华南板块东南部南华纪‒震旦纪沉积地层区域对比、物源特征及构造演化

宋芳 ,  何垚砚 ,  牛志军 ,  杨文强 ,  王志宏

地球科学 ›› 2024, Vol. 49 ›› Issue (09) : 3411 -3427.

PDF (2881KB)
地球科学 ›› 2024, Vol. 49 ›› Issue (09) : 3411 -3427. DOI: 10.3799/dqkx.2023.158

华南板块东南部南华纪‒震旦纪沉积地层区域对比、物源特征及构造演化

作者信息 +

Nanhuan-Sinian Sedimentary Strata Correlation and Its Provenance Feature in Southeastern Part of South China Block: Implications for Tectonic Evolution

Author information +
文章历史 +
PDF (2949K)

摘要

华南板块东南部南华纪‒震旦纪的沉积大地构造背景等问题尚存在争议,本文以研究区内北东‒南西向分布、砂岩‒板岩夹砾岩为主要特征的碎屑岩地层为突破口,开展区域地层对比及物源示踪,进而对该地区沉积大地构造背景进行约束.对闽西南、赣中、湘东南以及桂北4个地区的代表性南华纪‒震旦纪沉积地层剖面开展了岩性对比和碎屑锆石定年工作,结果显示:研究区内不同地区南华纪‒震旦纪碎屑岩地层的岩石组合及沉积序列特征相似,以900~1 100 Ma年龄峰值为特征的物源从南华纪早期至震旦纪持续地从南东向北西推进.同时,本文从岩性和物源两个方面定义了“华夏型陆源碎屑地层”.研究结果对政和‒大埔断裂带以西的扬子陆块和华夏地块之间在南华纪‒震旦纪存在宽阔大洋的分隔提出了质疑.

关键词

华南板块 / 南华纪 / 震旦纪 / 地层对比 / 碎屑锆石 / 地层学 / 沉积学.

Key words

South China Block / Nanhuan / Sinian / stratigraphy correlation / detrital zircon provenance / stratigraphy / sedimentology

引用本文

引用格式 ▾
宋芳,何垚砚,牛志军,杨文强,王志宏. 华南板块东南部南华纪‒震旦纪沉积地层区域对比、物源特征及构造演化[J]. 地球科学, 2024, 49(09): 3411-3427 DOI:10.3799/dqkx.2023.158

登录浏览全文

4963

注册一个新账户 忘记密码

0 引言

华南板块是罗迪尼亚超大陆的组成部分(Cawood et al., 2018Zhao et al., 2018),由扬子陆块和华夏地块组成(舒良树,2012;图1).新元古代晚期,在全球超大陆裂解(Dalziel, 1991Hoffman, 1991Zheng, 2004Li et al., 2008)的背景下,华南板块裂谷系发育(王剑等,2001),主裂谷盆地之一的“南华裂谷”发育在中部的赣中‒湘南‒桂北一线(杨明桂等,2012;图1),伴随着同时期的全球性极寒气候事件(Williams,1975),华南板块在特殊的地质背景下,发育了一套北东‒南西向展布、岩性交替渐变的沉积地层.

在北西的扬子陆块,新元古代晚期沉积地层由南华纪冰期‒间冰期‒冰期的碎屑岩沉积以及震旦纪交替出现的内源沉积‒细碎屑沉积组成,前人以冰期混杂堆积和内源沉积为标志层,建立了较为精细的岩石地层及年代地层的框架(卢定彪等,2013;周传明等,2019;杨明桂和王光辉,2020).在南东的华夏地块,新元古代晚期从南华纪到震旦纪沉积地层为一套较厚的碎屑岩沉积,其中夹透镜状砾石层、碳酸盐岩、铁质岩及硅质岩,由于缺乏可进行年代学研究的凝灰岩层或同时代的侵入岩等,因而前人主要通过岩性和沉积序列进行区域地层对比(广东省地质矿产局,1996;湖南省地质调查研究院,2017;福建省地质调查研究院,2017).对于扬子陆块和华夏地块沉积地层的岩性差异是由于沉积环境不同产生的(舒良树等,2020),还是由于“华南洋”的分隔造成的(何卫红等,2014;张克信等,2018,2023),目前仍存在不同认识.

同时,扬子陆块及华夏地块前寒武系碎屑岩物源组成及岩浆事件也存在差异.扬子陆块东部前寒武纪沉积岩碎屑锆石年龄谱主峰值为812~ 858 Ma,而华夏地块前寒武纪沉积岩碎屑岩锆石年龄谱主峰值为960 Ma和1 850 Ma(李献华等,2012).扬子陆块的中‒新元古代岩浆事件峰值年龄为840 Ma,相应岩浆岩主要分布于江南造山带(王孝磊等,2017),扬子陆块内部及北缘和西缘也有分布(耿元生等,2020);960 Ma岩浆事件年龄在扬子陆块占比极低(耿元生等,2020),属于华夏地块已知的前寒武纪岩浆岩年龄,但是,这一期岩浆岩出露十分局限,远不具备形成主要物源的条件,华夏地块可能曾经出露过更大面积的该时期岩浆岩(李献华等,2012)或者有一个目前未出露的物源区(任纪舜和李崇,2016);近年来的研究表明华南该时段的物源主要来自于印度板块北部(Cawood et al., 2018, 2020Xue et al., 2019Qi et al., 2020).

对于上述地质事实的解释,最大的争议在于华夏地块和扬子陆块之间“华南洋”(郭令智等,1980)的存续时间,部分学者认为其闭合时限为新元古代早期820 Ma之前(Li et al., 2005;杨明桂等,2012;Shu et al., 2014;李三忠等,2016),另一部分学者则支持“华南洋”一直持续到早古生代中晚期(覃小锋等,2015;彭松柏等,2016a,2016b),南华纪‒震旦纪是争论的焦点时段.本文在华南板块东南部粤东及湘赣桂地区开展了南华纪‒震旦纪沉积地层研究,提出从岩性组合和物源特征两个方面可定义出该时期沉积地层存在一套“华夏型陆源碎屑地层”,并总结其时空分布规律,为华南板块在南华纪‒震旦纪构造背景提供沉积地层的证据.

1 地质背景

华南大陆由扬子陆块和华夏地块两个主要部分组成,在新元古代原古华南大陆板块基础上通过多期构造演化(张国伟等,2013),经历了地质历史时期多次构造‒岩浆事件的影响,形成了复杂的地质构造(舒良树等,2020).华南在新元古代晚期至早古生代裂解,发育复杂的裂谷体系(王剑等,2001,2006;杨明桂等,2012;杨明桂和王光辉,2020),区内沉积环境多样,各地区岩性、岩相互不相同.中、新生代,华南大陆被夹持于太平洋、欧亚、印度3大动力体系之间,形成下切至中‒下地壳的逆冲(宋传中等,2019),东部形成陆缘弧(潘桂棠等,2016),最终形成现今基本面貌.

本文研究区位于政和‒大埔断裂带和安化‒罗城断裂带之间,即前人称为“华南加里东褶皱带”(黄汲清, 1954;任纪舜等, 1986)、“华南早古生代造山带”(Faure et al., 2009)或“武夷‒云开造山带”(Li et al., 2010)的广大地区,包括除云开地区之外的华夏地块及扬子东南缘大部分地区.目前普遍认为,华夏地块是一个经历了中元古代以来多块体拼合、多期次碰撞形成的复合地质体,加上中生代以来大规模构造岩浆作用的后期改造(Zhao and Cawood, 1999Xu et al., 2011; 舒良树, 2012; Mao et al., 2021),使其构造演化过程颇具争议.整体上,研究区在新元古代晚期属于华南裂谷系范围(王剑等,2001;杨明桂等,2012),沉积地层受裂谷系控制,在各地区具有一定的区域特征.

华南裂谷系发生在815~820 Ma(王剑等,2006;杨明桂等,2012),是华南晋宁造山作用之后地壳强烈伸展作用的产物,主要包括以浙赣桂湘为中心的南华(裂谷)盆地(图1)及川滇(裂谷)盆地.该裂谷系持续时间至760 Ma(Wang et al.,2012Sun et al.,2017),之后华南南部发育拉张的海盆(舒良树等,2020);部分研究表明华南裂谷系演化至早古生代(Wang et al.,2003;杨明桂等,2012).根据华南广泛分布的岩浆活动,该裂谷被认为是主动裂谷作用成因(汪正江,2008).杨明桂等(2012)根据区域地层对比将华南裂谷系划分为3大部分及若干次级单元,本文研究范围属于其划分的“南岭中央裂谷海盆”区域(图1).南岭中央裂谷海盆发育于扬子陆块和华夏地块结合部位,其走向近东西,南华系‒震旦系主要发育在盆地的南缘及北缘(杨明桂等,2012).

南华纪‒震旦纪沉积地层主要分布在武夷和云开穹隆区及两个穹隆区过渡部位(图1),均为连续沉积,普遍为绿片岩相变质.在武夷及罗霄地区东部和南部,新元古代晚期地层出露南华系上部和震旦系,下部为砂泥质细碎屑沉积夹钙硅质沉积,上部为硅质岩夹细碎屑沉积(广东省地质矿产局,1996;福建省地质调查研究院,2017).罗霄地区西部,新元古代晚期地层出露青白口系顶部、南华系和震旦系,青白口系顶部为炭泥质细碎屑沉积,南华系以碎屑岩为主夹透镜状分布的砾石层、硅铁质层及碳酸盐岩,震旦系下部以细碎屑岩沉积夹硅质岩为特征,震旦系顶部以硅质岩为主(湖南省地质调查研究院,2017).扬子东南缘一线,出露青白口系上部及南华系和震旦系,青白口系上部以细碎屑岩为主,南华系在各区域有差异,以厚层、块状的碎屑岩夹冰碛砾沉积为主,具有冰期→间冰期的明显特征,震旦系与罗霄西部沉积特征相似,顶部硅质岩成层相对较厚,碎屑混入较少(湖南省地质调查研究院,2017;江西省地质矿产勘查开发局,2017).新元古代晚期地层缺乏可以定年的火山岩夹层,主要通过标志层进行区域地层对比(图2),如罗霄西部以南华系泗洲山组和正园岭组中出露的含砾层位对比于扬子陆块的长安、南沱两个冰期,两组之间的天子地组以底部透镜状赤铁矿层对比于扬子陆块的富禄组(黄建中等,1994),震旦系丁腰河组、黄连组因其以硅质岩为主的岩性对比于扬子陆块的老堡组、老虎塘组(湖南省地质调查研究院,2017).

云开地区出露最老的沉积地层为云开群,岩性以类复理石变质岩为主(广东省地质矿产局,1996),前人对其沉积时代、层序及划分存在不同认识(叶真华等,2000及参考文献),本文仍认为其属于新元古代早期沉积.南华系可划分为大绀山组及活道组,均以片岩为主,根据夹层特征分别对比于青白口系‒南华系下部及南华系顶部(广东省地质矿产局,1996),但是新的研究成果表明该套沉积有可能属于早古生代晚期(Zhang et al., 2021)或者晚古生代早期(Qiu et al., 2018)沉积.云开地区新元古代沉积地层变质强烈,受研究材料限制较大,本文研究区未涉及,不做进一步讨论.

2 剖面及样品分析

本文选取的4个剖面分别位于闽西南长汀楼子坝、赣中宜春古家、湘东南郴州泗洲山、以及桂北永福牛河(图1图3).本文碎屑锆石数据来自于长汀楼子坝及宜春古家剖面,郴州泗洲山剖面数据另文发表,永福牛河剖面数据见Song et al. (2020).

闽西南长汀楼子坝位于武夷穹隆区南部(福建省地质调查研究院,2017),新元古代晚期地层为区域出露的最老沉积地层,由下到上包括楼子坝组、南岩组和黄连组.楼子坝组岩性以杂砂岩→粉砂 岩→板岩旋回为特征;南岩组下部为中厚层细砂岩夹薄层粉砂岩,向上为薄层细砂岩及钙质细砂岩;黄连组为薄‒中层状硅质岩夹薄层状粉细砂岩,与上覆寒武系林田组整合接触.本次在楼子坝‒曹屋剖面采集楼子坝组下部变粉砂岩样品1件 (25°42΄16.6"N,116°10΄50.3"E,H=539 m,该剖面是楼子坝组命名剖面(福建省地质调查研究院,2017;图3a).

赣中新余下坊地区位于扬子‒华夏结合带(杨明桂和王昆,1994),新元古代晚期地层沉积序列在区域地质调查时(江西省区域地质调查大队,1964,1∶20万宜春幅地质图说明书)被厘定,目前被划分为南华系下坊组以及震旦系坝里组、老虎塘组,其中下坊组可划分为古家砾岩段、含铁岩段以及大沙江砾岩段.该地区南华系下伏地层为上施组,其中未见砾岩夹层,同时微古植物化石显示其沉积时限可能老于扬子陆块内部莲沱组(江西省地质矿产勘查开发局,2017),虽然该组的时代划分仍存争议,本次研究基于莲沱组的相关研究成果(Du et al.,2013Lan et al.,2015)及区域地层沉积序列对比,认为其属于青白口纪沉积.本次在分宜松山镇古家附近的古家砾岩段(原古家组)层型剖面采集南华系下坊组样品2件(27°38΄26.1"N,114°37΄57.9"E, H=217 m),在彬江镇南岱采集震旦系坝里组样品1件(27°44΄28.2"N,114°33΄7.9"E, H=224 m;图3b~3c).

本研究以前期研究过的郴州泗洲山及桂北永福牛河地区新元古代晚期地层作为对比剖面(宋芳,2020;Song et al., 2020).郴州泗洲山位于湘东南,属于华夏地块,新元古代晚期地层经黄建中等(1994)厘定被划分为南华系泗洲山组、天子地组、正园岭组及震旦系埃岐岭组、丁腰河组,是一套连续的巨厚碎屑岩沉积夹碳酸盐岩、硅质岩的沉积体系,总体碎屑粒度向上变细,在震旦系中硅质岩夹层增加至丁腰河组出现中‒厚层硅质岩沉积.其中泗洲山组、正园岭组均夹具冰川沉积特征的砾石层位,可分别对应扬子陆块的长安、南沱两个冰期沉积(黄建中等,1994;李聪等,2010;Qi et al., 2020),丁腰河组以硅泥质沉积为主,与扬子地区震旦系顶部沉积在沉积相上连续.上述岩石地层单位自建立以来沿用至今(湖南省地质调查研究院,2017).

桂北永福牛河剖面属于扬子陆块,新元古代晚期出露南华系洪江组和震旦系培地组、老堡组.该地区洪江组为扬子陆块广泛分布的厚层‒块状冰碛砾岩夹碎屑岩沉积,培地组以碎屑岩为主夹硅质岩,老堡组为硅质岩沉积.

3 研究方法

碎屑锆石挑选和照相由南京宏创地质勘查技术服务有限公司完成.对样品进行清洗、切割后破碎到60~80目,经粗淘、强磁和电磁、细淘后在镜下进行精挑,之后将锆石进行粘样、树脂固定、抛光打磨制成测试用靶,CL照相使用TESCAN MIRA3场发射扫描电镜和TESCAN公司阴极发光探头完成.

碎屑锆石U-Pb同位素年龄分析在武汉地质调查中心同位素地球化学研究中心完成,设备为赛默飞公司生产的iCAPQ电感耦合等离子体质谱仪(LA-ICP-MS),激光器型号ASI/RESOlution S155,激光波长193 nm,脉冲宽度15 ns,测试中使用激光剥蚀束斑直径为29 μm.锆石U-Pb定年分析使用锆石标准物质91500为外标进行同位素分馏校正,206Pb/238U年龄为 (1 064.5±0.6) Ma(Wiedenbeck et al.,1995);每分析8个样品点,分析2次91500,监控样为锆石标准物质Plésovice(206Pb/238U年龄=(335.4±4.5) Ma,2σ,MSWD=0.97,n=25).数据处理软件为ICPMSDatacal ver.10.8(Liu et al., 2008).

4 研究结果

碎屑锆石样品17LZB-3z采自长汀楼子坝剖面姜畲坑附近,接近楼子坝组出露部分的底部,岩性为青灰色浅变质细砂岩;碎屑锆石样品20gj-1z和20gj-2z采自分宜古家松山铁矿下坊组古家砾岩段层型剖面,岩性为灰绿色厚层含砾板岩;样品20nd-1z采自宜春彬江镇南岱村,为坝里组上部深灰色厚层长石石英细砂岩.

样品17LZB-3z锆石粒径集中在80~100 μm,分选较好,锆石颜色以深粉色‒浅褐色以及灰白偏透明居多,磨圆以次圆状‒圆状为主,多数为环带明显的岩浆锆石;样品20gj-1z和20gj-2z锆石特征较为相似.锆石粒径30~120 μm,其中50~80 μm居多,分选较差,与其岩性特征一致;锆石颜色有浅粉色、深褐色、浅褐色;70%以上锆石透光度较好;多数锆石为次圆‒圆状,显示经过搬运过程,少数为次棱角状;以环带明显的岩浆锆石为主体,低于10%的锆石环带不清晰;部分锆石中发育包体、裂缝.样品20nd-1z中锆石粒径70~150 μm,多数在100 μm左右;锆石颜色为深粉色、深褐色、浅褐色,锆石透明度较好;锆石以圆状为主,部分为次圆状,显示碎屑锆石特征;绝大多数锆石环带清晰为岩浆锆石;锆石中包体和裂缝较少(图4).

随机对上述4个样品进行锆石U-Th-Pb同位素定年,在点位选择上排除包体和裂缝位置.剔除结果中谐和度<90%的点位,年龄≤1 000 Ma的选择206Pb/238U年龄,年龄值> 1 000 Ma的选择207Pb/206Pb年龄,锆石测年结果见附表1,各样品锆石年龄特征如下.

样品17LZB-3z(楼子坝组)取得有效数据点80个,其中最年轻锆石年龄为(577±4) Ma(谐和度97%),年龄范围577~2 587 Ma;Th/U值普遍>0.4;年龄谱中两个主峰值年龄为 960.4 Ma和1 041.6 Ma(图5).

样品20gj-1z(下坊组)取得有效数据点75个,其中最小锆石年龄为(672.9±5.5) Ma(谐和度94%),年龄范围673~2 640 Ma;Th/U值均接近或者>0.4;误差范围内,50颗锆石年龄集中于700~ 800 Ma,形成年龄谱中突出的峰值年龄为 753.6 Ma,其他峰值包括2 496.9 Ma和2 017.7 Ma占比均远低于753.6 Ma的峰值(图5).

样品20gj-2z(下坊组)取得有效数据点90个,其中最小锆石年龄为(651.4±6.6) Ma(谐和度96%)和(679.7±6.8) Ma(谐和度90%);年龄范围651~ 2 892 Ma;Th/U值接近或>0.4;其年龄谱特征与样品20gj-1z一致,主峰值年龄为752.4 Ma,其他低峰值年龄包括2 001.6 Ma和2 415.6 Ma(图5).

样品20nd-1z(坝里组)取得有效数据点74个,其中最小锆石年龄为(581.5±5.7) Ma(谐和度97%);年龄范围581~3 290 Ma;Th/U值接近或>0.4;年龄谱中最突出的峰值年龄为983.5 Ma,其他峰值年龄包括928 Ma、791.5 Ma、638.5 Ma,另有极低峰值1 753 Ma、2 011 Ma、2 468.5 Ma及2 617 Ma(图5).

5 讨论

5.1 区域地层对比

在剖面测制和踏勘的基础上,对4个地区新元古代晚期沉积地层进行对比如下.

闽西南地区楼子坝组的含义多次变化,传统上被认为属于南华系沉积(原“震旦系下统”;福建省地质矿产局,1997),张开毕等(2004)对其上覆“丁屋岭组”的时代进行了重新厘定,且近年来在区域地质调查(福建省地质调查研究院,2017)及本文开展的碎屑锆石研究表明(见4.1),楼子坝组至少部分属于震旦系沉积,闽西南地区未出露完整的南华系沉积地层.

郴州泗洲山南华系下部泗洲山组以含砾板岩的反复出现为特征,其形成与冰川作用相关(黄建中等,1994;Qi et al., 2020),与分宜古家南华系下坊组的古家砾岩段可以对比;泗洲山组区域上出露厚度约500 m左右(湖南省地质调查研究院,2017),古家砾岩段厚度则差异较大,层型剖面厚23.6 m,向西厚度达1 039 m(江西省地质矿产勘查开发局,2017).

郴州泗洲山地区天子地组具有含铁质条带的特征(黄建中等,1994;湖南省地质调查研究院,2017),而下坊组含铁岩段正是著名的“新余式”铁矿的赋存层位;天子地组厚度在泗洲山为 587.2 m,向南厚度增加至超过1 500 m;下坊组含铁岩段,层型剖面厚度144.5 m,向东增厚,变化最大达730 m(江西省地质矿产勘查开发局,2017).

郴州泗洲山正园岭组中含砾层位成因存在争议(黄建中等,1994;湖南省地质调查研究院,2017)但其上震旦系埃岐岭组硅质岩区域分布稳定,较好地限定了其为南华系晚期沉积,与分宜古家地区下坊组大沙江砾岩段及永福牛河剖面洪江组可以进行对比;正园岭组在泗洲山厚度497.0 m,区域上厚度较为稳定(湖南省地质调查研究院,2017);下坊组大沙江砾岩段层型剖面厚67.5 m,向东减薄至尖灭(江西省地质矿产勘查开发局,2017).洪江组在永福牛河出露249.0 m,未见底(Song et al., 2020).

闽西南地区震旦系下部楼子坝组及南岩组岩性以浅变质碎屑岩为主,其中夹硅质岩、磷块岩和少量白云岩团块;泗洲山剖面埃岐岭组、古家剖面坝里组以及牛河剖面培地组均以细碎屑、硅质或白云质沉积出现为特征,与冰期结束后区域水体深度的快速增加相关;楼子坝组在楼子坝剖面厚6 874.1 m,南岩组在丁屋岭剖面厚2 036.0 m;埃岐岭组在泗洲山厚度801.9 m,最薄处厚度 40 m;坝里组在赣中地区厚度598~1 814 m;培地组(不包含培地组定义中顶部硅质岩,详见牛志军等,2020; Song et al.,2020)在牛河剖面厚度377.5 m,区域上沉积厚度可达1 301 m(顶部硅质岩段,厚27 m;广西壮族自治区地质矿产局,1997).

震旦系上部的黄连组、丁腰河组、老虎塘组及老堡组均以硅质岩为主体,显示了水体深度的进一步增大;黄连组在丁屋岭剖面厚度355.7 m,丁腰河在泗洲山厚度15.6 m,区域沉积厚度1.3~21.9 m,以中‒薄层硅质、硅泥质沉积为主;老虎塘组在赣中地区出露厚度127.3~646.0 m,以数层 中‒薄层硅质岩夹碎屑岩为特征;老堡组在牛河剖面厚度25.4 m,区域上已知最大沉积厚度120 m,以总厚度较大的中‒薄层硅质岩沉积为特征(图6).

5.2 华南板块东南部新元古代晚期沉积序列及物源转化

赣中、湘东南、桂北、闽西南4处代表性剖面的对比表明,华南板块东南部新元古代晚期沉积在研究区特征一致,均为向上变细的岩性,体现了裂谷构造体制下持续拉张造成的区域水体变深(王剑等,2001),陆源物质供给逐渐减少,直至震旦纪晚期的硅泥质沉积出现.同时,研究区经历了新元古代晚期数次冰期事件,沉积了具有冰期特征的含砾层位.南华纪期间裂谷发育对地层沉积厚度影响较大,南华纪丰富的陆源物质供给起到了“填平”的作用,至震旦纪影响逐渐减小.区域上,新元古代晚期沉积地层岩相呈“指状交叉”(李聪等,2010),研究区各剖面以成冰事件、成铁事件以及成硅事件为标志,新元古代晚期地层沉积序列清晰,对比标志明确(图2图6),说明研究区新元古代晚期是一个统一的沉积盆地.

扬子陆块和华夏地块在青白口纪~850 Ma之前有各自独立的演化过程(刘宝珺和许效松,1994;Wang and Mo,1995;牛志军等,2020;舒良树等,2020),因此两地块前寒武纪沉积岩表现出不同的碎屑锆石年龄组成,李献华等(2012)经过统计得出结论:扬子陆块东部前寒武纪沉积岩最显著的年龄峰值为812 Ma和858 Ma,其他峰值包括2 000 Ma、2 482 Ma、2 660 Ma等;华夏地块前寒武纪沉积岩物源3个主峰值年龄为: 960 Ma、1 850 Ma及2 485 Ma,其他峰值年龄包括:588 Ma、765 Ma、1 080 Ma以及1 430 Ma(图5),据此可以将华南板块沉积岩根据其碎屑锆石特征峰值判断其物源是“亲扬子型”或是“亲华夏型”.

本次研究表明闽西南地区出露的震旦系为“亲华夏型”物源.在分宜松山古家地区,南华纪下坊组古家砾岩段样品碎屑锆石年龄显示其沉积时限接近于~670 Ma,与华南长安(斯图特)冰期沉积时限的认识一致(赵彦彦和郑永飞,2011),很好地约束了其沉积时限及地层对比.同时,20gj-1z和20gj-2z两个样品的锆石年龄谱中,主峰值年龄一致,接近于典型的“亲扬子型”物源特征.而震旦纪坝里组样品20nd-1z,沉积时限不超过575.8 Ma,锆石年龄谱显示出明显的“亲华夏型”物源特征,说明震旦纪坝里组沉积时,赣中地区沉积物源已经发生了转换.本文研究团队在前期对桂北永福牛河剖面开展的研究(Song et al., 2020)显示,桂北地区牛河剖面培地组碎屑锆石年龄谱特征与本文中坝里组特征十分相似(最小锆石年龄(585.23±4.53) Ma,主峰值年龄971 Ma);桂北地区沉积物源由“亲扬子型”转换至“亲华夏型”也发生在震旦纪,岩石地层单位为培地组,与赣中地区相同.而在湘东南泗洲山开展的研究(宋芳,2020)则显示,上述物源转换的时限为南华纪早期,发生于泗洲山组沉积期,早于赣 中‒桂北一线.在泗洲山及永福地区,“亲扬子型”与“亲华夏型”物源的转换均存在交替过程(宋芳,2020;Song et al.,2020),这与南华系‒寒武系沉积岩相指状交叉(李聪等,2010)可以互相印证.

值得注意的是,在本文发表的碎屑锆石样品中,锆石年龄谱里中元古代之前的物源年龄峰值均较低或未出现,与桂北永福(Song et al., 2020)以及郴州泗洲山(宋芳,2020)的相应样品情况相似.杜秋定等(2021)对扬子陆块莲沱组开展的碎屑锆石物源研究中,莲沱组和休宁组的碎屑锆石年龄谱也显示出同样的特征.对于中元古代之前物源信息相对较少或缺失,其原因与沉积期剖面所处盆地的位置、物源出露和剥蚀以及后期物源再循环等因素相关(郭佩等,2017;杜秋定等,2021),如 ~1 850 Ma的基底只局限分布在闽西北一带(李献华等,2012及其参考文献),在新元古代晚期,该物源尚未到达研究区.进入早古生代之后,中元古代之前的物源逐渐趋于明显(Yao et al., 2015),其古地理意义需要进一步研究.综上所述,所有新元古代晚期样品均具有可区分扬子陆块和华夏地块物质组成的特征峰值(李献华等,2012),结合地层岩性组合,可以反映出区域沉积物源转换.

总体上,“亲华夏型”物源体系在新元古代晚期在赣湘桂一带有一个向北西推进的过程,在南华纪早期到达郴州地区,在震旦纪到达宜春‒永福一线(图7).

王鹏鸣等(2012)在湘东地区青白口纪板溪群马底驿组及湘东南南华纪地区天子地组(原文为“震旦纪”)分别采集样品显示马底驿组样品物源为“亲扬子型”而天子地组样品物源为“亲华夏型”.王鹏鸣等(2013)对在湖南金鸡岭和桂北苗儿山采集的南华纪(原文为“震旦纪”)至寒武纪样品开展的物源研究也表明:“亲华夏型”物源有一个向北西推进的过程.Yao et al. (2015)Yao and Li(2016)、牛志军等(2020)、何垚砚等(2020)的研究表明,“亲华夏型”物源向华南板块内部的推进过程一直持续到早古生代晚期.

5.3 新元古代晚期 “华夏型陆源碎屑地层”的时空分布对该时期“华南洋”的质疑

通过对华夏地块东部及赣湘桂地区新元古代晚期沉积地层的对比及物源特征讨论,可以发现在该地区存在一套持续向北西方向推进的砂体沉积,本文将其定义为“华夏型陆源碎屑地层”.

岩性上,“华夏型陆源碎屑地层”是一套成层较厚、以陆源碎屑沉积为主的沉积体系,在气候事件或成矿事件的影响下,相应时段会保留标志性的夹层;在碎屑锆石年龄谱特征上,“华夏型陆源碎屑地层”以具备“亲华夏型”物源的锆石特征峰值(900~1 100 Ma)为特征,往往缺乏或只有极少的“亲扬子型”物源700~800 Ma锆石峰值.

本次研究中,在华夏地块东部出露的新元古代地层属于“华夏型陆源碎屑沉积地层”.在赣湘桂地区,在南华纪早期,研究区的沉积物源均主要来源于扬子陆块,在南华纪670 Ma之前,“华夏型陆源碎屑地层”就到达了湘东南郴州泗洲山地区,泗洲山组中上部沉积均属此类沉积;之后,震旦纪580 Ma之前到达赣中宜春‒桂北永福一线(图7).其向华南板块内部的推进过程一直持续到早古生代晚期(Yao et al., 2015, 2016;何垚砚等,2020; 牛志军等,2020).分隔扬子陆块和华夏地块的“华南洋”演化问题一直存在争论(Wang and Mo,1995Wang and Li,2003;李三忠等,2016; 潘桂棠等,2016;舒良树等,2020),针对“华南洋”的相关问题,学者们从岛弧岩浆活动、变质岩(Li et al., 2005Shu et al., 2011Zhang et al., 2012; 于津海等,2014;覃小锋等,2015;彭松柏等,2016a,2016b)、岩相古地理(蒲心纯等,1993;陈世悦等,2009;李聪等,2010;周恳恳等,2017)及古生物(陈旭等,1995;牛志军等,2018)等方面分别进行了深入探讨,目前,就“华南洋”的存在时限这一问题,主要的争议时段为新元古代晚期.

本次研究通过对赣湘桂地区新元古代晚期地层沉积序列的对比和物源研究,确定研究区新元古代晚期地层沉积序列一致,对比关系明确;同时,研究区新元古代晚期存在着“华夏型陆源碎屑沉积”持续向华南板块内部推进的过程.从地层对比和物源扩散的角度,并无证据支持在研究区内存在新元古代晚期的“华南洋”.

6 结论

(1)新元古代晚期,华南板块东南部存在一套岩性上以成层较厚的碎屑岩为特征、物源上以具有900~1 100 Ma峰值为特征的“华夏型陆源碎屑沉积地层”,从南华纪早期开始进入研究区,并持续向北西推进,这一过程持续到震旦纪之后.

(2)“华夏型陆源碎屑沉积地层”的时空分布结果,对新元古代晚期在政和‒大埔断裂带以西的地区存在分隔扬子陆块和华夏地块的“华南洋”这一认识提出了质疑.

参考文献

[1]

Bureau of Geology and Mineral Exploration and Development of Jiangxi Province, 2017. The Regional Geological of China, Jiangxi Province. Geological Publishing House, Beijing (in Chinese).

[2]

Bureau of Geology and Mineral Resources of Fujian Province, 1997. Stratigraphy (Lithostratic) of Fujian Province. China University of Geosciences Press, Wuhan (in Chinese).

[3]

Bureau of Geology and Mineral Resources of Guangdong Province, 1996. Stratigraphy (Lithostratic) of Guangdong Province. China University of Geosciences Press, Wuhan (in Chinese).

[4]

Bureau of Geology and Mineral Resources of Guangxi Zhuang Autonomous Region, 1997. Stratigraphy (Lithostratic) of Guangxi Zhuang Autonomous Region. China University of Geosciences Press, Wuhan (in Chinese).

[5]

Cawood, P. A., Wang, W., Zhao, T. Y., et al., 2020. Deconstructing South China and Consequences for Reconstructing Nuna and Rodinia. Earth-Science Reviews, 204: 103169. https://doi.org/10.1016/j.earscirev.2020.103169

[6]

Cawood, P. A., Zhao, G. C., Yao, J. L., et al., 2018. Reconstructing South China in Phanerozoic and Precambrian Supercontinents. Earth-Science Reviews, 186: 173-194. https://doi.org/10.1016/j.earscirev.2017.06.001

[7]

Chen, S. Y., Zhang, P. F., Yang, H. Y., 2009. Silurian Storm Deposits in Jiangping Area, Northwestern Hunan Province: Characteristics and Geological Significances. Journal of Palaeogeography, 11(1): 51-57 (in Chinese with English abstract).

[8]

Chen, X., Rong, J. Y., Rowley, D. B., et al., 1995. Is the Early Paleozoic Banxi Ocean in South China Necessary? Geological Review, 41(5): 389-400 (in Chinese with English abstract).

[9]

Dalziel, I. W. D., 1991. Pacific Margins of Laurentia and East Antarctica-Australia as a Conjugate Rift Pair: Evidence and Implications for an Eocambrian Supercontinent. Geology, 19(6): 598-601. https://doi.org/10.1130/0091-7613(1991)019&lt;0598: PMOLAE&gt;2.3.CO;2

[10]

Du, Q.D., Wang, J., Wang, Z.J., et al., 2021. Depositional Differentiation and Porvenance Analysis of Liantuo Formation in Neoproterozoic Rift Basin, Yangtze Block. Earth Science, 46(7): 2529-2543 (in Chinese with English abstract).

[11]

Du, Q. D., Wang, Z. J., Wang, J., et al., 2013. Geochronology and Paleoenvironment of the Pre-Sturtian Glacial Strata: Evidence from the Liantuo Formation in the Nanhua Rift Basin of the Yangtze Block, South China. Precambrian Research, 233: 118-131. https://doi.org/10.1016/j.precamres.2013.04.012

[12]

Faure, M., Shu, L. S., Wang, B., et al., 2009. Intracontinental Subduction: A Possible Mechanism for the Early Palaeozoic Orogen of SE China. Terra Nova, 21(5): 360-368. https://doi.org/10.1111/j.1365-3121.2009.00888.x

[13]

Geng, Y. S., Kuang, H. W., Du, L. L., et al., 2020. The Characteristics of Meso-Neoproterozoic Magmatic Rocks in North China, South China and Tarim Blocks and Their Significance of Geological Correlation. Acta Petrologica Sinica, 36(8): 2276-2312 (in Chinese with English abstract).

[14]

Geological Survey Institute of Fujian Province, 2017. The Regional Geological of China, Fujian Province. Geological Publishing House, Beijing (in Chinese).

[15]

Geological Survey Institute of Hunan Province, 2017. The Regional Geological of China, Hunan Province. Geological Publishing House, Beijing (in Chinese).

[16]

Guo, L. Z., Shi, Y. S., Ma, R. S., 1980. Tectonic Framework and Crustal Evolution of South China Block. The 26th International Geological Congress (1). Geological Publishing House, Beijing (in Chinese).

[17]

Guo, P., Liu, C. Y., Wang, J. Q., et al., 2017. Considerations on the Application of Detrital-Zircon Geochronology to Sedimentary Provenance Analysis. Acta Sedimentologica Sinica, 35(1): 46-56 (in Chinese with English abstract).

[18]

He, W. H., Tang, T. T., Yue, M. L., et al., 2014. Sedimentary and Tectonic Evolution of Nanhuan-Permian in South China. Earth Science, 39(8): 929-953 (in Chinese with English abstract).

[19]

He, Y. Y., Niu, Z. J., Zhang, Z. Z., et al., 2020. Detrital Zircons of the Meitan Formation during Ordovician in Northeastern Guizhou and Its Significance for Provenance: Tectonic and Implications for Metallogenic Chronology. Geology in China, 47(4): 1025-1040 (in Chinese with English abstract).

[20]

Hoffman, P. F., 1991. Did the Breakout of Laurentia Turn Gondwanaland Inside-Out? Science, 252(5011): 1409-1412. https://doi.org/10.1126/science.252.5011.1409

[21]

Huang, J. Q., 1954. On Major Tectonic Forms of China. Geological Publishing House, Beijing (in Chinese).

[22]

Huang, J. Z., Tang, X. S., Zhang, C. C., et al., 1994. New Division and Regional Correlation of Sinian Strata in Southeast Hunan. Hunan Geology, 13(3): 129-136 (in Chinese with English abstract).

[23]

Lan, Z. W., 2023. Research Progress on the Chronostratigraphic Study of Nanhua System in South China. Sedimentary Geology and Tethyan Geology, 43(1): 180-187 (in Chinese with English abstract).

[24]

Lan, Z. W., Li, X. H., Zhu, M. Y., et al., 2015. Revisiting the Liantuo Formation in Yangtze Block, South China: SIMS U-Pb Zircon Age Constraints and Regional and Global Significance. Precambrian Research, 263: 123-141. https://doi.org/10.1016/j.precamres.2015.03.012

[25]

Li, C., Chen, S. Y., Zhang, P. F., et al., 2010. Research of South China Caledonian Intracontinental Tectonic Attribute. Journal of China University of Petroleum (Edition of Natural Science), 34(5): 18-24 (in Chinese with English abstract).

[26]

Li, S. Z., Li, X. Y., Zhao, S. J., et al., 2016. Global Early Paleozoic Orogens(Ⅲ): Intracontinental Orogen in South China. Journal of Jilin University (Earth Science Edition), 46(4): 1005-1025 (in Chinese with English abstract).

[27]

Li, W., Li, X., Li, Z., 2005. Neoproterozoic Bimodal Magmatism in the Cathaysia Block of South China and Its Tectonic Significance. Precambrian Research, 136(1): 51-66. https://doi.org/10.1016/j.precamres.2004.09.008

[28]

Li, X. H., Li, W. X., He, B., 2012. Building of the South China Block and Its Relevance to Assembly and Breakup of Rodinia Supercontinent: Observations, Interpretations and Tests. Bulletin of Mineralogy, Petrology and Geochemistry, 31(6): 543-559 (in Chinese with English abstract).

[29]

Li, Z. X., Bogdanova, S. V., Collins, A. S., et al., 2008. Assembly, Configuration, and Break-Up History of Rodinia: A Synthesis. Precambrian Research, 160(1-2): 179-210. https://doi.org/10.1016/j.precamres.2007.04.021

[30]

Li, Z. X., Li, X. H., Wartho, J. A., et al., 2010. Magmatic and Metamorphic Events during the Early Paleozoic Wuyi-Yunkai Orogeny, Southeastern South China: New Age Constraints and Pressure-Temperature Conditions. Geological Society of America Bulletin, 122(5-6): 772-793. https://doi.org/10.1130/b30021.1

[31]

Liu, B. J., Xu, X. S., 1994. Atlas of Lithofacies and Paleogeography in Southern China. Science Press, Beijing (in Chinese).

[32]

Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1-2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004

[33]

Lu, D. B., Xiao, J. F., Lin, S. J., 2013. Stratigraphic Framework of Nanhua Glacial Period in Southern China. Journal of Stratigraphy, 37(4): 628-629 (in Chinese).

[34]

Mao, J. W., Zheng, W., Xie, G. Q., et al., 2021. Recognition of a Middle-Late Jurassic Arc-Related Porphyry Copper Belt along the Southeast China Coast: Geological Characteristics and Metallogenic Implications. Geology, 49(5): 592-596. https://doi.org/10.1130/G48615.1

[35]

Niu, Z. J., Wang, Z. H., Zhang, R. J., et al., 2018. A Preliminary Study on Middle Ordovician Bivalves from Yunkai Area, Western Guangdong, South China. Earth Science, 43(7): 2195-2205 (in Chinese with English abstract).

[36]

Niu, Z. J., Yang, W. Q., Song, F., et al., 2020. Neoproterozoic Sequence, Provenance and Tectonic Evolution in Hunan and Guangxi, South China. Science Press, Beijing (in Chinese).

[37]

Pan, G. T., Lu, S. N., Xiao, Q. H., et al., 2016. Division of Tectonic Stages and Tectonic Evolution in China. Earth Science Frontiers, 23(6): 10-23 (in Chinese with English abstract).

[38]

Peng, S. B., Liu, S. F., Lin, M. S., et al., 2016a. Early Paleozoic Subduction in Cathaysia(Ⅰ): New Evidence from Nuodong Ophiolite. Earth Science, 41(5): 765-778 (in Chinese with English abstract).

[39]

Peng, S. B., Liu, S. F., Lin, M. S., et al., 2016b. Early Paleozoic Subduction in Cathaysia (Ⅱ): New Evidence from the Dashuang High Magnesian-Magnesian Andesite. Earth Science, 41(6): 931-947 (in Chinese with English abstract).

[40]

Pu, X. C., Zhou, H. D., Wang, X. L., 1993. Cambrian Lithofacies Paleogeography and Mineralization in South China. Geological Publishing House, Beijing (in Chinese with English abstract).

[41]

Qi, L., Cawood, P. A., Xu, Y. J., et al., 2020. Linking South China to North India from the Late Tonian to Ediacaran: Constraints from the Cathaysia Block. Precambrian Research, 350: 105898. https://doi.org/10.1016/j.precamres.2020.105898

[42]

Qin, X. F., Wang, Z. Q., Wang, T., et al., 2015. The Reconfirmation of Age and Tectonic Setting of the Volcanic Rocks of Yingyangguan Group in the Eastern Guangxi: Constraints on the Structural Pattern of the Southwestern Segment of Qinzhou-Hangzhou Joint Belt. Acta Geoscientica Sinica, 36(3): 283-292 (in Chinese with English abstract).

[43]

Qiu, W. J., Zhou, M. F., Li, X. C., et al., 2018. The Genesis of the Giant Dajiangping SEDEX-Type Pyrite Deposit, South China. Economic Geology, 113(6): 1419-1446. https://doi.org/10.5382/econgeo.2018.4597

[44]

Ren, J. S., Chen, T. Y., Liu, Z. G., et al., 1986. Several Problems of Tectonics in South China. Chinese Science Bulletin, 31(1): 49-51 (in Chinese).

[45]

Ren, J. S., Li, C., 2016. Cathaysia Old Land and Relevant Problems: Pre-Devonian Tectonics of Southern China. Acta Geologica Sinica, 90(4): 607-614 (in Chinese with English abstract).

[46]

Shu, L. S., Faure, M., Yu, J. H., et al., 2011. Geochronological and Geochemical Features of the Cathaysia Block (South China): New Evidence for the Neoproterozoic Breakup of Rodinia. Precambrian Research, 187(3-4): 263-276. https://doi.org/10.1016/j.precamres.2011.03.003

[47]

Shu, L. S., Jahn, B. M., Charvet, J., et al., 2014. Early Paleozoic Depositional Environment and Intraplate Tectono-Magmatism in the Cathaysia Block (South China): Evidence from Stratigraphic, Structural, Geochemical and Geochronological Investigations. American Journal of Science, 314(1): 154-186. https://doi.org/10.2475/01.2014.05

[48]

Shu, L. S., 2012. An Analysis of Principal Features of Tectonic Evolution in South China Block. Geological Bulletin of China, 31(7): 1035-1053 (in Chinese with English abstract).

[49]

Shu, L. S., Chen, X. Y., Lou, F. S., 2020. Pre-Jurassic Tectonics of the South China. Acta Geologica Sinica, 94(2): 333-360 (in Chinese with English abstract).

[50]

Song, C. Z., Li, J. H., Yan, J. Y., et al., 2019. A Tentative Discussion on Some Tectonic Problems in the East of South China Continent. Geology in China, 46(4): 704-722 (in Chinese with English abstract).

[51]

Song, F., 2020. Sedimentation in the Southeastern Part of the South China Block and the Constraints on the Tectonic Background (Dissertation). China University of Geosciences, Wuhan, 94-99 (in Chinese with English abstract).

[52]

Song, F., Niu, Z. J., He, Y. Y., et al., 2020. Geographic Proximity of Yangtze and Cathaysia Blocks during the Late Neoproterozoic Demonstrated by Detrital Zircon Evidence. Palaeogeography Palaeoclimatology Palaeoecology, 558: 109939. https://doi.org/10.1016/j.palaeo.2020.109939

[53]

Song, F., Niu, Z. J., He, Y. Y., et al., 2024. Provenance and Sedimentary Features of the Diamictite Unit in the Nanhuan Sizhoushan Formation in the Northwestern Margin of the Cathaysia Block and Its Correlation. Journal of Stratigraphy, 48(1): 42-56 (in Chinese with English abstract).

[54]

Sun, J. J., Shu, L. S., Santosh, M., et al., 2017. Neoproterozoic Tectonic Evolution of the Jiuling Terrane in the Central Jiangnan Orogenic Belt (South China): Constraints from Magmatic Suites. Precambrian Research, 302: 279-297. https://doi.org/10.1016/j.precamres.2017.10.003

[55]

Wang, H. Z., Mo, X. X., 1995. An Outline of the Tectonic Evolution of China. Episodes, 18(1-2): 6-16. https://doi.org/10.18814/epiiugs/1995/v18i1.2/003

[56]

Wang, J., Li, Z. X., 2003. History of Neoproterozoic Rift Basins in South China: Implications for Rodinia Break-Up. Precambrian Research, 122(1-4): 141-158. https://doi.org/10.1016/S0301-9268(02)00209-7

[57]

Wang, J., Liu, B. J., Pan, G. T., 2001. Neoproterozoic Rifting History of South China Significance to Rodinia Breakup. Journal of Mineralogy and Petrology, 21(3): 135-145 (in Chinese with English abstract).

[58]

Wang, J., Zeng, Z. G., Chen, W. X., et al., 2006. The Neoproterozoic Rift Systems in Southern China: New Evidence for the Sedimentary Onlap and Its Initial Age. Sedimentary Geology and Tethyan Geology, 26(4): 1-7 (in Chinese with English abstract).

[59]

Wang, P. M., Yu, J. H., Sun, T., et al., 2012. Geochemistry and Detrital Zircon Geochronology of Neoproterozoic Sedimentary Rocks in Eastern Hunan Province and Their Tectonic Significance. Acta Petrologica Sinica, 28(12): 3841-3857 (in Chinese with English abstract).

[60]

Wang, P. M., Yu, J. H., Sun, T., et al., 2013. Composition Variations of the Sinian-Cambrian Sedimentary Rocks in Hunan and Guangxi and Their Tectonic Significance. Science in China (Series D), 43(11): 1893-1906 (in Chinese with English abstract).

[61]

Wang, X. L., Shu, L. S., Xing, G. F., et al., 2012. Post-Orogenic Extension in the Eastern Part of the Jiangnan Orogen: Evidence from Ca 800-760 Ma Volcanic Rocks. Precambrian Research, 222-223: 404-423. https://doi.org/10.1016/j.precamres.2011.07.003

[62]

Wang, X.L., Zhou, J.C., Chen, X., et al., 2017. Formation and Evolution of the Jiangnan Orogen. Bulletin of Mineralogy, Petrology and Geochemistry, 36(5): 714-735, 696 (in Chinese with English abstract).

[63]

Wang, Z. J., 2008. Neoprotrozoic Rift Basin Evolution and Its Stratigraphic Division and Correlation in Eastern Guizhou. (Dissertation). Chinese Academy of Geological Sciences, Beijing (in Chinese with English abstract).

[64]

Wiedenbeck, M., Allé, P., Corfu, F., et al., 1995. Three Natural Zircon Standards for U-Th-Pb, Lu-Hf, Trace Element and REE Analyses. Geostandards Newsletter, 19(1): 1-23. https://doi.org/10.1111/j.1751-908x.1995.tb00147.x

[65]

Williams, G. E., 1975. Late Precambrian Glacial Climate and the Earth’s Obliquity. Geological Magazine, 112(5): 441-465. https://doi.org/10.1017/S0016756800046185

[66]

Xu, X. B., Zhang, Y. Q., Shu, L. S., et al., 2011. La-ICP-MS U-Pb and 40Ar/39Ar Geochronology of the Sheared Metamorphic Rocks in the Wuyishan: Constraints on the Timing of Early Paleozoic and Early Mesozoic Tectono-Thermal Events in SE China. Tectonophysics, 501(1-4): 71-86. https://doi.org/10.1016/j.tecto.2011.01.014

[67]

Xu, Y. J., Cawood, P. A., Du, Y. S., 2016. Intraplate Orogenesis in Response to Gondwana Assembly: Kwangsian Orogeny, South China. American Journal of Science, 316(4): 329-362. https://doi.org/10.2475/04.2016.02

[68]

Xue, E. K., Wang, W., Huang, S. F., et al., 2019. Detrital Zircon U-Pb-Hf Isotopes and Whole-Rock Geochemistry of Neoproterozoic-Cambrian Successions in the Cathaysia Block of South China: Implications on Paleogeographic Reconstruction in Supercontinent. Precambrian Research, 331: 105348. https://doi.org/10.1016/j.precamres.2019.105348

[69]

Yang, M. G., Wang, G. H., 2020. Late Neoproterozoic Stratigraphic Sequence and Large-Scale Sedimentary Mineralization in South China during the Nanhua Interglacial-Post Glacial Periods. East China Geology, 41(3): 197-208 (in Chinese with English abstract).

[70]

Yang, M.G., Wang, K., 1994. Geological Structure Framework and Crustal Evolution in Jiangxi Province. Jiangxi Geology, 8(4): 239-251 (in Chinese with English abstract).

[71]

Yang, M. G., Zhu, P. J., Xiong, Q. H., et al., 2012. Framework and Evolution of the Neoproterozoic-Early Paleozoic South-China Rift System. Acta Geologica Sinica, 86(9): 1367-1375 (in Chinese with English abstract).

[72]

Yao, W. H., Li, Z. X., 2016. Tectonostratigraphic History of the Ediacaran-Silurian Nanhua Foreland Basin in South China. Tectonophysics, 674: 31-51. https://doi.org/10.1016/j.tecto.2016.02.012

[73]

Yao, W. H., Li, Z. X., Li, W. X., et al., 2015. Detrital Provenance Evolution of the Ediacaran-Silurian Nanhua Foreland Basin, South China. Gondwana Research, 28(4): 1449-1465. https://doi.org/10.1016/j.gr.2014.10.018

[74]

Ye, Z. H., Lao, Q. Y., Hu, S. L., 2000. Some Remarks on the Geologic Age and Stratigraphic Sequence of Yunkai Group in Yunkai Mountains. Geological Review, 46(5): 449-454 (in Chinese with English abstract).

[75]

Yu, J. H., Lou, F. S., Wang, L. J., et al., 2014. The Geological Significance of a Paleozoic Mafic Granulite Found in the Yiyang Area of Northeastern Jiangxi Province. Chinese Science Bulletin, 59(35): 3508-3516 (in Chinese).

[76]

Zhang, F. F., Wang, Y. J., Zhang, A. M., et al., 2012. Geochronological and Geochemical Constraints on the Petrogenesis of Middle Paleozoic (Kwangsian) Massive Granites in the Eastern South China Block. Lithos, 150: 188-208. https://doi.org/10.1016/j.lithos.2012.03.011

[77]

Zhang, G. W., Guo, A. L., Wang, Y. J., et al., 2013. Tectonics of South China Continent and Its Implications. Science in China (Series D), 43(10): 1553-1582 (in Chinese).

[78]

Zhang, K. B., Huang, C. Q., Lin, H. C., et al., 2004. Discovery of Spores from the Dingwuling Conglomerate in Southwestern Fujian. Journal of Stratigraphy, 28(3): 240-243 (in Chinese with English abstract).

[79]

Zhang, K. X., He, W. H., Xu, Y. D., et al., 2023. The Division of Qingbaikouan-Triassic Tectono-Stratigraphic Regions and Their Characteristics in South China. South China Geology, 39(1): 1-23 (in Chinese with English abstract).

[80]

Zhang, K. X., Xu, Y. D., He, W. H., et al., 2018. Oceanic and Continental Blocks Distribution during Neoproterozoic Early Qingbaikouan Period (1 000-820 Ma) in China. Earth Science, 43(11): 3837-3852 (in Chinese with English abstract).

[81]

Zhang, Y. Y., Luo, T. Y., Gan, T., et al., 2021. Early Silurian Wuchuan-Sihui-Shaoguan Exhalative Sedimentary Pyrite Belt, South China: Constraints from Zircon Dating for K-Bentonite of the Giant Dajiangping Deposit. Acta Geochimica, 40(1): 1-12. https://doi.org/10.1007/s11631-020-00439-x

[82]

Zhao, G. C., Cawood, P. A., 1999. Tectonothermal Evolution of the Mayuan Assemblage in the Cathaysia Block; Implications for Neoproterozoic Collision-Related Assembly of the South China Craton. American Journal of Science, 299(4): 309-339. https://doi.org/10.2475/ajs.299.4.309

[83]

Zhao, G. C., Wang, Y. J., Huang, B. C., et al., 2018. Geological Reconstructions of the East Asian Blocks: From the Breakup of Rodinia to the Assembly of Pangea. Earth Science Reviews, 186: 262-286. https://doi.org/10.1016/j.earscirev.2018.10.003

[84]

Zhao, Y. Y., Zheng, Y. F., 2011. Record and Time of Neoproterozoic Glaciations on Earth. Acta Petrologica Sinica, 27(2): 545-565 (in Chinese with English abstract).

[85]

Zheng, Y. F., 2004. Position of South China in Configuration of Neoproterozoic Supercontinent. Chinese Science Bulletin, 49(8): 751-753. https://doi.org/10.1007/BF02889741

[86]

Zhou, C. M., Yuan, X. L., Xiao, S. H., et al., 2019. Ediacaran Integrative Stratigraphy and Timescale of China. Science in China (Series D), 49(1): 7-25 (in Chinese).

[87]

Zhou, K. K., Mu, C. L., Ge, X. Y., et al., 2017. Lithofacies Paleogeography of the South China in Early Paleozoic and Its Reflection on Key Geological Problems. Acta Sedimentologica Sinica, 35(3): 449-459 (in Chinese with English abstract).

基金资助

中国地质调查局地质调查项目(DD20240038;DD20243437;DD20243480;DD20230226)

国家自然科学金面上项目(U2244212;41772019)

古生物与地质环境演化湖北省重点实验室开放基金项目(PEL-202106)

AI Summary AI Mindmap
PDF (2881KB)

388

访问

0

被引

详细

导航
相关文章

AI思维导图

/