融合处理速度和加速度记录的地震检测模型及其在新丰江水库的应用
Earthquake Detection Model Trained on Velocity and Acceleration Records and Its Application in Xinfengjiang Reservoir
,
随着国家地震烈度速报与预警工程的建设,加速度记录在地震科学中将得到越来越多的应用. 但目前的地震检测模型多使用速度记录训练,对加速度记录的检测效果较差.利用广东地震台网数据,训练得到了可检测速度记录的PhaseNet_GD模型和检测加速度记录的PhaseNet_ITS模型. 在此基础上,结合GaMMA震相关联和HYPOSAT地震定位方法,发展了一套新的地震数据智能处理流程,并处理了2023年新丰江水库M L4.8地震序列,检测出的事件数量是人工目录的3.8倍,匹配率为93.2%,误检测率为0.38%.这一系统可快速产出完备性高、高精度的地震目录,为水库地震监测和区域地震台网的数据实时处理提供技术支撑.
区域台网 / 深度学习 / 地震检测 / PhaseNet / 新丰江水库 / 水库地震
regional seismic network / deep learning / seismic detection / PhaseNet / Xinfengjiang Reservoir / reservoir induced earthquake
| [1] |
Allen, R. V., 1978. Automatic Earthquake Recognition and Timing from Single Traces. Bulletin of the Seismological Society of America, 68(5): 1521-1532. https://doi.org/10.1785/bssa0680051521 |
| [2] |
Ester, M., Kriegel, H.P., Sander, J., et al., 1996. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise, Proceedings of the Second International Conference on Knowledge Discovery and Data Mining. AAAI Press, Portland, Oregon, 226-231. |
| [3] |
Fan, Y., Lin, J., Hu, R., et al., 1990. The Development of Traveltimetable for near Earthquake in South China. South China Seismological Journal, 10(2) : 1-16(in Chinese). |
| [4] |
Hu, J., Ding, Y., Zhang, H., Jin, C., et al., 2023. A Real-Time Seismic Intensity Prediction Model Based on Long Short-Term Memory Neural Network. Earth Science, 48(5): 1853-1864 (in Chinese with English abstract). |
| [5] |
Jiang, C., Fang, L. H., Fan, L. P., et al., 2021. Comparison of the Earthquake Detection Abilities of PhaseNet and EQTransformer with the Yangbi and Maduo Earthquakes. Earthquake Science, 34(5): 425-435. https://doi.org/10.29382/eqs-2021-0038 |
| [6] |
Kato, A., Obara, K., Igarashi, T., et al., 2012. Propagation of Slow Slip Leading up to the 2011 Mw9.0 Tohoku-Oki Earthquake. Science, 335(6069): 705-708. https://doi.org/10.1126/science.1215141 |
| [7] |
Lapins, S., Goitom, B., Kendall, J. M., et al., 2021. A Little Data Goes a Long Way: Automating Seismic Phase Arrival Picking at Nabro Volcano with Transfer Learning. Journal of Geophysical Research: Solid Earth, 126(7). https://doi.org/10.1029/2021jb021910 |
| [8] |
Li, B. R., Fan, L. P., Jiang, C., et al., 2023. CSESnet: A Deep Learning P-Wave Detection Model Based on UNet++ Designed for China Seismic Experimental Site. Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.1032839 |
| [9] |
Liao, S., Zhang, H., Fan, L., et al., 2021. Development of a Real-Time Intelligent Seismic Processing System and Its Application in the 2021 Yunnan Yangbi M S6.4 Earthquake. Chinese J. Geophys, 64(10): 3632-3645 (in Chinese with English abstract). |
| [10] |
Meng, X., Yang, H., Peng, Z., et al., 2018. Foreshocks, b Value Map, and Aftershock Triggering for the 2011 Mw 5.7 Virginia Earthquake. Journal of Geophysical Research: Solid Earth, 123(6): 5082-5098. https://doi.org/10.1029/2017jb015136 |
| [11] |
Mousavi, S. M., Ellsworth, W. L., Zhu, W. Q., et al., 2020. Earthquake Transformer: an Attentive Deep-Learning Model for Simultaneous Earthquake Detection and Phase Picking. Nature Communications, 11(1):3952. https://doi.org/10.1038/s41467-020-17591-w |
| [12] |
Pan, H., Yan, J., Zhang, Z., et al., 2009. Review on 1918 Nan’ao Ms 7. 3 Earthquake and Its Strong Aftershocks. Technology for Earthquake Disaster Prevention, 4(1):40-48 (in Chinese with English abstract). |
| [13] |
Peng, Z. G., Zhao, P., 2009. Migration of Early Aftershocks Following the 2004 Parkfield Earthquake. Nature Geoscience, 2(12): 877-881. https://doi.org/10.1038/ngeo697 |
| [14] |
Ross, Z. E., Meier, M. A., Hauksson, E., et al., 2018. Generalized Seismic Phase Detection with Deep Learning. Bulletin of the Seismological Society of America, 108(5A): 2894-2901. https://doi.org/10.1785/0120180080 |
| [15] |
Schweitzer, J., 2001. HYPOSAT: an Enhanced Routine to Locate Seismic Events. Pure and Applied Geophysics, 158(1): 277-289. https://doi.org/10.1007/pl00001160 |
| [16] |
Wang, D., Chen, G.X., 2022. Seismic Wave Impedance Inversion Based on Temporal Convolutional Network. Earth Science, 47(4): 1492-1506 (in Chinese with English abstract). |
| [17] |
Wang, J., Xiao, Z., Liu, C., et al., 2019. Deep Learning for Picking Seismic Arrival Times. Journal of Geophysical Research: Solid Earth, 124(7): 6612-6624. https://doi.org/10.1029/2019jb017536 |
| [18] |
Woollam, J., Münchmeyer, J., Tilmann, F., et al., 2022. SeisBench-A Toolbox for Machine Learning in Seismology. Seismological Research Letters, 93(3): 1695-1709. https://doi.org/10.1785/0220210324 |
| [19] |
Xiao, Z., Wang, J., Liu, C., et al., 2021. Siamese Earthquake Transformer: A Pair‐Input Deep‐Learning Model for Earthquake Detection and Phase Picking on a Seismic Array. Journal of Geophysical Research: Solid Earth, 126(5): e2020JB021444. https://doi.org/10.1029/ 2020jb021444 |
| [20] |
Yu, Z., Wang, W. 2022. LPPN: A Lightweight Network for Fast Phase Picking. Seismological Research Letters, 93(5): 2834-2846. https://doi.org/10.1785/0220210309 |
| [21] |
Zhou, Y. J., Yue, H., Kong, Q. K., et al., 2019. Hybrid Event Detection and Phase‐Picking Algorithm Using Convolutional and Recurrent Neural Networks. Seismological Research Letters, 90(3): 1079-1087. https://doi.org/10.1785/0220180319 |
| [22] |
Zhu, W. Q., Beroza, G. C., 2019. PhaseNet: A Deep-Neural-Network-Based Seismic Arrival Time Picking Method. Geophysical Journal International, 216(1): 261-273. https://doi.org/10.1093/gji/ggy423 |
| [23] |
Zhu, W. Q., McBrearty, I. W., Mousavi, S. M., et al., 2021. Earthquake Phase Association Using a Bayesian Gaussian Mixture Model. Journal of Geophysical Research: Solid Earth, 127(5): 1-10. https://doi.org/10.1029/2021jb023249 |
| [24] |
范玉兰, 林纪曾, 胡瑞贺, 等, 1990. 华南地区近震走时表的研制. 华南地震, 10(2): 1-16. |
| [25] |
胡进军, 丁祎天, 张辉, 等, 2023. 基于长短期记忆神经网络的实时地震烈度预测模型. 地球科学, 48(5): 1853-1864. |
| [26] |
廖诗荣, 张红才, 范莉苹, 等, 2021. 实时智能地震处理系统研发及其在2021年云南漾濞Ms6.4地震中的应用. 地球物理学报, 64: 3632-3645. |
| [27] |
潘华, 鄢家全, 张志中, 等, 2009. 1918年南澳7.3级地震与强余震之参数复核. 震灾防御技术, 4(1): 40-48. |
| [28] |
王德涛, 陈国雄, 2022. 基于时间卷积网络的地震波阻抗反演. 地球科学, 47(4): 1492-1506. |
国家重点研发专项(2021YFC3000702)
国家自然科学基金项目(U2139205)
广东省地震局青年地震科研基金(GDDZY202301)
/
| 〈 |
|
〉 |