内蒙古巴尔哲稀有稀土矿区新发现的碱性流纹岩岩石成因及其地质意义

淡凯波 ,  张道涵 ,  栾钰薇 ,  宋崇宇 ,  于淼 ,  刘常伟

地球科学 ›› 2024, Vol. 49 ›› Issue (04) : 1324 -1338.

PDF (6258KB)
地球科学 ›› 2024, Vol. 49 ›› Issue (04) : 1324 -1338. DOI: 10.3799/dqkx.2023.177

内蒙古巴尔哲稀有稀土矿区新发现的碱性流纹岩岩石成因及其地质意义

作者信息 +

Petrogenesis and Geological Significance of Newly Discovered Alkaline Rhyolite in Baerzhe Rare Metal Deposit, Inner Mongolia

Author information +
文章历史 +
PDF (6407K)

摘要

为查明在内蒙古巴尔哲超大型稀有稀土金属矿区新发现的碱性流纹岩岩石成因,及其与碱性花岗岩成矿岩体、以及邻区阿里乌拉碱性流纹岩的成因联系,开展了锆石U-Pb定年、矿物学和全岩地球化学研究.结果表明,巴尔哲碱性流纹岩喷发年龄为124.4±1.6 Ma,明显年轻于阿里乌拉碱性流纹岩 (141 Ma),代表了大兴安岭中南段早白垩世新一期碱性火山岩活动.巴尔哲和阿里乌拉碱性流纹岩具有较高的SiO2、碱金属、TFe2O3、F和较低的Al2O3含量,均归属于钠闪碱流岩.两者均富集轻稀土元素(LREE)和Nb、Ta、Zr、Hf等高场强元素(HFSE),含有较高的Rb、Th、U和极低的Ba、Sr含量.另外,两者具有相同的全岩Nd同位素组成,εNdt)值分别为1.6和1.7~1.8.因此,巴尔哲和阿里乌拉碱性流纹岩均为新生地壳部分熔融的产物.巴尔哲碱性流纹岩与碱性花岗岩成矿岩体形成时代和同位素组成均一致,应属同一岩浆体系不同演化阶段的产物.鉴于火山岩出露范围更广,碱性火山岩可以作为深部稀有稀土金属矿床的重要地质找矿标志,并指出阿里乌拉地区具有该类金属矿产较好的找矿潜力.

关键词

巴尔哲 / 阿里乌拉 / 稀有稀土金属矿床 / 碱性火山岩 / 大兴安岭 / 矿床学

Key words

Baerzhe / Aliwula / rare metal deposit / alkaline volcanic rock / Great Xing’an Range / ore deposit geology

引用本文

引用格式 ▾
淡凯波,张道涵,栾钰薇,宋崇宇,于淼,刘常伟. 内蒙古巴尔哲稀有稀土矿区新发现的碱性流纹岩岩石成因及其地质意义[J]. 地球科学, 2024, 49(04): 1324-1338 DOI:10.3799/dqkx.2023.177

登录浏览全文

4963

注册一个新账户 忘记密码

巴尔哲矿床是我国最大的碱性花岗岩型稀有稀土矿床,其中锆(Zr)和稀土(REE)的储量分别约为280万吨和100万吨,达超大型矿床规模(王一先和赵振华, 1997Wu et al., 2021).矿体主要产在早白垩世碱性花岗岩体(123~125 Ma; Yang et al., 2014, 2017Qiu et al., 2019)顶部及其晚期分异的伟晶岩内,主要矿石矿物为锆石、兴安石、氟碳铈矿、烧绿石等(王一先和赵振华, 1997杨武斌等, 2009).国内学者已对其成矿岩体岩石成因和成矿机制进行了大量的研究,普遍认为成矿岩浆经历了以结晶分异为主导的岩浆演化过程,对成矿金属富集具有重要贡献(王一先和赵振华, 1997Jahn et al., 2001杨武斌等, 2011aSun et al., 2013Yang et al., 2014Su et al., 2021Wu et al., 2021).因此,探讨碱性花岗岩岩浆体系演化过程,对深入认识稀有稀土金属富集成矿作用具有重要意义.
近年来,王建国等(2013)在巴尔哲矿区北东东方向约12 km处的阿里乌拉地区早白垩世白音高老组地层内,发现了一套碱性流纹岩夹层.全岩地球化学和锆石Lu-Hf同位素揭示,碱性流纹岩可能为古俯冲洋壳部分熔融的产物,被认为与巴尔哲碱性花岗岩可能为同一期碱性岩浆作用(王建国等, 2013王建国, 2014).但其锆石U-Pb年龄揭示,阿里乌拉碱性流纹岩的喷发年龄为141 Ma (王建国等, 2013),远早于巴尔哲岩体的侵位年龄(121~124 Ma; Yang et al., 2014Qiu et al., 2019).那么,阿里乌拉碱性流纹岩与巴尔哲碱性花岗岩究竟是否属于同一期碱性花岗质岩浆作用,两者是否有成因联系,有待进一步深入研究.
最近,笔者在巴尔哲矿区内新发现了碱性流纹岩,野外产状与阿里乌拉碱性流纹岩相似,均产在白音高老组内,并以夹层的形式产出.该流纹岩是否与阿里乌拉碱性流纹岩同期,其与巴尔哲碱性花岗岩是否有成因关系,也有待进一步查明.针对上述问题,本文采用中国科学院地质与地球物理研究所新近开发的高空间分辨率LA-SF-ICP-MS锆石U-Pb定年技术(Wu et al., 2020),在精确限定流纹岩喷发年龄的基础上,开展全岩主微量元素、Nd同位素和碱性角闪石主微量元素等系统研究.结果表明,巴尔哲碱性流纹岩喷发时代和地球化学特征明显有别于阿里乌拉碱性流纹岩,但与巴尔哲成矿岩体同源同期,即早白垩世区内存在两期碱性花岗质岩浆作用.

1 地质背景与样品信息

巴尔哲矿床地处大兴安岭中南段(图1a~1b),区域出露的基底岩石包括新太古代片麻岩和片岩,其原岩为一套基性、中酸性火山岩;早元古界宝音图群为一套低绿片岩相-低角闪岩相变质的产物,以石英片岩为主,原岩为一套滨-浅海相陆源碎屑及泥质砂岩,局部夹中基性火山岩及碳酸盐岩(张梅, 2011).中生代时期,受蒙古-鄂霍茨克洋和古太平洋俯冲的叠加影响(Wu et al., 2011),区域上发育大量晚中生代中酸性火山岩、I型和A型花岗岩(Wu et al., 2002, 2003a2003bZhang et al., 2010许文良等, 2013唐杰等, 2018),其中部分早白垩世碱性花岗岩伴有稀有稀土金属矿化,形成巴尔哲等矿床(Jahn et al., 2001).

巴尔哲矿床位于通辽市扎鲁特旗境内,矿区出露早白垩世白音高老组和梅勒图组火山岩地层(图1c).碱性花岗岩呈岩株状侵入于白音高老组地层中.按照岩性和矿化程度,矿区内碱性花岗岩分为801和802两个岩体,其中801为碱性花岗岩,为Zr-Nb-REE成矿岩体,而802为斑状碱性花岗岩,局部发育硅化、钠化等蚀变,显示Nb、Y矿化(杨武斌等, 2011b).新发现的碱性流纹岩位于802岩体上覆的白音高老组盖层内,以夹层形式、呈近东西向产出,地表露头长约5 m,宽约2 m(图1c).因植被覆盖影响,具体延伸走向并不明确.碱性流纹岩手标本呈青灰色(图2a),呈聚斑状结构,聚晶主要为由碱性长石、碱性角闪石和石英等矿物组成(图2b),直径约2~5 mm.其中,碱性长石呈斑状,大小约为0.5~1.0 cm;石英呈粒状,大小约为1~5 mm;碱性角闪石呈柱状,大小约为1 mm(图2c).基质为细晶质,主要由细小的石英、碱性角闪石和长石组成.基质中的碱性角闪石呈自形针状或长柱状,粒径普遍小于10 μm;在聚晶周围常显示明显的定向性,表现出流线构造的特点(图2d).因出露范围较小,笔者仅采集1件碱性流纹岩样品(BEZ101)用于本次研究.

阿里乌拉碱性流纹岩位于科右中旗阿里乌拉山东南侧,产出于白音高老组凝灰岩、凝灰质砂岩中,地表出露范围相对较大,南北长约1.5 km,东西宽约1.0 km (王建国等, 2013图1d).地层倾向57°,倾角69°.碱性流纹岩手标本呈青灰色,具斑状结构和流纹构造,局部可见与安山岩互层(图2f).与巴尔哲碱性流纹岩相似,阿里乌拉碱性流纹岩中的聚晶也主要由碱性长石、石英、碱性角闪石等矿物组成(图2g),基质主要由细小的针状碱性角闪石(图2h)、石英和碱性长石等矿物组成,偶见霓石.锆石U-Pb年龄揭示,阿里乌拉碱性流纹岩喷发年龄为141±1 Ma (王建国等, 2013).本次研究共采集该流纹岩样品3件,编号分别为ALWL01、ALWL03和ALWL04.

2 分析方法

锆石的挑选和制靶均在广州拓岩检测技术有限公司完成,阴极发光(CL)图像拍摄在武汉上谱分析科技有限责任公司(WSSAT)完成.高空间分辨率LA-SF-ICP-MS锆石U-Pb定年在中国科学院地质与地球物理研究所岩石圈演化国家重点实验室完成,激光剥蚀系统由GeolasHD 102 ArF 193 nm准分子激光器和Element XR HR-ICP-MS质谱仪组成,详细的实验过程和校准技术参考Wu et al. (2020).分析采用激光束斑10 μm,频率5 Hz,能量密度约3.0 J/cm2.激光剥蚀过程中采用氦气作为载气,以提高烧蚀气溶胶的传输效率.标样为锆石91500,期间共分析10个点,平均年龄1 063±12 Ma,与推荐年龄(1 062±1 Ma; Wiedenbeck et al., 1995)一致.新开发的锆石标样SA01作为监控样,共分析10个点,平均年龄533.4±5.1 Ma,与推荐年龄(535.1±0.3 Ma; Huang et al., 2020)在误差范围内一致.对分析数据的离线处理采用软件Glitter完成;锆石U-Pb年龄谐和图绘制和加权平均年龄计算采用Isoplot完成.

全岩主微量元素测试在广州澳实分析检测有限公司完成.经处理的样品采用x射线荧光法(XRF)在装有四硼酸钠的玻璃盘中进行主量元素的分析,分析精度优于±2%.氟分别用KOH熔合和离子选择电极分析,检测限为20×10-6.对于微量元素的分析,经一系列处理的溶液样品,使用Agilent 7700x四极ICP-MS分析微量元素浓度,分析精度在10%以内.

全岩Nd同位素分析在WSSAT利用美国Thermo Fisher Scientific 公司的MC-ICP-MS(Neptune Plus)分析完成,测试内精度(2SE)为0.000 005~0.000 025 (0.01‰~0.05‰, 2RSE),测试准确度优于0.000 025 (~0.05‰).Nd同位素分析标样为GSB (143Nd/144Nd推荐值为0.512 438±0.000 006; Li et al., 2017a),监控样为BCR-2 (143Nd/144Nd推荐值为0.512 638±000 015; Weis et al., 2006)和RGM-2 (143Nd/144Nd推荐值为0.512 803±0.000 010; Li et al., 2012).测试期间共分析2个监控样,所获得的结果分别为0.512 638±0.000 005和0.512 803±0.000 050,与推荐值一致.

碱性角闪石主微量元素含量测试均在WSSAT完成.主量元素测试利用电子探针JEOL JXA-8230分析,分析条件采用15 kV加速电压、15 nA电流和10 μm束斑.采用天然和合成材料作为标样,所有数据均采用ZAF校正程序进行校正.由于基质中碱性角闪石粒径过小(≤10 μm),所以仅对碱性角闪石聚晶样品进行了微量元素分析.分析采用激光剥蚀系统为GeoLasHD,等离子体质谱仪为Agilent 7900,激光能量80 mJ,频率6 Hz,激光束斑直径24 μm,数据处理采用ICPMSDataCal,具体分析条件及流程详见文献Liu et al.(2008).

3 结果

3.1 锆石U-Pb年龄

巴尔哲碱性流纹岩中的锆石主要呈无色至淡黄色,整体颗粒偏小,长约50~100 μm,长宽比约为1∶1~3∶1.大部分锆石具半自形、自形结构,呈长柱状、短柱状.阴极发光图像显示(图3a),这些锆石内部结构较为复杂,大部分锆石具核边结构.其中,部分锆石核部震荡环带明显,少部分锆石核部呈扇形分区或呈溶蚀状;部分锆石边部阴极发光强度较强,并具震荡环带结构,而部分锆石边部阴极发光较弱或无发光性,整体较均一.这些内部结构复杂的特点,暗示锆石多来源的可能(Corfu, 2003吴元保和郑永飞, 2004).

本次研究选取了25颗锆石,共分析25个点.所获得的206Pb/238U年龄范围变化极大,介于123~1 764 Ma(附表1).这些年龄可以分为两组,一组为180~1 764 Ma,另一组为123~128 Ma (图3b~3c).其中第1组均为锆石核部或震荡环带明显的锆石边部年龄,而且这些年龄明显大于围岩白音高老组喷发年龄(145~129 Ma; 杨雅军等, 2022Tang et al., 2022),表明这些年龄应代表继承或捕获锆石的年龄.而第2组年龄变化范围较小,主要来自阴极发光强度较弱或极弱、且内部结构均一的锆石边部或独立锆石.另外,这些年龄Th/U比为0.34~5.59,大于0.1,显示岩浆成因的特征.因此,这些锆石应直接形成于碱性流纹岩岩浆,它们的年龄可以代表其喷发年龄.其中,7个年龄数据点的谐和度较高,给出的加权平均年龄为 124.4±1.6 Ma (MSWD= 0.09).因此,巴尔哲碱性流纹岩的喷发年龄应为124.4±1.6 Ma.

3.2 全岩地球化学

巴尔哲碱性流纹岩具有富SiO2(75.7%)、碱金属(Na2O+K2O=8.02%)、TFe2O3(4.32%)和F(680×10-6)、贫CaO(0.11%)的特征(附表2).在火山岩TAS图解中(图4a),巴尔哲碱性流纹岩属亚碱性流纹岩.其Al2O3含量相对较低,对应的过碱性指数[(N2O+K2O)/Al2O3摩尔比]为1.04.按照碱性火山岩划分方案,巴尔哲碱性流纹岩归属于钠闪碱流岩(图4b).微量元素组成上,碱性流纹岩整体富集轻稀土元素(LREE; 471×10-6)和Nb、Ta、Zr、Hf等高场强元素(HFSE),亏损Ti元素,显示一定程度的轻重稀土分馏[(La/Yb)N=4.5].碱性流纹岩具有较高的Rb、Th、U和极低的Ba、Sr含量,Rb/Sr比为65,具有明显的Eu负异常(Eu/Eu*=0.019).在稀土元素配分模式图(图5a)和微量元素蛛网图(图5b)中,巴尔哲碱性流纹岩与801超溶相碱性花岗岩表现出相似的特点.

与巴尔哲碱性流纹岩相似,阿里乌拉碱性流纹岩也具有高SiO2、Na2O、K2O、TFe2O3和F、低Al2O3 (10.32%~10.62%)和CaO(0.05%~0.11%)的特点(附表2).其过碱性指数为1.00~1.04,也可划分为钠闪碱流岩(图4b).微量元素组成上,阿里乌拉碱性流纹岩在稀土元素配分模式图和蛛网图中表现出与巴尔哲流纹岩相同的特征,但其稀土元素(REE; 602~790×10-6 577×10-6)和HFSE (Nb、Ta、Zr、Hf和Th等)含量整体高于后者.相比巴尔哲碱性流纹岩,其Rb含量更高,而Ba和Sr含量更低,Rb/Sr比高达126.此外,Eu负异常程度(Eu/Eu*=0.20~0.24)略低于巴尔哲流纹岩.除Ce和Zr元素外,本文数据与已发表的阿里乌拉碱性流纹岩全岩组成(王建国等, 2013)一致.前人发表的全岩数据明显富集Ce和Zr元素(图5b),可能与锆石局部不均一分布有关(Shao et al., 2015).

3.3 全岩Nd同位素

巴尔哲碱性流纹岩143Nd/144Nd为0.512 67,147Sm/144Nd为0.134 081,相应的εNdt)值为1.6(t=124 Ma),二阶段模式年龄T DM2为786 Ma (图6,表2).阿里乌拉碱性流纹岩143Nd/144Nd为0.512 681~0.512 699,147Sm/144Nd为0.149 020~0.150 618,εNdt)值为1.7~1.8 (t=141 Ma),二阶段模式年龄T DM2为782~795 Ma,与巴尔哲碱性流纹岩基本一致(图6).

3.4 碱性角闪石成分

巴尔哲碱性流纹岩聚晶中的碱性角闪石整体以高SiO2(50.1%~51.6%)、Na2O(4.78%~6.16%)、FeO(35.5%~36.7%)、F(0.13%~0.31%),低CaO(0.47%~2.95%)和Al2O3(0.46%~0.83%)为特征(图7,附表3).利用最新的角闪石公式计算方法(Li et al., 2020),这些碱性角闪石应归属于铁质蓝透闪石和钠闪石.而基质碱性角闪石也展现出相似的主量元素特征,也归属于铁质蓝透闪石和钠闪石,但整体具有更高的F含量(0.22%~0.88%,表3).在球粒陨石标准化的稀土元素配分模式图中(图8a),碱性角闪石聚晶富集HREE元素,亏损LREE,具有较低的(La/Yb)N(0.01~0.57),表现出明显的Eu负异常(Eu/Eu*=0~0.04).在原始地幔标准化微量元素蛛网图中(图8b),碱性角闪石聚晶明显富集Th、Nb、Ta、Zr、Hf等高场强元素和Rb、Pb等元素,亏损Ba、U、Sr和Eu等元素.

与巴尔哲碱性角闪石聚晶相比,阿里乌拉碱性流纹岩中碱性角闪石聚晶整体表出相近的主量元素特征,但其SiO2(47.7%~51.5%)和CaO(0.26%~3.04%)变化范围略大,Na2O(5.71%~7.65%)、Al2O3(0.65%~1.64%)和F(0.64%~2.00%)含量更高,而FeO含量较低(33.5%~35.7%) (附表3).这些碱性角闪石可细分为钠铁闪石、铁质红闪石和钠闪石.相比碱性角闪石聚晶,基质碱性角闪石SiO2(50.8%~51.6%)、Na2O (6.07%~7.48%)和F (1.29%~2.04%)含量整体偏高,而FeO (32.7%~33.8%)、CaO (0.04%~1.18%)和Al2O3 (0.44%~0.91%)含量则整体较低(图7).基质碱性角闪石也可进一步分为钠铁闪石、铁质红闪石和钠闪石.阿里乌拉碱性角闪石聚晶也显示HREE、Rb、Th、Nb、Ta、Pb、Zr、Hf等元素富集,而Ba、U、Sr、Eu等元素亏损的特征(附表4),具有较低的Eu/Eu*(0.02~0.04).但相比巴尔哲碱性角闪石,阿里乌拉碱性角闪石聚晶明显更加富集LREE,其(La/Yb)N (0.37~1.18)也较高(图8a).

4 讨论

4.1 新一期碱性流纹岩活动

巴尔哲和阿里乌拉碱性流纹岩具有相同的矿物组成和全岩Nd同位素组成(图6),暗示两者可能具有相同的源区.但在全岩微量元素组成上,前者REE和HFSE含量整体低于后者(图5).另外,相比阿里乌拉碱性角闪石成分,巴尔哲碱性角闪石整体具有较低的Na2O和F含量(图7a7f),LREE、Nb、Zr和Hf等不相容元素含量也明显较低,而其Ta元素含量却较高(图8b).这些证据表明,两者演化过程和演化程度均有明显差异.此外,巴尔哲碱性流纹岩喷发年龄为124.4±1.6 Ma,明显年轻于阿里乌拉碱性流纹岩的年龄(141±1 Ma; 王建国等, 2013) (图9).两者相差近16 Ma,远远超过年龄误差范围.因此,这些证据表明,巴尔哲和阿里乌拉碱性流纹岩应代表了两期碱性岩浆活动的产物.

Tang et al. (2022)最近对大兴安岭地区大量晚中生代火山岩高精度U-Pb年龄进行梳理和统计发现,大兴安岭中南段火山岩的喷发可以分为4个阶段:165~160 Ma, 165~150 Ma, 145~135 Ma和135~125 Ma (图10).如图10所示,巴尔哲和阿里乌拉碱性流纹岩的喷发年龄分别对应早白垩世的两期火山岩活动峰期.在动力学背景上,这两期火山岩活动很可能分别与古太平洋板片回撤和岩石圈减薄等过程有关(Tang et al., 2022).所以,继阿里乌拉碱性流纹岩喷发之后,巴尔哲碱性流纹岩代表了大兴安岭中南段新发现另一期早白垩世碱性流纹岩活动.

4.2 碱性流纹岩成因

关于碱性流纹岩的成因,目前主要有两种观点:(1)可通过碱性玄武岩高度结晶分异而形成(Civetta et al., 1998White et al., 2009);(2)可通过含碱金属的挥发分诱发陆壳部分熔融而来(Macdonald et al.,1987; Black et al., 1997Avanzinelli et al., 2004).巴尔哲和阿里乌拉碱性流纹岩均具有较高的εNdt)值(1.6~1.8)和较年轻的T DM2 (782~795 Ma),可以直接排除古老地壳作为源区的可能(图6).然而,该同位素组成特征与区内同期幔源玄武岩和产自新生地壳的花岗岩同位素组成接近(图6).因此,岩石圈地幔和新生地壳都有可能是两地碱性流纹岩的潜在源区.

对于前者,幔源岩浆通过结晶分异演化至碱性花岗质岩浆阶段,必然经历以橄榄石、辉石和斜长石为主的结晶过程(Vasyukova and Williams-Jones, 2020).而对于这些结晶相,Nb和Th的分配系数近乎一致,而Ta和U的分配系数也类似(Niu and Batiza, 1997).因此,Nb/Th和Ta/U比值在岩浆演化过程中几乎保持不变,因而可以用于示踪源区性质(Niu and Batiza, 1997Shao et al., 2015).本文采用Niu and Batiza (1997)基于此原理确定的Nb* (=(Nb/Th)样品/(Nb/Th)原始地幔)和Ta* (=(Ta/U)样品/(Ta/U)原始地幔)两个地球化学参数,来判断碱性流纹岩的源区性质(图11).巴尔哲和阿里乌拉碱性流纹岩均具有较低的Nb* (0.36~0.47)和Ta* (0.43~0.53),明显低于原始地幔和幔源相关熔体,而靠近大陆地壳一侧,与大兴安岭地区新生地壳来源的花岗岩相近(图11).因此,巴尔哲和阿里乌拉碱性流纹岩的源区应主要为新生地壳.结合上文提及的动力学背景,两者可能分别是古太平洋板片回撤和岩石圈地幔减薄引起的软流圈地幔上涌,导致新生地壳部分熔融的产物.

需要指出的是,王建国等(2013)基于锆石较亏损的Hf同位素组成认为阿里乌拉碱性流纹岩的源区可能为遭受蚀变的古俯冲洋壳.鉴于锆石极低δ 18O组成的特征,蚀变洋壳也被认为是巴尔哲801碱性花岗岩的重要源区(Yang et al., 2017).其实,这一源区性质与本文提出的新生地壳并不矛盾,因为后者的形成可能与洋壳熔融有关.自晚古生代开始,大兴安岭区域构造岩浆演化主要受控于蒙古-鄂霍茨克洋南向持续俯冲作用的影响,并产生了少量晚古生代和大量中生代的岩浆岩(许文良等, 2019Tang et al., 2022).同位素研究揭示,这些岩浆岩均来自较年轻的源区,代表了区域一次重要陆壳生长事件(Wu et al., 2003bJahn, 2004).有关汇聚板块边缘陆壳生长模式最新研究结果表明,俯冲板片在角闪石相变质条件下部分熔融产生的熔体,可上侵至在上覆陆壳底部形成新生地壳(Niu et al., 2013Huang et al., 2014马超等, 2019).因此,新生地壳后续熔融产生的岩浆可以继承蚀变俯冲洋壳的特征,如低δ 18O的特点.

相比巴尔哲流纹岩,阿里乌拉碱性流纹岩全岩稀土含量更高,具有更高的Rb和更低的Ba和Sr含量,表明阿里乌拉演化程度更高,经历了更多的长石结晶分异.另外,两者碱性角闪石在LREE含量的显著差异(图8a),可能暗示聚晶形成的过程中两个体系经历的结晶相也有差别.巴尔哲碱性流纹岩在聚晶形成阶段,可能经历了富LREE矿物(相)的结晶,如氟化物(图2e).这也可以解释,在源区相同的情况下,巴尔哲碱性流纹岩及其碱性角闪石F含量整体偏低的原因.

4.3 与巴尔哲801碱性花岗岩的成因联系

本文获得的巴尔哲碱性流纹岩锆石高精度U-Pb年龄为124.4±1.6 Ma,与巴尔哲成矿岩体成岩年龄(123~125 Ma; 丘志力等, 2014Yang et al., 2014, 2017; Qiu et al., 2019)在误差范围内一致.碱性流纹岩Nd同位素组成也与801碱性花岗岩一致(图6),进一步表明两者源区也相同,与前人提出新生地壳为巴尔哲成矿岩体源区(Su et al., 2021)的认识吻合.另外,两者全岩稀土元素配分模式以及部分微量元素富集和亏损的特征也十分一致(图5).因此,巴尔哲碱性流纹岩和801碱性花岗岩应属同一岩浆体系不同演化阶段的产物.

巴尔哲碱性流纹岩以夹层的形式产自白音高老组地层内,而后者又被801碱性花岗岩体侵入.基于这一野外产出关系,可以确定碱性流纹岩的喷发略早于801碱性花岗岩的侵位.另一方面,碱性流纹岩稀土和Rb、Th、U、Nb、Ta、Zr、Hf等不相容元素(图5)、以及挥发分F元素含量(330×10-6~1 490×10-6 vs. 2 300×10-6~43 400×10-6Su et al., 2021; Wu et al., 2021),也整体低于801碱性花岗岩.而且,碱性流纹岩中聚晶和基质碱性角闪石的Al2O3、Na2O和F含量也整体低于801碱性花岗岩中碱性角闪石组成(图7).因此,全岩组成和碱性角闪石矿物成分也进一步印证碱性流纹岩的形成早于801碱性花岗岩.

基于碱性流纹岩与801碱性花岗岩体形成的先后关系、以及其内部出现的碱性角闪石-碱性长石-石英聚晶,可以初步推断巴尔哲碱性花岗质岩浆体系的演化过程:(1)在碱性流纹岩喷发前,巴尔哲矿区深部即已形成碱性花岗岩质岩浆房,并在岩浆房底部形成由碱性角闪石、碱性长石、石英等矿物组成的堆晶;(2)随着区域构造背景逐步伸展和深部基性岩浆侵位,诱发了碱性流纹岩的喷发;(3)碱性花岗岩质岩浆房随后继续演化,先后形成超溶相和过渡相岩浆,并依次侵位(Wu et al., 2021),形成巴尔哲成矿岩体.

4.4 对区域稀有稀土金属成矿的启示

与巴尔哲类似,在加拿大Strange Lake (Boily and Williams-Jones, 1994Siegel et al., 2017)、蒙古Khaldzan-Buregtey (Kovalenko et al., 1995)、纳米比亚Amis (Schmitt et al., 2000)以及我国碾子山(秦锦华, 2017)等碱性花岗岩体顶部或附近均有发现同期的碱性火山岩,其中前3个岩体均伴生稀有稀土金属成矿.但这些碱性火山岩与碱性花岗岩体的成因联系,却鲜有关注.本文通过对巴尔哲碱性流纹岩的研究表明,碱性角闪石火山岩与碱性花岗岩体属同一岩浆体系,并且其喷发时间略早于碱性花岗岩体的侵位时间.因此,结合其被碱性花岗岩体后期侵位的关系,这些碱性火山岩可以作为深部可能存在碱性花岗岩体、或碱性花岗岩体保存完整的重要参考依据.另一方面,相比碱性花岗岩体,碱性流纹岩出露范围更大,因此,可以作为寻找碱性花岗岩型稀有稀土金属矿床的重要地质标志.

如前文所述,阿里乌拉与巴尔哲碱性流纹岩并非同一期碱性火山岩,表明区内可能存在140 Ma左右的另一期碱性花岗岩质岩浆作用.前人在阿里乌拉地区开展的初步研究工作表明,该地区除碱性流纹岩外,还可见碱性角闪石花岗斑岩脉发育(王建国等, 2013王建国, 2014).该特征与蒙古Khaldzan-Buregtey的矿床地质十分相似,该矿区内可见碱性流纹岩和花岗斑岩脉被晚期成矿的碱性花岗岩体侵入的现象(Kovalenko et al., 1995).结合阿里乌拉碱性流纹岩和花岗斑岩脉局部发育钠化蚀变现象(王建国, 2014),表明深部极有可能存在提供热液流体的碱性花岗岩体.鉴于部分碱性流纹岩和花岗斑岩样品REE、Nb、Y元素含量已达工业品位(王建国, 2014),可以推测阿里乌拉深部具有非常好的稀有稀土金属找矿潜力.

5 结论

基于对大兴安岭中南段巴尔哲矿区及邻区出露的碱性流纹岩开展年代学、全岩地球化学和矿物学研究,主要得出如下结论:

(1)巴尔哲矿区新发现的碱性流纹岩的喷发年龄为124.4±1.6 Ma,为大兴安岭中南段早白垩世新一期碱性火山岩活动.

(2)巴尔哲和阿里乌拉碱性流纹岩可能分别为古太平洋板片回撤和岩石圈地幔减薄引起的软流圈地幔上涌,导致新生地壳部分熔融的产物.

(3)巴尔哲碱性流纹岩与801碱性花岗岩成矿岩体属于同一岩浆体系不同演化阶段的产物,其中碱性流纹岩的喷发略早于801碱性花岗岩体的侵位.

(4) 碱性火山岩可以作为深部稀有稀土金属矿床的重要地质找矿标志,并指出阿里乌拉碱性火山岩深部具有较好的稀有稀土金属矿找矿潜力.

--引用第三方内容--

附表见本刊官网(http://www.earth-science.net).

参考文献

[1]

Avanzinelli, R., Bindi, L., Menchetti, S., et al., 2004. Crystallisation and Genesis of Peralkaline Magmas from Pantelleria Volcano, Italy: An Integrated Petrological and Crystal-Chemical Study. Lithos, 73(1/2): 41-69. https://doi.org/10.1016/j.lithos.2003.10.007

[2]

Black, S., MacDonald, R., Kelly, M. R., 1997. Crustal Origin for Peralkaline Rhyolites from Kenya: Evidence from U-Series Disequilibria and Th-Isotopes. Journal of Petrology, 38(2): 277-297. https://doi.org/10.1093/petroj/38.2.277

[3]

Boily, M., Williams-Jones, A. E., 1994. The Role of Magmatic and Hydrothermal Processes in the Chemical Evolution of the Strange Lake Plutonic Complex, Québec-Labrador. Contributions to Mineralogy and Petrology, 118(1): 33-47. https://doi.org/10.1007/BF00310609

[4]

Civetta, L., D‘Antonio, M., Orsi, G., et al., 1998. The Geochemistry of Volcanic Rocks from Pantelleria Island, Sicily Channel: Petrogenesis and Characteristics of the Mantle Source Region. Journal of Petrology, 39(8): 1453-1491. https://doi.org/10.1093/petroj/39.8.1453

[5]

Corfu, F., 2003. Atlas of Zircon Textures. Reviews in Mineralogy and Geochemistry, 53(1): 469-500. https://doi.org/10.2113/0530469

[6]

Huang, C., Wang, H., Yang, J. H., et al., 2020. SA01-A Proposed Zircon Reference Material for Microbeam U-Pb Age and Hf-O Isotopic Determination. Geostandards and Geoanalytical Research, 44(1): 103-123. https://doi.org/10.1111/ggr.12307

[7]

Huang, H., Niu, Y. L., Nowell, G., et al., 2014. Geochemical Constraints on the Petrogenesis of Granitoids in the East Kunlun Orogenic Belt, Northern Tibetan Plateau: Implications for Continental Crust Growth through Syn-Collisional Felsic Magmatism. Chemical Geology, 370: 1-18. https://doi.org/10.1016/j.chemgeo.2014.01.010

[8]

Jahn, B. M., 2004. The Central Asian Orogenic Belt and Growth of the Continental Crust in the Phanerozoic. Geological Society, London, Special Publications, 226(1): 73-100. https://doi.org/10.1144/GSL.SP.2004.226.01.05

[9]

Jahn, B. M., Wu, F. Y., Capdevila, R., et al., 2001. Highly Evolved Juvenile Granites with Tetrad REE Patterns: The Woduhe and Baerzhe Granites from the Great Xing’an Mountains in NE China. Lithos, 59(4): 171-198. https://doi.org/10.1016/S0024-4937(01)00066-4

[10]

Kovalenko, V. I., Tsaryeva, G. M., Goreglyad, A. V., et al., 1995. The Peralkaline Granite-Related Khaldzan-Buregtey Rare Metal (Zr, Nb, REE) Deposit, Western Mongolia. Economic Geology, 90(3): 530-547. https://doi.org/10.2113/gsecongeo.90.3.530

[11]

Le Bas, M. J., Le Maitre, R. W., Streckeisen, A., et al., 1986. A Chemical Classification of Volcanic Rocks Based on the Total Alkali-Silica Diagram. Journal of Petrology, 27(3): 745-750. https://doi.org/10.1093/petrology/27.3.745

[12]

Li, C. F., Li, X. H., Li, Q. L., et al., 2012. Rapid and Precise Determination of Sr and Nd Isotopic Ratios in Geological Samples from the Same Filament Loading by Thermal Ionization Mass Spectrometry Employing a Single-Step Separation Scheme. Analytica Chimica Acta, 727(10): 54-60. https://doi.org/10.1016/j.aca.2012.03.040

[13]

Li, J., Tang, S. H., Zhu, X. K., et al., 2017a. Production and Certification of the Reference Material GSB 04-3258-2015 as a 143Nd/144Nd Isotope Ratio Reference. Geostandards and Geoanalytical Research, 41(2): 255-262. https://doi.org/10.1111/ggr.12151

[14]

Li, Y., Xu, W. L., Wang, F., et al., 2017b. Geochronology and Geochemistry of Late Paleozoic-Early Mesozoic Igneous Rocks of the Erguna Massif, NE China: Implications for the Early Evolution of the Mongol-Okhotsk Tectonic Regime. Journal of Asian Earth Sciences, 144: 205-224. https://doi.org/10.1016/j.jseaes.2016.12.005

[15]

Li, X. Y., Zhang, C., Behrens, H., et al., 2020. Calculating Amphibole Formula from Electron Microprobe Analysis Data Using a Machine Learning Method Based on Principal Components Regression. Lithos, 362/363: 105469. https://doi.org/10.1016/j.lithos.2020.105469

[16]

Li, Y., Xu, W. L., Tang, J., et al., 2018. Geochronology and Geochemistry of Mesozoic Intrusive Rocks in the Xing’an Massif of NE China: Implications for the Evolution and Spatial Extent of the Mongol-Okhotsk Tectonic Regime. Lithos, 304/305/306/307: 57-73. https://doi.org/10.1016/j.lithos.2018.02.001

[17]

Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1/2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004

[18]

Ma, C., Tang, Y.J., Ying, J.F., 2019. Magmatism in Subduction Zones and Growth of Continental Crust. Earth Science, 44(4): 1128-1142 (in Chinese with English abstract).

[19]

MacDonald, R., 1974. Nomenclature and Petrochemistry of the Peralkaline Over Saturated Extrusive Rocks. Bulletin of Volcanologique, 38(2): 498-516. https://doi.org/10.1007/BF02596896

[20]

MacDonald, R., Davies, G. R., Bliss, C. M., et al., 1987. Geochemistry of High-Silica Peralkaline Rhyolites, Naivasha, Kenya Rift Valley. Journal of Petrology, 28(6): 979-1008. https://doi.org/10.1093/petrology/28.6.979

[21]

Miao, L. C., Fan, W. M., Liu, D. Y., et al., 2008. Geochronology and Geochemistry of the Hegenshan Ophiolitic Complex: Implications for Late-Stage Tectonic Evolution of the Inner Mongolia-Daxinganling Orogenic Belt, China. Journal of Asian Earth Sciences, 32(5-6): 348-370. https://doi.org/10.1016/j.jseaes.2007.11.005

[22]

Niu, Y., Batiza, R., 1997. Trace Element Evidence from Seamounts for Recycled Oceanic Crust in the Eastern Pacific Mantle. Earth and Planetary Science Letters, 148(3/4): 471-483. https://doi.org/10.1016/s0012-821x(97)00048-4

[23]

Niu, Y. L., Zhao, Z. D., Zhu, D. C., et al., 2013. Continental Collision Zones are Primary Sites for Net Continental Crust Growth—A Testable Hypothesis. Earth-Science Reviews, 127: 96-110. https://doi.org/10.1016/j.earscirev.2013.09.004

[24]

Qin, J.H., 2017. The Character and Geological Significance of the Nianzishan Miarolitic Alkaline Granite in Qiqihar City, Heilongjiang Province (Dissertation). China University of Geoscience, Beijing, 14-15(in Chinese with English abstract).

[25]

Qiu, K. F., Yu, H. C., Wu, M. Q., et al., 2019. Discrete Zr and REE Mineralization of the Baerzhe Rare-Metal Deposit, China. American Mineralogist, 104(10): 1487-1502. https://doi.org/10.2138/am-2019-6890

[26]

Qiu, Z.L., Liang, D.Y., Wang, Y.F., et al., 2014. Zircon REE, Trace Element Characteristics and U-Pb Chronology in the Baerzhe Alkaline Granite: Implications to the Petrological Genesis and Mineralization. Acta Petrologica Sinica, 30(6): 1757-1768 (in Chinese with English abstract).

[27]

Rudnick, R.L., Gao, S., 2003. Composition of the Continental Crust. In: Holland, H.D., Turekian, K.K., eds., Treatise on Geochemistry 3. Elsevier-Pergamon, Oxford.

[28]

Schmitt, A. K., Emmermann, R., Trumbull, R. B., et al., 2000. Petrogenesis and 40Ar/39Ar Geochronology of the Brandberg Complex, Namibia: Evidence for a Major Mantle Contribution in Metaluminous and Peralkaline Granites. Journal of Petrology, 41(8): 1207-1239. https://doi.org/10.1093/petrology/41.8.1207

[29]

Shao, F. L., Niu, Y. L., Regelous, M., et al., 2015. Petrogenesis of Peralkaline Rhyolites in an Intra-Plate Setting: Glass House Mountains, Southeast Queensland, Australia. Lithos, 216/217: 196-210. https://doi.org/10.1016/j.lithos.2014.12.015

[30]

Siegel, K., Williams-Jones, A. E., Stevenson, R., 2017. A Nd- and O-Isotope Study of the REE-Rich Peralkaline Strange Lake Granite: Implications for Mesoproterozoic A-Type Magmatism in the Core Zone (NE-Canada). Contributions to Mineralogy and Petrology, 172(7): 54. https://doi.org/10.1007/s00410-017-1373-x

[31]

Su, H. M., Jiang, S. Y., Zhu, X. Y., et al., 2021. Magmatic-Hydrothermal Processes and Controls on Rare-Metal Enrichment of the Baerzhe Peralkaline Granitic Pluton, Inner Mongolia, Northeastern China. Ore Geology Reviews, 131: 103984. https://doi.org/10.1016/j.oregeorev.2021.103984

[32]

Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/GSL.SP.1989.042.01.19

[33]

Sun, Y., Lai, Y., Chen, J., et al., 2013. Rare Earth and Rare Metal Elements Mobility and Mineralization during Magmatic and Fluid Evolution in Alkaline Granite System: Evidence from Fluid and Melt Inclusions in Baerzhe Granite, China. Resource Geology, 63(3): 239-261. https://doi.org/10.1111/rge.12007

[34]

Tang, J., Xu, W. L., Wang, F., et al., 2022. Temporal Variations in the Geochemistry of Mesozoic Mafic-Intermediate Volcanic Rocks in the Northern Great Xing’an Range, Northeast China, and Implications for Deep Lithospheric Mantle Processes. Lithos, 422/423: 106721. https://doi.org/10.1016/j.lithos.2022.106721

[35]

Tang, J., Xu, W.L., Wang, F., et al., 2018. Subduction History of the Paleo-Pacific Slab beneath Eurasian Continent: Mesozoic-Paleogene Magmatic Records in Northeast Asia. Scientia Sinica (Terrae), 48(5): 549-583 (in Chinese).

[36]

Vasyukova, O.V., Williams-Jones, A.E., 2020. Partial Melting, Fractional Crystallisation, Liquid Immiscibility and Hydrothermal Mobilisation—A ‘Recipe’ for the Formation of Economic A-Type Granite-Hosted HFSE Deposits. Lithos, 356/357: 105300. https://doi.org/10.1016/j.lithos.2019.105300

[37]

Wang, J.G., 2014. Petrogenesis and Mineralization Implication of the Alkali-Rhyolites in Keyouzhongqi, the Southern Da Hinggan MTS., China (Dissertation). Jilin University, Changchun (in Chinese with English abstract).

[38]

Wang, J.G., He, Z.Y., Xu, W.L., 2013. Petrogenesis of Riebeckite Rhyolites in the Southern Great Hinggan Mts.: Geohronological and Geochemical Evidence. Acta Petrologica Sinica, 29(3): 853-863 (in Chinese with English abstract).

[39]

Wang, Y.X., Zhao, Z.H., 1997. Geochemistry and Origin of the Baerzhe REE Nb-Be-Zr Superlarge Deposit. Geochimica, 26(1): 25-26, 28, 30-36 (in Chinese with English abstract).

[40]

Weis, D., Kieffer, B., Maerschalk, C., et al., 2006. High-Precision Isotopic Characterization of USGS Reference Materials by TIMS and MC-ICP-MS. Geochemistry, Geophysics, Geosystems, 7(8): Q08006. https://doi.org/10.1029/2006GC001283

[41]

White, J. C., Parker, D. F., Ren, M. H., 2009. The Origin of Trachyte and Pantellerite from Pantelleria, Italy: Insights from Major Element, Trace Element, and Thermodynamic Modelling. Journal of Volcanology and Geothermal Research, 179(1/2): 33-55. https://doi.org/10.1016/j.jvolgeores.2008.10.007

[42]

Wiedenbeck, M., Allé, P., Corfu, F., et al., 1995. Three Natural Zircon Standards for U-Th-Pb, Lu-Hf, Trace Element and REE Analyses. Geostandards Newsletter, 19(1): 1-23. https://doi.org/10.1111/j.1751-908x.1995.tb00147.x

[43]

Wu, F. Y., Jahn, B. M., Wilde, S. A., et al., 2003a. Highly Fractionated I-Type Granites in NE China (I): Geochronology and Petrogenesis. Lithos, 66(3-4): 241-273. https://doi.org/10.1016/S0024-4937(02)00222-0

[44]

Wu, F. Y., Jahn, B. M., Wilde, S. A., et al., 2003b. Highly Fractionated I-Type Granites in NE China (II): Isotopic Geochemistry and Implications for Crustal Growth in the Phanerozoic. Lithos, 67(3/4): 191-204. https://doi.org/10.1016/S0024-4937(03)00015-X

[45]

Wu, F. Y., Sun, D. Y., Ge, W. C., et al., 2011. Geochronology of the Phanerozoic Granitoids in Northeastern China. Journal of Asian Earth Sciences, 41(1): 1-30. https://doi.org/10.1016/j.jseaes.2010.11.014

[46]

Wu, F. Y., Sun, D. Y., Li, H. M., et al., 2002. A-Type Granites in Northeastern China: Age and Geochemical Constraints on Their Petrogenesis. Chemical Geology, 187(1/2): 143-173. https://doi.org/10.1016/S0009-2541(02)00018-9

[47]

Wu, M. Q., Samson, I. M., Qiu, K. F., et al., 2021. Concentration Mechanisms of Rare Earth Element-Nb-Zr-Be Mineralization in the Baerzhe Deposit, Northeast China: Insights from Textural and Chemical Features of Amphibole and Rare Metal Minerals. Economic Geology, 116(3): 651-679. https://doi.org/10.5382/econgeo.4789

[48]

Wu, S. T., Yang, M., Yang, Y. H., et al., 2020. Improved In Situ Zircon U-Pb Dating at High Spatial Resolution (5-16 Mm) by Laser Ablation-Single Collector-Sector Field-ICP-MS Using Jet Sample and X Skimmer Cones. International Journal of Mass Spectrometry, 456: 116394. https://doi.org/10.1016/j.ijms.2020.116394

[49]

Wu, Y.B., Zheng, Y.F., 2004. Genetic Mineralogy of Zircon and Its Constraints on U-Pb Age Interpretation. Chinese Science Bulletin, 49(16): 1589-1604 (in Chinese).

[50]

Xu, W.L., Sun, C.Y., Tang, J., et al., 2019. Basement Nature and Tectonic Evolution of the Xing’an-Mongolian Orogenic Belt. Earth Science, 44(5): 1620-1646 (in Chinese with English abstract).

[51]

Xu, W.L., Wang, F., Pei, F.P., et al., 2013. Mesozoic Tectonic Regimes and Regional Ore-Forming Background in NE China: Constraints from Spatial and Temporal Variations of Mesozoic Volcanic Rock Associations. Acta Petrologica Sinica, 29(2): 339-353 (in Chinese with English abstract).

[52]

Yang, W. B., Niu, H. C., Hollings, P., et al., 2017. The Role of Recycled Oceanic Crust in the Generation of Alkaline A-Type Granites. Journal of Geophysical Research (Solid Earth), 122(12): 9775-9783. https://doi.org/10.1002/2017JB014921

[53]

Yang, W. B., Niu, H. C., Li, N. B., et al., 2020. Enrichment of REE and HFSE during the Magmatic-Hydrothermal Evolution of the Baerzhe Alkaline Granite, NE China: Implications for Rare Metal Mineralization. Lithos, 358/359: 105411. https://doi.org/10.1016/j.lithos.2020.105411

[54]

Yang, W. B., Niu, H. C., Shan, Q., et al., 2014. Geochemistry of Magmatic and Hydrothermal Zircon from the Highly Evolved Baerzhe Alkaline Granite: Implications for Zr-REE-Nb Mineralization. Mineralium Deposita, 49(4): 451-470. https://doi.org/10.1007/s00126-013-0504-1

[55]

Yang, W. B., Niu, H. C., Sun, W. D., et al., 2013. Isotopic Evidence for Continental Ice Sheet in Mid-Latitude Region in the Supergreenhouse Early Cretaceous. Scientific Reports, 3: 2732. https://doi.org/10.1038/srep02732

[56]

Yang, W.B., Niu, H.C., Shan, Q., et al., 2009. Ore-Forming Mechanism of the Baerzhe Super-Large Rare and Rare Earth Elements Deposit. Acta Petrologica Sinica, 25(11): 2924-2932 (in Chinese with English abstract).

[57]

Yang, W.B., Su, W.C., Liao, S.P., et al., 2011a. Melt and Melt-Fluid Inclusions in the Baerzhe Alkaline Granite: Information of the Magmatic-Hydrothermal Transition. Acta Petrologica Sinica, 27(5): 1493-1499(in Chinese with English abstract).

[58]

Yang, W.B., Shan, Q., Zhao, Z.H., et al., 2011b. Petrogenic and Metallogenic Action of the Alkaline Granitoids in Baerzhe Area: A Comparison between Mineralized and Barren Plutons. Journal of Jilin University (Earth Science Edition), 41(6): 1689-1704(in Chinese with English abstract).

[59]

Yang, Y.J., Yang, X.P., Jiang, B., et al., 2022. Spatio-Temporal Distribution of Mesozoic Volcanic Strata in the Great Xing’an Range: Response to the Subduction of the Mongol-Okhotsk Ocean and Paleo-Pacific Ocean. Earth Science Frontiers, 29(2): 115-131 (in Chinese with English abstract).

[60]

Zhang, J. H., Gao, S., Ge, W. C., et al., 2010. Geochronology of the Mesozoic Volcanic Rocks in the Great Xing’an Range, Northeastern China: Implications for Subduction-Induced Delamination. Chemical Geology, 276(3/4): 144-165. https://doi.org/10.1016/j.chemgeo.2010.05.013

[61]

Zhang, M., 2011. Study on the Metallogenic System of Copper-Polymetallic Deposits in the Middle-Southern Part of Da Hinggan Mountains, China (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).

[62]

马超, 汤艳杰, 英基丰, 2019. 俯冲带岩浆作用与大陆地壳生长. 地球科学, 44(4): 1128-1142.

[63]

秦锦华, 2017. 黑龙江齐齐哈尔碾子山晶洞碱性花岗岩体特征及其地质意义(硕士学位论文). 北京:中国地质大学(北京), 14-15.

[64]

丘志力, 梁冬云, 王艳芬, 等, 2014. 巴尔哲碱性花岗岩锆石稀土微量元素、U-Pb年龄及其成岩成矿指示. 岩石学报, 30(6): 1757-1768.

[65]

唐杰, 许文良, 王枫, 等, 2018. 古太平洋板块在欧亚大陆下的俯冲历史: 东北亚陆缘中生代-古近纪岩浆记录. 中国科学: 地球科学, 48(5): 549-583.

[66]

王建国, 2014. 大兴安岭南部科右中旗碱性流纹岩的岩石成因及成矿意义(博士学位论文). 长春: 吉林大学.

[67]

王建国,和钟铧, 徐文良, 2013. 大兴安岭南部碱性流纹岩的岩石成因: 年代学和地球化学证据. 岩石学报, 29(3): 853-863.

[68]

王一先, 赵振华, 1997. 巴尔哲超大型稀土铌铍锆矿床地球化学和成因. 地球化学, 26(1): 25-26, 28, 30-36.

[69]

吴元保, 郑永飞, 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报, 49(16): 1589-1604.

[70]

许文良, 孙晨阳, 唐杰, 等, 2019. 兴蒙造山带的基底属性与构造演化过程. 地球科学, 44(5): 1620-1646.

[71]

许文良, 王枫, 裴福萍, 等, 2013. 中国东北中生代构造体制与区域成矿背景: 来自中生代火山岩组合时空变化的制约. 岩石学报, 29(2): 339-353.

[72]

杨武斌, 牛贺才, 单强, 等, 2009. 巴尔哲超大型稀有稀土矿床成矿机制研究. 岩石学报, 25(11): 2924-2932.

[73]

杨武斌, 苏文超, 廖思平, 等, 2011a. 巴尔哲碱性花岗岩中的熔体和熔体-流体包裹体: 岩浆-热液过渡的信息. 岩石学报, 27(5): 1493-1499.

[74]

杨武斌, 单强, 赵振华, 等, 2011b. 巴尔哲地区碱性花岗岩的成岩和成矿作用: 矿化和未矿化岩体的比较. 吉林大学学报(地球科学版), 41(6): 1689-1704.

[75]

杨雅军, 杨晓平, 江斌, 等, 2022. 大兴安岭中生代火山岩地层时空分布与蒙古—鄂霍茨克洋、古太平洋板块俯冲作用响应. 地学前缘, 29(2): 115-131.

[76]

张梅, 2011. 大兴安岭中南段铜多金属矿床成矿系统研究(博士学位论文). 北京: 中国地质大学(北京).

基金资助

国家自然科学基金项目(42072093)

AI Summary AI Mindmap
PDF (6258KB)

351

访问

0

被引

详细

导航
相关文章

AI思维导图

/