⁃Resolution Stalagmite Record of the Holocene East Asian Monsoon from Mt Shennongjia, Central China. The Holocene, 20(2): 257-264. https://doi.org/10.1177/0959683609350393

[12]

Dykoski, C. A., Edwards, R. L., Cheng, H., et al., 2005. A High⁃Resolution, Absolute⁃Dated Holocene and Deglacial Asian Monsoon Record from Dongge Cave, China. Earth and Planetary Science Letters, 233(1-2): 71-86. https://doi.org/10.1016/j.epsl.2005.01.036

[13]

Fang, Y. S., 1965. Brief Report on Excavation of Erlitou Site in Yanshi, Henan Province. Archaeology, (5): 215-224 (in Chinese with English abstract).

[14]

Fu, P., 2005. Design Flood Calculation of the Qin River Based on Paleoflood Method (Dissertation). Hohai University, Nanjing (in Chinese with English abstract).

[15]

Gasse, F., 2000. Hydrological Changes in the African Tropics since the Last Glacial Maximum. Quaternary Science Reviews, 19(1-5): 189-211. https://doi.org/10.1016/S0277⁃3791(99)00061⁃X

[16]

Gu, H. L., Huang, C. C., Zhou, Y. L., 2012. OSL Dating Study on the Paleoflood Events Recorded in the Yangguanzhai Neolithic Ruins in the Guanzhong Basin. Geographical Research, 31(10): 1837-1848 (in Chinese with English abstract).

[17]

Gu, W., 2002. The Study of Xinzhai Phase. Yindu Journal, 23(4): 26-40 (in Chinese with English abstract).

[18]

Gu, W. F., Zhang, S. L., 2005. Cultural Remains of the “Xinzhai Phase” on the Huadizui Site in Gongyi City, Henan. Archaeology, (6): 3-6 (in Chinese with English abstract).

[19]

Guo, J. M., Zheng, J. L., 1995. Documentary in Yiluohe River Basin. Science and Technology of China Press, Beijing, 1-36.

[20]

Guo, X. Y., Bai, L., 2011. Current Situation and Countermeasures of Flood Control of Yiluo River. China Flood and Drought Management, 21(1): 57-58 (in Chinese with English abstract).

[21]

Hu, G. M., Huang, C. C., Zhou, Y. L., et al., 2016. Hydrological Studies of the Historical and Palaeoflood Events on the Middle Yihe River, China. Geomorphology, 274: 152-161. https://doi.org/10.1016/j.geomorph.2016.09.004

[22]

Hu, S. Y., Wang, S. M., Appel, E., et al., 1998. Environmental Magnetic Mechanism of the Change of Magnetic Susceptibility of Sediments in Hulun Lake. Science in China (Series D: Earth Sciences), 28(4): 334-339 (in Chinese).

[23]

Huang, C. C., Pang, J. L., Zha, X. C., et al., 2011. Extraordinary Floods Related to the Climatic Event at 4 200 a BP on the Qishuihe River, Middle Reaches of the Yellow River, China. Quaternary Science Reviews, 30(3-4): 460-468. https://doi.org/10.1016/j.quascirev.2010.12.007

[24]

Huang, C.C., Pang, J.L., Zha, X.C., et al., 2011. Prehistorical Floods in the Guanzhong Basin in the Yellow River Drainage Area: A Case Study along the Qishuihe River Valley over the Zhouyuan Loess Tableland. Scientia Sinica (Terrae), 41(11): 1658-1669 (in Chinese).

[25]

Jiang, W. Y., Guo, Z. T., Sun, X. J., et al., 2006. Reconstruction of Climate and Vegetation Changes of Lake Bayanchagan (Inner Mongolia): Holocene Variability of the East Asian Monsoon. Quaternary Research, 65(3): 411-420. https://doi.org/10.1016/j.yqres.2005.10.007

[26]

Ke, X., Li, B. H., Zhang, Z. Y., et al., 2017. Post⁃Glacial Foraminifera of the Incised Yangtze Paleo⁃Valley and Paleoenvironmental Implications. Journal of Paleontology,91(6): 1102-1122. https://doi.org/10.1017/jpa.2017.66

[27]

Knox, J. C., 2000. Sensitivity of Modern and Holocene Floods to Climate Change. Quaternary Science Reviews, 19(1-5): 439-457. https://doi.org/10.1016/S0277⁃3791(99)00074⁃8

[28]

Lee, G. A., Bestel, S., 2007. Contextual Analysis of Plant Remains at the Erlitou⁃Period Huizui Site, Henan, China. Indo⁃Pacific Prehistory Association Bulletin, 27: 49-60. https://doi.org/10.7152/bippa.v27i0.11976

[29]

Li, K. F., Gao, W. H., 2021. Human Settlement Distribution Patterns during the Longshan and Xinzhai⁃Erlitou Periods and Their Hydrogeomorphic Contexts in the Central Plains, China. CATENA, 204: 105433. https://doi.org/10.1016/j.catena.2021.105433

[30]

Li, M., 2018. Social Memory and State Formation in Early China. Cambridge University Press, Cambridge. https://doi.org/10.1017/9781316493618

[31]

Li, X.G., Huang, C.C., Pang, J.L., et al., 2009. Stratigraphy of Holocene Palaeoflood Slack⁃Water Deposits in the Weishui River Valley of the Western Guanzhong Basin. Journal of Stratigraphy, 33(2): 198-205 (in Chinese with English abstract).

[32]

Li, Y. Q., Huang, C. C., Ngo, H. H., et al., 2021. Analysis of Event Stratigraphy and Hydrological Reconstruction of Low⁃Frequency Flooding: A Case Study on the Fenhe River, China. Journal of Hydrology, 603: 127083. https://doi.org/10.1016/j.jhydrol.2021.127083

[33]

Li, Z.X., Zhu, C., Wu, G.X., et al., 2013. Spatial and Temporal Distribution of Prehistoric Human Sites and Its Driving Factors in Henan Province. Acta Geographica Sinica, 68(11): 1527-1537 (in Chinese with English abstract).

[34]

Liu, F. G., Feng, Z. D., 2012. A Dramatic Climatic Transition at ~4 000 cal. Yr BP and Its Cultural Responses in Chinese Cultural Domains. The Holocene, 22(10): 1181-1197. https://doi.org/10.1177/0959683612441839

[35]

Liu, K. X., Han, B. X., Guo, Z. Y., et al., 2005. AMS Radiocarbon Dating of Bone Samples from the Xinzhai Site in China. Radiocarbon, 47(1): 21-25. https://doi.org/10.1017/s0033822200052152

[36]

Liu, L., 1994. Development of Chiefdom Societies in the Middle and Lower Yellow River Valley in Neolithic China: A Study of the Longshan Culture from the Perspective of Settlement Patterns. Harvard University, Boston.

[37]

Liu, L., 2000. The Development and Decline of Social Complexity in North China: Some Environmental and Social Factors. Indo⁃Pacific Prehistory: The Melaka Papers, 4: 14-34. https://doi.org/10.1017/S0963926800260355

[38]

Liu, L., Chen, X. C., Lee, Y. K., et al., 2004. Settlement Patterns and Development of Social Complexity in the Yiluo Region, North China. Journal of Field Archaeology, 29(1-2): 75-100. https://doi.org/10.1179/jfa.2004.29.1⁃2.75

[39]

Liu, L., Chen, X. C., Wright, H., et al., 2019. Rise and Fall of Complex Societies in the Yiluo Region, North China: The Spatial and Temporal Changes. Quaternary International, 521: 4-15. https://doi.org/10.1016/j.quaint.2019.05.025

[40]

Liu, L., Xu, H., 2007. Rethinking Erlitou: Legend, History and Chinese Archaeology. Antiquity, 81(314): 886-901. https://doi.org/10.1017/s0003598x00095983

[41]

Liu, X.Q., Shen, J., Wang, S.M., et al., 2002. Pollen Records since 16 ka in Qinghai Lake and Its Paleoclimate and Paleoenvironment Evolution. Chinese Science Bulletin, 47(17): 1351-1355 (in Chinese).

[42]

Liu, Y.H., Sun, X., Guo, C.Q., 2013. Records of 4.2 ka BP Holocene Event from China and Its Impact on Ancient Civilizations. Geological Science and Technology Information, 32(1): 99-106 (in Chinese with English abstract).

[43]

Ma, B., 2017. Sui Gong. Education of Jiangsu, 69: 32 (in Chinese with English abstract).

[44]

Ma, X., 2012. On the Important Role of Flood in the Origin of China Civilization. Dongyue Tribune, 33(3): 25-31 (in Chinese with English abstract).

[45]

Marcott, S. A., Shakun, J. D., Clark, P. U., et al., 2013. A Reconstruction of Regional and Global Temperature for the Past 11, 300 Years. Science, 339(6124): 1198-1201. https://doi.org/10.1126/science.1228026

[46]

McManus, J. F., Francois, R., Gherardi, J. M., et al., 2004. Collapse and Rapid Resumption of Atlantic Meridional Circulation Linked to Deglacial Climate Changes. Nature, 428(6985): 834-837. https://doi.org/10.1038/nature02494

[47]

National Cultural Heritage Administration, 1991. An Atlas of Chinese Cultural Relics in Henan Province. China Cartographic Publishing House, Beijing (in Chinese with English abstract).

[48]

Qiao, Y., 2010. Development of Complex Societies in the Yiluo Region: A GIS Based Population and Agricultural Area Analysis. Acta Archaeologica Sinica, 179(4): 423-454 (in Chinese with English abstract).

[49]

Ren, X. L., Xu, J. J., Wang, H., et al., 2021. Holocene Fluctuations in Vegetation and Human Population Demonstrate Social Resilience in the Prehistory of the Central Plains of China. Environmental Research Letters, 16(5): 055030. https://doi.org/10.1088/1748⁃9326/abdf0a

[50]

Sahney, S., Benton, M. J., Falcon⁃Lang, H. J., 2010. Rainforest Collapse Triggered Carboniferous Tetrapod Diversification in Euramerica. Geology, 38(12): 1079-1082. https://doi.org/10.1130/g31182.1

[51]

Shelach, G., 1994. Social Complexity in North China during the Early Bronze Age: A Comparative Study of the Erlitou and Lower Xiajiadian Cultures. Asian Perspectives, 33: 260-292.

[52]

Song, Y.Q., Zheng, G., Han, Y.L., et al., 2002. Information on the Environments of the Erlitou Site in Yanshi City, Henan. Archaeology, (12): 75-79 (in Chinese with English abstract).

[53]

Sun, Q. L., Liu, Y., Wünnemann, B., et al., 2019. Climate as a Factor for Neolithic Cultural Collapses Approximately 4 000 Years BP in China. Earth⁃Science Reviews, 197: 102915. https://doi.org/10.1016/j.earscirev.2019.102915

[54]

Tan, L. C., Li, Y. Z., Wang, X. Q., et al., 2020. Holocene Monsoon Change and Abrupt Events on the Western Chinese Loess Plateau as Revealed by Accurately Dated Stalagmites. Geophysical Research Letters, 47(21): e90273. https://doi.org/10.1029/2020gl090273

[55]

Tan, L. C., Shen, C. C., Cai, Y. J., et al., 2018. Great Flood in the Middle⁃Lower Yellow River Reaches at 4000 a BP Inferred from Accurately⁃Dated Stalagmite Records. Science Bulletin, 63(4): 206-208. https://doi.org/10.1016/j.scib.2018.01.023

[56]

Tan, M., Cai, B. G., 2005. Preliminary Calibration of Stalagmite Oxygen Isotopes from Eastern Monsoon China with Northern Hemisphere Temperatures. PAGES News, 13(2): 16-17. https://doi.org/10.22498/pages.13.2.16

[57]

Tang, G. T., 2018. Analysis on the Remains of Plant Micro⁃Bodies on the Surface of Stone Knives Unearthed at Huadizui Site in Gongyi, Henan Province (Dissertation). Xiamen University, Xiamen (in Chinese with English abstract).

[58]

The Erlitou Fieldwork Team of Institute of Archaeology, Chinese Academy of Social Sciences, 2005. A Systematic Survey in 2001-2003 in the Luoyang Basin, Henan. Chinese Archaeology, 5(1): 19-26 (in Chinese with English abstract).

[59]

Timothy, E., 1993. Chiefdoms: Power, Economy, and Ideology. Cambridge University Press, Cambridge.

[60]

Wang, D. D., Li, M. Y., Zhang, S. R., et al., 2022. Spatial and Temporal Characteristics of the Precipitation Response to the 4.2 ka Event in the Asian Summer Monsoon Region. Global and Planetary Change, 214: 103854. https://doi.org/10.1016/j.gloplacha.2022.103854

[61]

Wang, H. J., 2022. How to Integrate Ancient and Modern Climate and Environmental Studies?. Earth Science, 47(10): 3811-3812 (in Chinese with English abstract).

[62]

Wang, H. J., He, S. P., 2012. Weakening Relationship between East Asian Winter Monsoon and ENSO after Mid⁃1 970 s. Chinese Science Bulletin, 57(27): 3535-3540 (in Chinese).

[63]

Wang, S. Z., Zhao, H. T., Chen, G. L., et al., 2021. Anthracological Analysis from the Bronze Age Site of Erlitou (Henan Province, China). Quaternary International, 593: 248-255. https://doi.org/10.1016/j.quaint.2020.10.002

[64]

Wang, W., 2005. Causes of the Pan Cultural Changes in China by 2 000 BCE. Chinese Archaeology, 5(1): 176-182. https://doi.org/ 10.1515/CHAR.2005.5.1.176

[65]

Wang, Y. J., Cheng, H., Edwards, R. L., et al., 2005. The Holocene Asian Monsoon: Links to Solar Changes and North Atlantic Climate. Science, 308(5723): 854-857. https://doi.org/10.1126/science.1106296

[66]

Wanner, H., Mercolli, L., Grosjean, M., et al., 2015. Holocene Climate Variability and Change; A Data⁃Based Review. Journal of the Geological Society, 172(2): 254-263. https://doi.org/10.1144/jgs2013⁃101

[67]

Weiss, H., Courty, M. A., Wetterstrom, W., et al., 1993. The Genesis and Collapse of Third Millennium North Mesopotamian Civilization. Science, 261(5124): 995-1004. https://doi.org/10.1126/science.261.5124.995

[68]

Wright, H. T., Johnson, G. A., 2010. Population, Exchange, and Early State Formation in Southwestern Iran. American Anthropologist, 77(2): 267-289. https://doi.org/10.1525/aa.1975.77.2.02a00020

[69]

Wu, L., Zhu, C., Ma, C. M., et al., 2017. Mid⁃ Holocene Palaeoflood Events Recorded at the Zhongqiao Neolithic Cultural Site in the Jianghan Plain, Middle Yangtze River Valley, China. Quaternary Science Reviews, 173: 145-160. https://doi.org/10.1016/j.quascirev.2017.08.018

[70]

Wu, W. X., Liu, D. S., 2004. Variations in East Asia Monsoon around 4 000 a BP and the Collapse of Neolithic Cultures around Central Plain. Quaternary Sciences, 24(3): 278-284 (in Chinese with English abstract).

[71]

Wu, W. X., Liu, T.S., 2004. Possible Role of the “Holocene Event 3” on the Collapse of Neolithic Cultures around the Central Plain of China. Quaternary International, 117(1): 153-166. https://doi.org/10.1016/S1040⁃6182(03)00125⁃3

[72]

Xiao, X. Y., Yao, A., Hillman, A., et al., 2020. Vegetation, Climate and Human Impact since 20 ka in Central Yunnan Province Based on High⁃Resolution Pollen and Charcoal Records from Dianchi, Southwestern China. Quaternary Science Reviews, 236: 106297. https://doi.org/10.1016/j.quascirev.2020.106297

[73]

Xu, H., Chen, G. L., Zhao, H. T., 2005. A Brief Report on Archaeological Survey of Luoyang Basin in Henan Province from 2001 to 2003. Archaeology, 5: 18-37 (in Chinese with English abstract).

[74]

Xu, H., Chen, G. L., Zhao, H. T., 2005. A Preliminary Investigation of the Settlement Pattern of the Erlitou Site. Chinese Archaeology, 5(1): 13-18. https://doi.org/10.1515/CHAR.2005.5.1.13

[75]

Xu, H., Liu, L., 2008. Reflection on the Erlitou Site. Cultural Relics, 620(1): 43-52 (in Chinese with English abstract).

[76]

Xu, J. J., Jia, Y. L., Ma, C. M., et al., 2016. Geographic Distribution of Archaeological Sites and Their Response to Climate and Environmental Change between 10.0-2.8 ka BP in the Poyang Lake Basin, China. Journal of Geographical Sciences, 26(5): 603-618. https://doi.org/10.1007/s11442⁃016⁃1288⁃x

[77]

Xu, Q. H., Cao, X. Y., Wang, X. L., et al., 2010. The Environmental Background of Yin Ruins Culture and the Influence of Human Activities. Quaternary Sciences, 30(2): 273-286 (in Chinese with English abstract).

[78]

Yang, G. Z., Liu, Z. F., 1983. A Report on the Excavation of Erlitou Site in Yanshi, Henan Province in the Autumn of 1980. Archaeology, 3: 199-205 (in Chinese with English abstract).

[79]

Yang, J.S., Wang, Y., Yin, J.H., et al., 2022. Progress and Prospects in Reconstruction of Flood Events in Chinese Alluvial Plains. Earth Science, 47(11): 3944-3959 (in Chinese with English abstract).

[80]

Yao, P., Huang, C.C., Pang, J.L., et al., 2008. Palaeoflood Hydrological Studies in the Middle Reaches of the Beiluohe River. Acta Geographica Sinica, 63(11): 1198-1206 (in Chinese with English abstract).

[81]

Yu, S.Y., Zhu, C., Song, J., et al., 2000. Role of Climate in the Rise and Fall of Neolithic Cultures on the Yangtze Delta. Boreas, 29(2): 157-165. https://doi.org/10.1080/030094800750044330

[82]

Yuan, C., 2019. Discussion on Relevant Issues of Pottery Production in Xinzhai Period of Huadizui Site (Dissertation). Shandong University, Jinan (in Chinese with English abstract).

[83]

Yuan, F. Y., 2020. Study on Meishan Culture (Dissertation). Wuhan University, Wuhan (in Chinese with English abstract).

[84]

Zha, X. C., Huang, C. C., Pang, J. L., 2007. Holocene Extreme Flood Sand Environmental Change of Qishuihe River in Western Guanzhong Basin. Acta Geographica Sinica, 62(3): 291-300 (in Chinese with English abstract).

[85]

Zha, X. C., Huang, C. C., Pang, J. L., 2009. Palaeofloods Recorded by Slackwater Deposits on the Qishuihe River in the Middle Yellow River. Journal of Geographical Sciences, 19(6): 681-690. https://doi.org/10.1007/s11442⁃009⁃0681⁃0

[86]

Zhang, H. W., Cheng, H., Cai, Y. J., et al., 2018a. Hydroclimatic Variations in Southeastern China during the 4.2 ka Event Reflected by Stalagmite Records. Climate of the Past, 14(11): 1805-1817. https://doi.org/10.5194/cp⁃14⁃1805⁃2018

[87]

Zhang, N., Yang, Y., Cheng, H., et al., 2018b. Timing and Duration of the East Asian Summer Monsoon Maximum during the Holocene Based on Stalagmite Data from North China. The Holocene, 28(10): 1631-1641. https://doi.org/10.1177/0959683618782606

[88]

Zhang, J.N., Xia, Z.K., 2011. Deposition Evidences of the 4 ka BP Flood Events in Central China Plains. Acta Geographica Sinica, 66(5): 685-697 (in Chinese with English abstract).

[89]

Zhang, J. N., Zhang, X. H., Xia, Z. K., et al., 2019a. Geomorphic Changes along the Yiluo River Influenced the Emergence of the First Urban Center at the Erlitou Site, Central Plains of China. Quaternary International, 521: 90-103. https://doi.org/10.1016/j.quaint.2019.06.038

[90]

Zhang, Y. Z., Huang, C. C., Tan, Z. H., et al., 2019b. Prehistoric and Historic Overbank Floods in the Luoyang Basin along the Luohe River, Middle Yellow River Basin, China. Quaternary International, 521: 118-128. https://doi.org/10.1016/j.quaint.2019.06.023

[91]

Zhang, L., 2012. On the Age and Nature of Xinzhai Period. Cultural Relics, (4): 83-89 (in Chinese with English abstract).

[92]

Zhang, X. L., Qiu, S. H., Cai, L. Z., et al., 2007. Establishment and Perfection of the Archaeological Chronological Sequence of Xinzhai⁃Erlitou⁃Erligang Cultures. Archaeology, (8): 74-89 (in Chinese with English abstract).

[93]

Zhang, Y. Z., Huang, C. C., Pang, J. L., et al., 2015. Holocene Palaeoflood Events Recorded by Slackwater Deposits along the Middle Beiluohe River Valley, Middle Yellow River Basin, China. Boreas, 44(1): 127-138. https://doi.org/10.1111/bor.12095

[94]

Zhang, Z. P., Liu, J. B., Chen, J., et al., 2021. Holocene Climatic Optimum in the East Asian Monsoon Region of China Defined by Climatic Stability. Earth⁃Science Reviews, 212: 103450. https://doi.org/10.1016/j.earscirev.2020.103450

[95]

Zhao, C. Q., 2009. The Practice and Methods of Archaeology in Xinzhai Settlement. Archaeology, 497(2): 48-54 (in Chinese with English abstract).

[96]

Zhao, C. Q., Zhang, S. L., Gu, W. F., et al., 2004. Excavation of Xinzhai in Xinmi City, Henan Province in 2000. Cultural Relics, (3): 4-20 (in Chinese with English abstract).

[97]

Zhao, C. Q., Zhang, S. L., Xie, S., et al., 2009. A Report on the Excavation of the East City Wall of Xinzhai Site in Xinmi City, Henan Province. Archaeology, 2: 16-31 (in Chinese with English abstract).

[98]

Zhao, M., Huang, C.C., Pang, J.L., et al., 2011. Palaeo⁃Flood Hydrological Studies in the Middle Reaches of Beiluo River. Journal of Natural Disasters, 20(5): 155-161 (in Chinese with English abstract).

[99]

Zhao, Z.J., Liu, C., 2019. Analysis and Discussion on Flotation Results from the Erlitou Site in Yanshi City. Agricultural Archaeology, (6): 7-20 (in Chinese with English abstract).

[100]

Zhou, S.C., 2018. Re⁃Discussion on the Nature and Function of Xinzhai Site. Academic Journal of Zhongzhou, 262(10): 110-114 (in Chinese with English abstract).

基金资助

国家自然科学基金项目(42277449)

国家自然科学基金项目(42171092)

AI Summary AI Mindmap
PDF (6569KB)

270

访问

0

被引

详细

导航
相关文章

AI思维导图

/