陆相裂陷盆地深时源-汇系统关键地质问题及革新方向

刘强虎 ,  李志垚 ,  陈贺贺 ,  周子强 ,  谈明轩 ,  朱筱敏

地球科学 ›› 2023, Vol. 48 ›› Issue (12) : 4586 -4612.

PDF (9343KB)
地球科学 ›› 2023, Vol. 48 ›› Issue (12) : 4586 -4612. DOI: 10.3799/dqkx.2023.194

陆相裂陷盆地深时源-汇系统关键地质问题及革新方向

作者信息 +

Key Geological Issues and Innovation Directions in Deep -Time Source -to -Sink System of Continental Rift Basins

Author information +
文章历史 +
PDF (9566K)

摘要

依托洋陆边缘第四纪以来的解剖经验,源-汇系统研究已对陆相裂陷盆地开展深时探索实践,是当前国际沉积学研究的前沿领域,其中,涉及源-汇系统研究尺度与级次、物源区地貌演化与沉积碎屑产出、路径系统信号传递与示踪、多因素联合控制沉积-层序发育等关键问题亟待解决.针对上述问题,提出了火山作用改造沉积序列、古气候-植被群落调控风化效能、形态学与物源供给响应关联、路径系统交互模型预测、古水深-水动力制约砂体分散、正演模拟恢复源-汇过程及碳酸盐岩溶解质源-汇响应等潜在的革新方向,以期解决陆相裂陷盆地深时多驱动因素、多交互介质影响下沉积通量拾取及平衡恢复问题.此外,建议从多学科交叉融合及深时大数据系统多要素构建两方面拓展中国特色陆相深时源-汇系统研究内涵,服务能源矿产勘探预测.

关键词

陆相深时源-汇系统 / 地貌形态 / 沉积信号 / 古气候-水体环境 / 大数据 / 关键问题 / 革新方向 / 沉积学

Key words

continental deep-time source-to-sink system / landform / sediment signal / paleoclimate-water environment / big data / key geological issue / innovation directions / sedimentology

引用本文

引用格式 ▾
刘强虎,李志垚,陈贺贺,周子强,谈明轩,朱筱敏. 陆相裂陷盆地深时源-汇系统关键地质问题及革新方向[J]. 地球科学, 2023, 48(12): 4586-4612 DOI:10.3799/dqkx.2023.194

登录浏览全文

4963

注册一个新账户 忘记密码

源-汇系统(source-to-sink system)本质上是自然界物质守恒定律的延伸,地质学领域源起可追溯至矿产采集过程中集水流域剥蚀、河流搬运及沉积物量分析( Gilbert,1917Brown and Ritter,1971),后被引入探讨碎屑颗粒风化-剥蚀-搬运-堆积-分散改造全过程,表征物源信号-地貌要素-沉积记录多因素配置关系( Allen,2008aAllen et al.,2013Romans et al.,2016;Helland- Hansen et al.,2016Walsh et al.,2016).系统追索源-汇系统沉积学应用的序幕,多定位于1998年启动的“大陆边缘科学计划(MARGINS Program)”,其中沉积学与地层学项目组研究专题将造山带的物源区至冲积平原、浅海陆架,最终到深海盆地的源-汇系统列为近十年的四大重要研究领域之一( Walsh et al.,2016).随后,欧亚国际组织陆续开展针对大陆边缘沉积作用( Anthony and Julian,1999)及资源环境效应( 李家彪和高抒,2004)的探索计划,并推进地表动力学建模系统(CSDMS)计划( Syvitski et al.,2004)以模拟时空尺度地表作用过程,直至 Allen(2008a)在Nature期刊撰文正式开启源-汇系统沉积学研究的热潮.与此同时,为了预测地球未来气候的变化,需要深入开展地质历史时期地球气候变化研究,因此国际地质界提出了“深时”研究(Deep Time)计划,其中“深时”是指前第四纪的地质记录(Earth’s pre-Quaternary record)( Soreghan et al.,2005孙枢和王成善,2009).结合源-汇系统与“深时”研究,2008年地球物理研究期刊(JGR: Earth Surface)专辑(113卷F1期)收录了多篇从源-汇视角解读河流洪泛平原物质平衡( Aalto et al.,2008)、陆架-深海沉积物示踪( Crockett et al.,2008Francis et al.,2008Slingerland et al.,2008)等论文; Walsh et al. (2016)组织碎屑源-汇系统专刊于Earth-Science Reviews期刊出版,系统介绍全球15个重要大河流域源-汇系统进展,主要包含:(1)全球变化历史记录和地层层序形成如何响应于沉积过程的变化( Romans et al.,2016);(2)构造、气候及海平面变化等驱动因素如何影响碎屑物质从源到汇的产出、转换与堆积过程( Bentley et al.,2016Liu et al.,2016a);(3)深时碎屑物质沉积通量预测及其油气潜力预测( Bhattacharya et al.,2016). 2016年,同济大学杨守业于上海组织沉积物“从源到汇”过程研究国际短训班暨长江-东海源汇过程与环境响应研讨会,系统报道东亚及西太平洋边缘海源-汇过程的研究进展.后来,北卡罗来那州立大学Dr. Paul Liu等发起的2020—2022世界大河及三角洲由源到汇线上系列讲座( https://tinyurl.com/s2stalks)及AAPG/SEG/IAS等重大国际会议将源-汇系统作为单独议题召集研讨,切实推进源-汇系统嵌入沉积学研究领域.
国内针对洋陆边缘源-汇系统也开展了探索性研究,区别于国际上关注现代河流沉积物搬运的即时过程,即时间尺度较小、手段以现场监测为主的研究,多集中于具备有利地震成像及钻测井(含南海大洋钻探-IODP井位)条件的盆地,包含借用南海第四纪粘土/黏土矿物记录示踪洋流搬运(物源信息)及东亚季风演化过程( 刘志飞等,20032007a,2007b,,2010,2017; Liu et al.,2016a),并探索解剖“深时”域-前第四纪沉积记录中南海北部陆架-陆坡“源-渠-汇”耦合作用下深水沉积成因机制( 庞雄等,2007祝彦贺等,2011林畅松等,20152018龚承林等,2021).与此同时,裂陷盆地油气产量占世界已探明巨型油气田油气产量的1/3以上,且作为我国油气勘探开发的主战场,涵盖我国中-东部(含近海)中新生代主力油田,具备地质-地球物理资料相对齐全,围绕陆相盆地近源堆积及远源调节特性,以前第四纪储集砂体(或砂砾岩体)目标预测作为勘探关键.国内地学工作者注意到陆相裂陷盆地物源区、搬运通道及沉积扇体单元毗邻关联,逐步由早期的陡坡带“沟-扇”匹对( 王金铎等,1998)向具源-汇系统框架的“山-沟-坡-面”控砂( 徐长贵,2013)转换,并以渤海海域沙垒田凸起及周缘坳陷作为完整源-汇系统解剖实例( 刘强虎,2016刘强虎等,2016Zhu et al.,2017),开启了陆相裂陷盆地源-汇系统分析方法应用于解决深时勘探实践问题的新篇章. 徐长贵等(2020)依托渤海海域勘探系统实践,集成提出了陆相断陷盆地源-汇时-空耦合控砂理论,并相继于南海、东海新生代陆相裂陷盆地开展基于源-汇系统分析方法的油气资源分布与预测研究( 杜家元等,2021田立新,2021高阳东等,2023刘军等,2023彭光荣等,2023).其中,国内重点期刊:地球科学(2017年11期)、沉积学报(2022年6期)及石油与天然气地质(2023年3期)相继组织源-汇系统专刊报道近年相关进展,协同国内重大沉积学会议源-汇类主题召集研讨,极大推进了陆相裂陷盆地深时源-汇系统研究.
然而,陆相裂陷盆地深时源-汇系统研究过程中仍存在诸多关键问题亟待系统梳理,诸如深时源-汇系统研究尺度与级次、物源区地貌演化与沉积碎屑产出(物源区地貌及基岩岩性分布有效性)、路径系统信号传递与示踪、多因素联合控制沉积-层序发育(沉积记录与沉积过程配对)等关键问题.为推进陆相深时源-汇系统服务沉积矿产勘探实效性、拓展中国特色陆相深时源-汇系统研究内涵,亟须直面难点,考虑其潜在革新方向或解决方案.

1 陆相裂陷盆地深时源-汇系统现状

中国中新生代发育了盆地结构各异、大小不等的陆相裂陷盆地.不同于海相沉积时空尺度大、体系开放,构造-气候驱动下源-汇地貌单元分区稳定,且存在从源至汇沉积物规律性缓存、分配响应( Allen,2008a, 2017Romans and Graham,2013Bentley et al.,2016Hodgson et al.,2018Nyberg et al.,2018a, 2018b),陆相裂陷盆地具有如下特征:(1)时空尺度小,呈封闭或半封闭体系;(2)结构样式多样,含差异化陡缓坡与深洼带背景,存在长短轴或多物源供给,呈差异相带分布;(3)边缘或盆内断裂差异活动,调控沉积物路径系统及沉积体性质;(4)受构造和气候作用影响大,表现为多幕次、多断陷及多沉降中心的构造特征( 朱筱敏等,2022).基于陆相裂陷盆地地质特性,在构造-气候-物源-水体联合作用下古地理格局(物源区地貌与沉积区地形)、物源区基岩类型、植被种属、断沟坡路径等多因素调控沉积风化、剥蚀、堆积类型及叠置样式,其深时源-汇系统具近源分散、沉积信号响应敏感、源-汇单元分区模糊特征,呈多级次混源分布( 徐长贵和龚承林,2023),且易于受到局部气候或事件沉积作用影响.

依托科睿唯安集团Web of Science的科学引文索引数据库(Science Citation Index Expanded)与中国知网CNKI数据库对比检索源-汇系统沉积学(‘source-to-sink’ or ‘sediment routing system’ and ‘sediment’及‘源汇’与‘沉积’)范畴近十年(2013—2022年)国内外发文情况,其中,总计检索2 165条,英文SCI论文数1 980篇、中文论文数185篇,两者间存在近10倍落差,2016年左右作为拐点论文发表数快速增长,揭示源-汇系统技术方法已在沉积学领域掀起应用的热潮( 图1).分析论文主题可知,国际上源-汇系统侧重于第四纪以来洋陆边缘体系沉积记录及其驱动机制,关注“Turbidity Currents-浊流”、“Geochemistry-地球化学”、“Holocene-全新世”、“Sea Level Rise-海平面上升”、“Landscape Evolution-地貌演化”、“Soil Erosion-土壤侵蚀”及“Tectonics-构造学”等主题;而国内源-汇系统研究侧重于深时裂陷盆地勘探应用,且论文主题多集中于“渤海海域”、“沙垒田凸起”、“珠江口盆地”、“西湖凹陷”、“陡坡带”、“古近系”等.

当前,陆相裂陷盆地深时源-汇系统从论文发表情况而言,多集中于应用、探索层面,且侧重于解决沉积面貌恢复及储集砂体分布预测.

1.1 沉积盆地古地理重建——解决沉积面貌恢复问题

源-汇系统古地理主要包括完整源-汇系统的分布范围、沉积环境、地貌地势、流域水系形态及其演化特征( 邵龙义等,2019).古地理重建含物源区与沉积区两个单元的重建,其中陆相盆地沉积区重建主要应用层序地层学理论方法解析沉积环境及地层叠置分布样式,实现对高精度等时地层格架下沉积充填过程的多尺度表征( Catuneanu,2022),该过程也涉及物源区信息约束,即关注从层序地层走向源-汇系统的储层预测( 徐长贵和龚承林,2023);物源区重建,关键在于地貌地势(流域水系)恢复,直接影响深时构造-气候-水系演化及沉积物供给效能信息解读,然因现今刻画的物源区至多能表征最后一期剥蚀的沉积面貌,使得其准确恢复存在较大不确定性(Helland- Hansen et al.,2016),形成了制约深时源-汇系统研究发展的瓶颈问题.这也直接促使地质工作者围绕深时地貌、流域水系开展系列探索性研究,(1)碎屑矿物年代学示踪物源体系及路径系统( Rowley and Garzione,2007Dickinson and Gehrels,2010Romans et al.,2016Sharman et al.,2018Chen et al.,2020);(2)地貌比例关系应用地貌经验关系推导预测深时源-汇系统单元地貌特征及动态发育过程( Sømme et al.,2009),且随着现代地貌数据库的构建日趋完备( Nyberg et al.,2018a);(3)BQART沉积通量模型进行沉积物分配分析及地势格局校验( Syvitski and Milliman,2007Sømme et al.,2013Zhang et al.,2018Liu et al.,2019aTan et al.,2021王新航等,2022王学天等,2022).通过物源区供给量和沉积区沉积量守恒来表征重建深时源-汇系统是当前主流推进方向,以期能揭示物质供给下沉积面貌演化与构造-气候变化驱动下源-汇响应,指导沉积体宏观-微观尺度精准预测、判别.

1.2 源 -汇系统要素分析及过程耦合预测——落实储集砂体分布问题

陆相裂陷盆地源-汇系统在复杂构造-气候条件驱动作用下,物源区地貌差异供源、沟槽调节转换、沉积体系相变频繁,为推动实践勘探中有利湖相储集砂体预测,常依据区内地质资料获取、地层记录保存及关键参数条件分步骤解剖其要素,构建剥蚀-搬运-沉积耦合预测模型.陆相深时源-汇系统执行层面常包括4个方面:(1)物源区形貌与岩性拾取,分级刻画物源区流域单元、计算关键供源参数(流域面积、垂向高差及水系分支系数等),井震标定物源区基岩类型及平面分布( 刘强虎等,2016Tan et al.,2021),估算其潜在供给通量;(2)识别搬运通道类别(如河道、断槽、转换带)、入口信息,测量其宽度、深度或截面积等参数( 朱红涛等,2013Zhu et al.,2014刘强虎,2016Liu et al.,2019b),表征其搬运承载能力;(3)联合层序地层学(含模拟)与地震沉积学精细表征目的层段沉积体类型、时空分布及演化序列,计算其堆积通量( Liu et al.,2017, 2019a);(4)同一时空维度,对沉积物的搬运的全过程进行耦合研究,涉及多元数值统计学方法应用,获取完整的源-汇时-空耦合控砂系统,进而实现对有利储集砂体发育位置的预测( 徐长贵等,2020姚光庆和姜平,2021).

2 陆相裂陷盆地深时源-汇系统关键地质问题

深时源-汇系统的关键问题在于如何准确、合理、定量的限定不同时空尺度岩性、地貌、植被、流速、水深等参数,其研究核心在于参数设定或限定的准确与否.从陆相裂陷盆地深时源-汇系统执行层面,需综合梳理沉积物从源至汇物质平衡重建、定量表征及关联预测的关键地质问题,关注解剖过程中源-汇参数拾取、表征及有效性论证,具体集中于4个方面.

2.1 研究尺度与级次问题

陆相裂陷盆地源-汇系统作为构造-气候等因素联合驱动下的动态响应综合体,实际研究过程中需突破静态通量制约,考虑其在不同时空尺度上所聚焦重点及差异性,服务深时沉积信号有效解读.其中,空间尺度表现为如下4个尺度.

(1)板块尺度:绝大多数陆相盆地实际上是由陆到洋大型源-汇系统的中转站,其所对应的深海盆地才是陆源沉积物的最终归宿( Romans et al.,2016Allen,2017).该尺度研究的关键在于系统性揭示陆相裂谷的内在动力学机制.此外,多个相邻陆相盆地源-汇系统的联合研究有利于重建板内大型古水系,以明确区域性大河体系的时空演化特征( Zhang et al.,2019).

(2)盆地尺度:陆相盆地近邻物源-剥蚀区,通常具有良好的盆山耦合关系( 朱筱敏等,2003).盆地尺度研究的关键在于有效恢复物源区地貌与山体剥蚀过程,在沉积体系精细刻画的基础上依据质量守恒原理定量表征全盆地不同构造阶段沉积物收支关系,以反映物源区多期构造幕的演化历史( 符超峰等,2005),并系统指导评价区域-洼陷生烃潜力( 杜家元等,2021).

(3)区带尺度:陆相裂陷盆地内不同构造区带所发育的源-汇系统在物源区构造地貌和沉积区沉积体系类型均表现出显著差异( 朱筱敏等,2022).因此,该尺度关键在于系统解剖与对比分析盆内不同构造区带地貌、构造及沉积的时空差异性( Pechlivanidou et al.,2018杜家元等,2021),同时开展“源-汇”系统主控因素(如古气候、植被类型、古水深等)的量化分析.

(4)盆内流域尺度:陆相裂陷盆地单个流域在长期过程中受到构造隆升与气候变化的影响而不断演化,同时也可能与相邻的流域产生相互作用(如分水岭迁移与水系重组),继而影响了汇区的沉积物通量以及沉积体系展布样式( 谈明轩等,2020朱筱敏等,2022).因而,盆内流域尺度关键在于精细表征单一流域在不同构造幕内所对应砂体分散体系的精准识别与预测.

沉积盆地的“源-汇”过程整体受控于盆地类型和盆地规模(Helland- Hansen et al.,2016).对于陆相裂陷盆地而言,尽管以中-小型源-汇系统发育为特征,但是影响整个盆地充填的构造与气候信号,在传输过程中仍然可能受到不同时间尺度的影响.即:(1)短期时间尺度上(百年至千年),源区地貌的均衡时间整体低于其反应时间,整个盆地的沉积物通量并不能有效地响应源区的构造与气候信号( Romans et al.,2016);(2)中等时间尺度上(万年至十万年),构造作用在剥蚀区趋于稳定( Olsen,1986;Blum and Hattier- Womack,2009),整个系统主体上受到气候因素的控制作用( Zhang et al.,2020);(3)长期时间尺度上(百万年),整个“源-汇”系统则受到气候与构造作用的双重影响( Romans et al.,2016).因而,有必要从时空维度考虑驱动因素(裂陷幕式旋回/火山作用、气候变化)或成因机制差异影响,筛选关键指标或参数,建立反映陆相裂陷盆地的分级源-汇模型,指导剥蚀-搬运-沉积全过程的定量响应关系判别、预测.

2.2 物源区地貌演化与沉积碎屑产出问题

在构造-气候条件的控制下,物源区地貌遭受侵蚀并相应产出沉积物( Allen and Hovius,1998Whittaker,2012).若想更好的预测产出沉积碎屑的特征,有必要深入理解物源区地貌演化的机制( Whittaker et al.,2010).在冰川覆盖程度低的地区,河流通过下切而引起边坡发生失稳滑塌,故沉积物的产出根本上受到河流下切速率的控制( 图2Allen and Hovius,1998).据搬运能力和沉积物供给能力的相对大小,可将河流分为风化限制型(detachment-limited)和搬运限制型(transport-limited)两种端元类型( 杨蓉,2017).处于断层下盘的小型河流多偏向于风化限制型的状态,其河道下切速率主要与局部河道坡度,水流量和基岩可剥性有关( Whipple and Tucker,1999胡小飞等,2014).简言之,构造、气候和基岩条件分别影响着河道坡度、水流量和基岩可剥性,进而最终控制沉积碎屑的产出.

尽管现有研究已经明确了沉积物产出的成因和机制,但预测任一物源区产出沉积物的通量、粒度和组分仍是源-汇系统研究面临的关键难题.近年来,部分地质工作者考虑形态参数(如物源区面积和高差等)对构造-气候条件的指示意义,进而提出了BQART模型和地貌比例模型,为估算沉积通量提供了可行手段( Syvitski and Milliman,2007Sømme et al.,2009).但上述半定量-定量经验公式的有效性受限于样本的代表性,其在不同背景下的可靠性仍需大量的实例进行论证.例如,基于全球488条河流30年沉积通量数据而建立的BQART模型能否拓展到千年-百万年尺度( Liu et al.,2019bWatkins et al.,2019Brewer et al.,2020);聚焦于大陆边缘的地貌比例模型是否适用于陆相裂陷盆地( Liu et al.,2020Chen et al.,2021).更重要的是,上述经验模型简化或忽略了基岩的影响,无法用于预测沉积物的粒度和组分特征,尽管粒度和组分对储层预测具有重要指示作用.

基岩类型主导产出沉积物粒度的粗细,如坚硬的片麻岩和花岗岩基岩能形成较粗的沉积物( 图2a;Roda- Boluda and Whittaker et al.,2018),碳酸盐岩基岩则能提供较多的溶解质( 图2bLiu et al.,2019b);固结较弱的碎屑岩类再旋回时多产出各自内在的碎屑颗粒,如砂砾岩基岩产生砾级和砂级颗粒( Quick et al.,2020).隆升速率和气候可以通过影响沉积物在山坡滞留时遭受风化的时间和强度而调节粒度,如同一基岩在快速隆升的山脉能形成更粗粒的碎屑物质(对比图 2a2c),在干冷气候下粒度也相对更粗( Sklar et al.,2017).这些认识使得预测沉积物的粒度成为可能,尤其是对单一基岩组成的物源区( Attal et al.,2015).也有部分学者尝试对具有多类基岩的复杂物源区进行研究,其核心在于用不同基岩在物源区的暴露面积来代表其对物源产出的相对贡献,并由此估算沉积物最终的粒度和组分特征( Weltje,2012).值得注意的是,这一方法的基本假设在于物源区具有均一的侵蚀速率.但实例研究表明,断层下盘物源区在构造裂点(河道剖面上坡度明显变化且与岩性无关的点)上下具有差异的侵蚀速率,使沉积物粒度和组分的预测更为复杂( 图2Whittaker et al.,2010Kirby and Whipple,2012).因而,围绕“裂点”概念探索物源区地貌形态和产出沉积物的通量、粒度、组分间的定量关系,以正向预测沉积物的特征或反向恢复特定流域沉积面貌形态,对深时源-汇系统具有重要启示意义.除了基岩侵蚀作用产生的沉积碎屑外,裂陷期火山同期的活动同样可以提供大量的火山碎屑物质,如何系统性将不同类型“源-汇”系统整合分析、定量表征仍然有待开展更多的探索性研究.

2.3 路径系统信号传递与示踪问题

沉积物路径系统是将沉积物从“源”到“汇”的命运联系起来的动力系统,它综合了地表、近地表物质的产生、转移、沉积的所有过程,是源-汇系统的重要组成部分( Allen,2008a, 2017;Nyberg et al.,2018a, 2018bBlum,2019).受控于构造作用与气候变化,沉积物源区产生脉冲式的沉积物通量,沉积物通量在沉积物路径系统中传递过程非常复杂,受到构造、气候、湖平面变化等相关多动力过程的影响,并且人类世活动对上述过程的影响逐渐凸显( Hodgson et al.,2018图3).若将沉积物源区至沉积区的过程模拟为信号传递,沉积物通量信号在沉积物路径系统中则经历了单信号的衰减甚至湮灭、多信号的叠加等作用,如沉积物在路径系统中滞留和再分配,导致源区的构造及气候变化信号不能正常向深海/湖盆地传递,极大制约了通过深湖沉积记录恢复古气候与古构造演化的可信度( Romans et al.,2016Sharman and Johnstone,2017杨江海和马严,2017).

深时地层记录多保留沉积物路径系统的最终结果,如何准确重建沉积物路径系统的演化过程仍然是困扰地球科学相关研究的难题( Allen,2008a, 2017Nyberg et al.,2018bBlum,2019).碎屑单矿物U-Pb年代学能够一定程度上指示沉积物路径系统的演化过程( Blum and Pecha,2014;郑洪波等;2017),通过对比物源区基岩年龄与陆架、深海盆地等沉积区地层记录中碎屑锆石的年龄,可示踪沉积碎屑的物源区并揭示沉积物路径演化的关键事件( Blum and Pecha,2014Shao et al.,2017Sharman et al.,2018;Chen et al.,2020).碎屑锆石的年龄测定使我们能够确定最大沉积年龄,从而接近沉积盆地的沉积时间.锆石中Hf和O同位素的分析使我们能够评估地表、地壳和地幔对火山沉积盆地岩浆源的相对贡献.上述指标为锆石结晶的构造环境提供了更精细的评估,这对于研究与其原始地球动力学背景及其相关源-汇过程具有重要意义( Cawood et al.,2022).

沉积碎屑再旋回是沉积物路径系统重建的关键问题,一直困扰着路径系统的恢复.由于较强的抗物理和化学风化能力,碎屑锆石经过反复埋藏、浅变质、剥蚀、搬运等过程,能够再旋回地进入沉积盆地.因此,仅通过锆石年龄谱对比,无法准确地区分单一旋回和再旋回碎屑锆石,进而在沉积物路径系统的恢复中引入了较大的不确定性( Dickinson et al.,2009Saylor et al.,2012陈贺贺等,2017Xu et al.,2017).针对上述沉积再旋回问题,现已提出了多种方法,具备解决上述问题的潜力.例如,碎屑矿物多种同位素年代学相结合的方法提升了我们区分不同旋回期次碎屑矿物的能力( 胡修棉等,2021).如单锆石U-Pb和(U-Th)/He双测年技术可同时获取锆石的暴露年龄(即(U-Th)/He年龄)和结晶年龄(U-Pb年龄),进而指示碎屑锆石在物源区和沉积区之间的滞留时间,限制从源到汇过程中沉积物路径系统的多解性( Reiners et al.,2005Xu et al.,2017).考虑到暴露年龄与结晶年龄较接近的源-汇系统,区分单一旋回和再旋回碎屑锆石仍然是锆石U-Pb年代学在沉积物路径系统研究中面临的挑战.除多种同位素方法外,碎屑颗粒形态学分析可为沉积物路径系统研究提供除同位素年代学参数之外的其他限定( Shaanan and Rosenbaum,2018徐杰和姜在兴,2019).综上可知,陆相裂陷盆地沉积物路径系统是复杂体系,其动态演化关乎地表动力过程中的物质循环,在全球碳循环及油气勘探等方面具有重要的理论和实践意义.

2.4 物源供应与可容空间如何共同控制沉积 -层序发育问题

沉积区等时地层格架内沉积充填及砂体分布预测属于陆相源-汇系统研究的核心内容,与油气勘探过程直接关联,实践研究最为成熟,存在的问题也最为清晰.深时源-汇系统研究多依托钻测井与地震数据采用层序地层学与地震沉积学方法理论联合刻画表征沉积体( Liu et al.,2016b, 2019b),然而传统沉积分析多侧重于湖盆内沉积体的刻画、表征及油气资源预测,缺乏对沉积产出、搬运及堆积分散全过程关联解剖.如对物源区的表征多关注残余地貌形态及不整合性质,搬运区多侧重通道类型及尺寸表征,加之深时资料分辨率与空间分布的限制,使得等时地层格架内沉积体的刻画预测存在不确定性,也成为制约深时源-汇向纵深发展的瓶颈问题.在陆相深时源-汇系统框架下梳理物源供应和可容空间联合调控沉积-层序发育问题,主要表现为3个方面.

(1)相较于侧重可容空间的传统层序地层分析,源-汇系统指导下的沉积-层序发育强调物源供应的重要控制作用(Helland- Hansen et al.,2016),即在缺乏有效物源或搬运通道差异匹配时,可导致沟-扇并不对应且基准面下降不一定富砂( 徐长贵,2013);存在多个物源区时,沉积体系间可能发生交互作用,且一侧物源供应的相对加强将促使其他侧物源形成的沉积体后退萎缩,进而对有利砂体的时空展布产生控制作用( Cullen et al.,2020周子强等,2022Liu et al.,2023).如渤海海域西南部沙垒田凸起与埕子口凸起联合供源区沙河街组早晚期滩坝砂体呈现南北物源供给强度差异转换( Liu et al.,2023图4),即早期沙河街组三段(E s 3)以沙垒田凸起陡坡带稳定供源为主,滩坝砂体孤立分布( 图4a);晚期沙河街组一二段(E s 12)构造减弱、夷平,沙垒田凸起侧供源减弱,埕子口凸起斜坡侧呈强供源,侧翼滩坝砂体连片分布( 图4b).

(2)多旋回叠合型盆地或多幕次构造作用,原型盆地充填沉积可能局部甚至主体抬升并遭受剥蚀,最终向沉积区提供再旋回陆源碎屑物质,使其先前沉积区地层记录遭受较大改造,进而影响沉积通量回填表征过程( Sadler,1981Michael,2013谈明轩等,2020),且地层记录计算所得的长周期沉积速率远小于短期沉积速率( Schumer and Jerolmack,2009);因而,针对多幕裂陷盆地动态改造源区需关注从构造平衡与沉积响应尺度标定多期次剥蚀量变化过程,重视隐形物源区沉积作用过程对源汇系统分析的影响.

(3)构造-气候-水体等控制沉积-层序发育的多因素变量会同时对源-汇系统的多要素造成影响,这也直接制约应用沉积物理模拟或数值模拟等手段解决沉积过程响应机制层面的问题,多变量参数指标的选取及评估是关键.当前,已有研究表明:①陆相裂陷盆地在差异构造活动下陆内地壳伸展减薄、岩浆作用较为广泛,这个过程涉及同期岩浆活动对地层掀斜、改造,甚至限制沉积分散路径( Chen et al.,2022),沉积后岩浆对原有地层结构侵位、破坏等作用;②不同气候带干旱、潮湿或差异降雨作用,调控沉积通量与基准面变换,涉及“大平原小前缘”或“小平原大前缘”三角洲相带差异响应( 朱筱敏等,2012),且降雨增大可导致沉积通量加大并使湖平面上升,进而限制湖底扇是否发育及是否富砂( Zhang et al.,2020Liu et al.,2022);③水体深浅对可容空间的影响及水体能量携载沉积物源搬运堆积的影响,多表现为陡缓坡扇体类型差异分布及波浪-沿岸流对水下沉积砂体-滩坝的冲刷改造( Tamura,2012).此外,水体内沉积介质条件,如固体颗粒质与化学溶解质总量守恒亦属于深时源-汇系统需关注问题( Hinderer,2012).

基于陆相深时源汇系统框架,综合考虑多因素变量对沉积物产出、搬运及堆积过程的影响,建立从源至汇核心要素数据库,广泛获取不同要素间相关性或耦合关系,量化陆相深时原型盆地重建中多控制因素、多边界条件制约,亦属于当前陆相裂陷盆地深时源-汇系统推进或探索过程中需直面的关键问题.

3 陆相裂陷盆地深时源-汇系统革新方向

为更好的推进陆相裂陷盆地深时源-汇系统多元发展,结合源汇系统盆地至流域尺度关注侧重点及物源区-搬运区(沉积路径)-沉积区关键沉积信号产生、示踪、表征等关键地质问题,本文挖掘陆相裂陷盆地沉积记录所携载的构造-气候-物源-水体信息,从不同视角或方向揭示沉积风化-剥蚀-搬运-堆积-分散改造过程,即(1)构造(裂陷幕/火山)-气候(植物群落)条件作为先导限定源-汇尺度、级次,调控深时源-汇作用过程;(2)物源区形貌定量拾取、沉积路径系统定量示踪及沉积水体与砂体分散体系预测作为对深时源-汇具体问题的直接响应;(3)地层正演模拟作为源-汇系统潜在可行技术方法与趋势;(4)特征咸化湖盆源-汇实例作为区别碎屑岩类源-汇系统的新类型启示.本文尝试建立从源至汇信号传递过程中关联性,并考虑潜在可延展方向,探索多学科交叉融合对现有瓶颈问题的突破,实现对理论与实践勘探层面的指导.值得注意的是,下面讲述深时源-汇系统的革新方向,常困扰于多个源-汇系统关键地质问题,因此深时源-汇系统革新方向与关键地质问题为一对多关系.

3.1 裂陷盆地幕式旋回及火山作用下源 -汇过程重建

火山沉积盆地多发育于地球固体和表层介质之间,提供了全球或区域构造、火山作用、基底断层和上覆沉积层之间相互作用过程的关键时空记录.岩浆过程伴随着裂陷盆地构造演化的始末,火山系统是构造、岩浆作用和基底块体差异运动相互作用的综合结果( 王璞珺等,2011Magee et al.,2013D'Elia et al.,2018李志强等,2022).火山作用对源-汇系统的影响主要体现在沉积碎屑通量剧增、火山地貌改造、火山活动构造响应、触发事件沉积等方面,主要对应于物源区地貌演化与沉积碎屑产出、及路径系统信号传递与示踪问题.

现今火山源-汇系统的研究重点是地貌、沉积过程、爆炸喷发对环境的影响,以及十年至千年尺度的沉积和地貌对火山活动的响应( Gawthorpe and Leeder,2000Jackson et al.,2013Planke et al.,2017).近期对火山碎屑沉积学其他方面的认识,强调了火山超热液流将沉积物输送到水下沉积系统深部的重要性,如湖泊和海洋环境.火山环境中的高密度沉积物流增强了深水环境中密度流的生成,并由于背景沉积物的高沉积速率而在沉积演替中留下了具有高分辨率的独特事件沉积( Kataoka,2022).通过水流搬运的裂陷盆地火山碎屑沉积物是火山源-汇过程的枢纽,具有可追溯的岩石学和地球化学指纹,搭配覆盖全区或关键区域的地震数据,结合地震反射特征、定量地震地貌分析等方法,重建火山碎屑路径系统.当前,裂陷盆地源-汇系统研究多集中讨论构造作用、气候变化及海平面变化对盆地充填的影响( Gawthorpe and Leeder,2000任建业等,2004Chen et al.,2021),然而伴随裂陷盆地演化始末的火山作用对盆地充填过程的影响却鲜有提及.因此,亟待开展火山作用与断陷盆地构造演化的时-空耦合关系、火山过程对断陷盆地沉积充填演化影响的研究.

大量典型火山裂陷盆地研究实例是推进该革新方向的关键.借助多重实例,从火山源到沉积盆地的广阔视角,将火山斜坡、河流和深水环境作为一个完整系统,研究喷发、火山碎屑流、河流运移和深水浊流等沉积过程,探讨不同过程的交互响应特征,建立火山作用与裂陷盆地构造演化及盆地充填的时-空耦合模型.此外,火山活动的日益增加不仅带来了严重的环境问题,同时也极大地威胁着火山岛弧周缘及附近人口聚集区安全( Druitt et al.,2022).从洪水地貌学角度对火山碎屑流和火山洪水进行水文重建,可以揭示洪水过程中的流量和时空变化,这些结果对于下游人口稠密地区的水文火山灾害评估以及火山爆发期间和之后的堰塞湖事件预测至关重要.

3.2 古气候 -植被群落及其风化剥蚀效能对源 -汇系统的启示

气候、植被群落以复杂的方式和源-汇输砂过程各环节相互作用,这三者间微妙的作用形式和影响力一直被认为是源-汇系统研究的重要背景,但既往研究中却仅将干湿冷暖条件、植被丰茂程度与源区风化、搬运方式和汇区沉积样式等环节过程定性关联( 李元昊等,2019朱一杰等,2020Abdelwahhab et al.,2023),然而气候、植被群落等生态环境要素作为研究裂陷盆地源-汇系统的重要基础,定性的耦合显然是不够的,能否量化其在从源到汇的过程中的作用?风化剥蚀作为源-汇系统的开头环节,量化其物质供给效能一直是沉积学家感兴趣的热点话题( Gernon et al.,2021Santos et al.,2021Larsen et al.,2023Pérez,2023).传统源-汇研究往往关注机械-物理风化过程,对于生物风化的研究尚存空白,在这种情况下,目前的沉积学知识是否允许我们对气候和植被群落在风化过程中作出任何明确的定量阐述?许多学者就这一问题给出了可行性的观点支撑( Pawlik et al.,2016),并确定生态环境对岩石风化的影响和全球范围内的普适性,即植被对源区基岩产生相互对立的两种作用:地貌学家通常认为树木及其根系是山坡和河岸稳定的重要因素,对侵蚀和剥脱流失过程具有延缓作用( Buma and Johnson,2015Tan et al.,2018),而考虑到生物力学过程(树木根系钻掘、根际)则呈现剥蚀和破坏作用( Fei et al.,2014).总体而言,考虑到树木在不受干扰的生长过程中对基岩的长期影响,以及在树木钻掘过程中基岩结构疏松化以及碎屑物质的产生,树木的双重功能实质上是基岩岩性、环境温度、湿度以及植被群落类型和丰度的综合博弈( Caldeira,2006Phillips et al.,2008Taylor et al.,2012Santos et al.,2021Larsen et al.,2023),至于何者占据主导地位则需综合考虑这些要素.

一些学者对现代凸起的岩石风化开展研究,发现即便统一植被覆盖下,以分水岭划分的山南山北的同类岩石风化也存在倍数差异( Caldeira,2006Larsen et al.,2023),这是由于两侧气温以及湿度不同导致的.我们在南海北部裂陷盆地建立源汇模型( 图5),用以揭示气候、植物共同参与下的风化过程以及机械风化过程,风化剥蚀往往并非单一的物理或化学作用,高温差和低植被覆盖率的区域其机械风化程度高( Santos et al.,2021;Larsen et al.,2023),湿润气候条件下高植被覆盖率的区块受到植物群落的生物力学及有机酸蚀致使其剥脱作用超越固土保持作用而呈现风化成砂( Pawlik et al.,2016).为了定量解决这一问题,我们利用 Larsen(2023)对植被群落的研究数据,结合不同类型基岩的风化指数( 王兴山等,2013Santos et al.,2021),并参考同纬度带的现代陆上凸起天然植被覆盖率(>50%; 姚武韬等,2017),计算了南海北部裂陷盆地源区综合的风化剥蚀效能( 表1),对于同一种基岩类型,相比于单一的草本植被覆盖,混合木本植被覆盖正向增强基岩的风化效能;其次,不同类型的基岩受到植物作用的影响程度不同.纵然,当下陆相深时源-汇研究需要提高对气候-植被群落关注度,但目前重建古气候以及古植被面貌方法存在视角过大、精准度偏低的问题( Chevalier et al.,2020Geier et al.,2022),需要从高频古孢粉资料出发结合旋回地层学理论,建立孢粉-植被群落-气候数据库,进而量化两者沉积时期面貌.将古气候和植被群落创新性纳入到源-汇系统研究,一方面为量化风化剥蚀效能(沉积碎屑产出问题)提供直接的支撑,另一方面也为推动定量、动态刻画不同尺度或级次陆相裂陷盆地深时源-汇过程提供启示.

3.3 定量化拾取物源区地貌——构建形态学与物源供应响应关联

近年来,定量拾取形态参数并预测沉积物特征成为裂陷盆地源-汇系统研究的重要方向( Whittaker et al.,2010Chen et al.,2021).当前研究集中于:(1)恢复沉积时期古地貌;(2)定量拾取物源区地貌;(3)分析沉积物产出的特征.研究表明,应用层拉平和掀斜矫正等技术能有效地恢复差异沉降和掀斜作用对地貌的改造( Chen et al.,2021Wrona et al.,2022).部分学者在恢复后的地貌上进一步开展了ArcGIS水文分析,成功地拾取到符合地质认识的流域单元边界和水系形态( Elliott et al.,2012Chen et al.,2021).在定量划分流域单元后,形态参数如流域面积和长度可用于估算沉积通量( Liu et al.,2019a, 2019b).另一方面,河道纵剖面可用于识别构造裂点( Wrona et al.,2022).针对断层下盘源区的现代地貌研究发现,断层活动速率的增大可在河道中形成溯源迁移的裂点( 图6a t 0~ t 5Whittaker and Walker,2015).其中,裂点下游区域响应新的隆升速率(即具有较大的侵蚀速率),往往对应于粗粒碎屑并贡献更大的沉积通量;上游区域则具有低侵蚀速率并产出少量细粒沉积物( 图6bWhittaker et al.,2010).若将裂点上下视为两个单独的供源端元,并将两者产出的具有特征粒度和组分的沉积物按供源比例进行线性混合,则可预测进入沉积区沉积物的整体特征.

尽管深时残余地貌分析仍处于探索阶段,但现有研究已初步揭示裂陷盆地物源区残余地貌蕴含着供源特征的重要信息( Whittaker et al.,2010).对物源特征研究可为物源区地貌恢复及沉积地层-碎屑产出分析提供一个全新的视角,对有利储层的预测具有重要指示意义.

3.4 沉积路径系统交互模型及定量信号示踪

陆相裂陷盆地沉积物的混合可视为多个物源区端元成分的线性混合,由于不同基岩锆石年龄具有独特的频谱特征,可作为沉积物源指纹示踪沉积碎屑的源汇过程( Sharman and Johnstone,2017).然而,上述理想的假设却受到了沉积物路径系统这一非线性滤波器的扰乱( Jerolmack and Paola,2010).沉积物路径系统中无处不在的阈值决定了沉积信号群在搬运过程中的叠加、衰减甚至湮灭( Jerolmack and Paola,2010Romans et al.,2016).因此,不同源-汇系统具有特征迥异的沉积信号传递模型,其特征取决于扰动信号周期与响应平衡周期间的比值,当扰动信号周期远大于响应平衡周期时,系统发生快速响应;而当扰动信号周期远小于响应平衡周期时,系统发生迟滞响应( Beaumont et al.,2000Allen,2008b).

沉积物源示踪的另一个重要目标是开展物源区相对/绝对贡献量的计算( Sharman and Johnstone,2017许苗苗等,2021).由盆地沉积记录的混合指纹反向解耦(un-mixing)不同锆石指纹的相对比例,进而判断不同源区的物源相对供给量( Malkowski et al.,2022图7).受控于湖平面变化,碎屑沉积物在湖缘坡折上发育不同沉积物路径系统:(1)湖平面高位期,沉积物受沿岸流和风暴事件等的混合,沉积物显示出充分混源的碎屑锆石特征,由于沉积可容空间的增加,深水沉积体系相对不发育( 图7a);(2)湖平面低位期,当河流供源能力较强且相互独立,其沉积物高效地进入湖缘坡折峡谷体系中,此时深水沉积体系碎屑锆石特征密切地反映不同河流源的特征( 图7b);(3)湖平面低水位期,当河流彼此发生混源过程,且受沿岸流和风暴事件等的混合,深水沉积体系同样发育混源碎屑锆石特征( 图7c).

基于蒙特卡洛统计逆向建模的DZmix算法可对沉积物信号进行解混( Sundell and Saylor,2017Li et al.,2019).解混合算法利用核密度估计算出的交叉相关系数作为拟合优度指标,可定量解混合模型估算不同沉积物源区对沉积盆地的相对贡献.将物源区主体基岩年龄特征输入DZmix,该算法据每个样品组的锆石年龄,进行数以十万计甚至更高的随机组合,从计算结果中为每个沉积物源区输出最优化的混合比例,并进行不确定性评估( Sundell and Saylor,2017图8).

3.5 沉积水体环境恢复及砂体分散体系预测

水深和水动力强弱是沉积环境的关键参数,它直接控制着沉积过程,限定沉积体位置、规模以及展布形态,间接影响生态群落条件.同时,构造、沉积过程、气候和生物活动等各种地质参数之间的相互作用,不断塑造着控制水深的盆地地貌和样式( Kimiaghalam et al.,2015Grodek et al.,2020Li et al.,2021aJones et al.,2023).确定湖盆的水深有助于揭示盆地底部的地形和泥沙的动态运输过程( Ganti et al.,2014).然而,古湖盆的水深是基于沉积形成前的地形和保留的地质记录计算转换,难以直接测量( Jones et al.,2023).因此,地质工作者在实践中提出不同的方法,从化石、岩性组合、沉积结构和矿物组成等沉积记录中定性-定量提取沉积古水体信息( John et al.,2004Ryan et al.,2007Thomas et al.,2012Ershov,2016Li et al.,2021b).其中,以沉积标志物特性为基础的古生物学和地球化学方法最为广泛,即利用古生物对水体环境的敏感需求以及地化元素富集条件来反演水体条件.定量计算古水深的方法包含斜坡形态学法( Scholz et al.,2007Harishidayat et al.,2022)、通过SEMI PW软件的3D地图法( Emmel et al.,2015)、化石涡纹法( Allen,1984)和岩相-生物指标法( Sennikov et al.,2011),这些方法已应用于实践研究.

水体环境对陆相盆地砂体分散体系的影响体现在2个方面:(1)砂体堆积的原始约束是受到不同位置水深和动能强弱限制,砂体的展布形态和规模在平面和垂向尺度均呈现有规律的特征,例如,在其他条件不变的情况下,随水深逐渐变深砂体扩散角度有所缩小,即砂体展布形态逐步由钝角扇面向锐角扇面转换( 李元昊等,2019);(2)砂体的调节改造是指先前沉积的砂体逐渐影响了后来的沉积体系的流动类型和空间分布,例如构造活动稳定时期,大量砂体的充填使得水位暂时提高、岸线外扩,从而导致流动剥脱过程,进而形成新一期次宽大、厚粗的朵体( Jones et al.,2023).此外,季风会直接作用于源区砂体的产生和搬运,环流则会对先沉积砂体进行改造,即盛行夏季风带来的强水汽既增强了源区风化效能及供给砂体通量,又提高了搬运和卸载砂体的能力,使得更大量的砂体分散沉积至更远的区域( Clift and Jonell,2021).

基于此,我们结合南海北部始新世典型裂陷盆地探索性构建季风环流-水深-水动力三元作用模型( 图9),尝试借用现代水文观测建立三元作用与砂体形态、规模及质量间的定量关系,尤其时水下低隆区相对水浅、高水动力条件下改造性砂体分布形态呈平行或斜交季风方向.据此,量化水体深浅和水动力强弱,联合季风环流作用,一方面是对源区供给通量以及搬运强度研究的补充,对路径系统信号沉积区传递的延伸,另一方面是对砂体的形态、规模和质量的精准预测,细化沉积-层序发育过程,推动深时源-汇过程研究向定量、精准、科学的方向迈进.

3.6 地层正演模拟表征陆相深时源 -汇系统

数值与物理正演模拟研究方法已经成为深时源-汇系统的重要研究方向( Romans et al.,2016谈明轩等,2020).在源-汇系统相关变量研究基础上,综合古地理、古构造以及古气候背景建立定量地层模型,以物源供给与可容空间相关变化定量约束陆相裂陷盆地的沉积体系分散样式与层序构型发育特征( Wu et al.,2019),为深时源-汇系统的定量预测提供新思路.

随着计算机硬件与编程技术的不断发展,基于源-汇过程数值模拟研究逐渐从一维发展到三维模拟,从水动力扩散扩展至地表过程、地球动力学与热力学相结合的多类型开源程序.与此同时,古高程重建、古构造复原以及古气候模拟等多种研究方法也相继被纳入到高精度地层模型的构建中,为正演模拟分析提供良好的地质参数约束( Salles et al.,2023).目前相关数值模拟研究已在陆相断陷盆地充填与深时源-汇过程研究中取得良好的效果( Wu et al.,2019Wolf et al.,2022Gérard et al.,2023),使得源-汇系统地层模型逐渐向精准化与定量化方向发展.

基于源-汇过程物理模拟研究方法也可能成为未来地层正演模拟的重要发展方向.目前大部分沉积物理模拟研究主要聚焦于沉积过程及其产物,并没有系统性考虑物源区变化对沉积物供给以及沉积过程的控制作用.近年来在构造砂箱模拟实验基础上发展起来的构造地貌演化模拟方法是完善源-汇物理模拟研究方法的一种潜在研究方向( Yan et al.,2023闫兵等,2023).综合构造地貌学与沉积学基础认识,通过设定降雨量、构造隆升与沉降速率参数,实时模拟源区山体的风化作用以及水系迁移过程,并同时系统地、直观地分析汇区沉积物的建造样式( Gazzetti,2015),对于深时源-汇过程(涵盖碎屑产出量、搬运路径及沉积-层序堆积样式)研究具有较强的指示意义.

3.7 特征源 -汇过程——咸化湖盆溶解质研究

沉积盆地源-汇系统主体上针对固体颗粒物质和化学溶解物质两部分而言( Hinderer,2012).实际上,目前大部分研究主要聚焦于固体颗粒物的源-汇过程( 谈明轩等,2020).化学溶解质源-汇过程与盆地内碳酸盐沉积体系的发育密切相关,然而受其复杂来源的限制,整体研究程度仍然相对低下.相对于开放性的海相盆地而言,陆相咸化湖盆相对封闭,是化学风化主导的碳酸盐岩源-汇过程研究的理想实验场所( Bouton et al.,2020图10).地表径流、岩溶作用、地下水补给、乃至风力搬运与大气降雨皆可成为化学溶解质Ca 2+的“源”,而在陆相咸化湖盆中碳酸盐岩沉积体系是化学溶解质Ca 2+的“汇”.现代水文监测、岩样与水样取样分析表明美国犹他州大盐湖全新世以来输入的Ca 2+估算总量达4.88 Gt,而盆内碳酸盐岩中Ca 2+总量约为3.94 Gt,表明具有良好的Ca 2+质量平衡关系( Bouton et al.,2020).尽管部分分析方法可以扩展到深时咸化湖盆研究中,其定量研究所造成的不确定性仍然显著存在.在此基础上开展陆相咸化湖盆固体与溶解物质系统性源-汇作用研究,对其碎屑岩-碳酸盐岩混积层系以及烃源岩的评价与表征均具有巨大的应用价值.

4 结论及展望

源-汇系统或沉积路径系统是当前国际沉积学领域的研究热点,然而国内外研究方向及程度存在较大差异,国外侧重第四纪以来洋陆边缘源-汇系统研究且多集中于驱动因素与机理层面解剖;国内侧重特有的陆相裂陷盆地,借助深时源-汇系统分析解决优势物源方向、有利储集砂体分布预测等勘探实践问题.

当前,深时源-汇系统仍存在诸多地质问题未有效解决,针对陆相裂陷盆地主要存在:(1)源-汇系统表征级次、规模及时空尺度问题;(2)物源地貌形态有效性及沉积物粒度、组分差异产出问题;(3)沉积路径系统信号传递稳定性及再旋回示踪有效性问题;(4)多变量作用下沉积-层序充填演化及优质相带砂体分布预测问题.诸多瓶颈问题制约陆相深时源-汇系统理论集成与实践应用,也直接促成笔者从国际前沿、实践生产问题层面考虑潜在解决方案或革新方向,即(1)从构造演化角度考虑火山作用对地貌与沉积的改造影响,追溯可示踪的岩石学和地球化学指纹记录;(2)从古气候-植物群落角度考虑拓展岩石风化效能的维度,支撑特定气候带与植物面貌下沉积产出通量预测;(3)从地貌形态角度考虑深时残余地貌裂点上下供源粒度、组分及沉积通量信息,构建形态学与物源供应响应关联;(4)从沉积物路径有效示踪角度分析不同物源区交叠、混源特征,借用统计建模手段对沉积信号解混,也是当前正推进的主流方向;(5)从沉积水体角度分析其水深可容空间、水动力携载能力,联合构建季风环流-水深-水动力三元作用模型,指导区内砂体分散体系预测;(6)从地层正演模拟方法维度指出将综合降雨系统的沙箱构造地貌模拟与水槽沉积作用模拟有机整合,有望实现从源至汇全过程作用机制模拟表征;(7)从沉积产物形态角度考虑区别于碎屑颗粒的剥蚀搬运过程的化学溶解质源-汇系统响应,补齐陆相湖盆碎屑岩-碳酸盐岩混积体系解剖短板.相关进展及方向以期解决多驱动因素、多交互介质影响下源汇系统沉积通量有效拾取、平衡恢复问题,启迪更多地质工作者在不同视角、维度的共鸣,拓展中国特色陆相深时源-汇系统研究内涵.

整体而言,陆相源-汇系统发展需考虑从两方面深化,即(1)多学科交叉融合,推进沉积学与形貌学、古生物学、气候学、地球化学、水动力学、数理统计学、计算机人工智能等学科方向交融,解决沉积通量表征与环境面貌重建问题;(2)立足于中国陆相源-汇系统深时大数据系统构建,涵盖关键构造-气候变革事件、深时古气候与生物环境信息、不同基岩风化剥蚀效能或通量数据、不同级次与类型流域地形及搬运要素信息、河流-三角洲水文条件或沉积动力学数据、重力流沉积过程及边界条件参数、特征环境地球化学标型指标及湖盆从源至汇关键参数相关性数据等,实现对能源矿产的精准预测,并引领陆相源-汇系统领域前沿.

参考文献

[1]

Aalto,R.,Lauer,J.W.,Dietrich,W.E.,2008.Spatial and Temporal Dynamics of Sediment Accumulation and Exchange along Strickland River Floodplains (Papua New Guinea) over Decadal-to-Centennial Timescales. Journal of Geophysical Research: Earth Surface,113(F1).https://doi.org/10.1029/2006jf000627

[2]

Abdelwahhab,M.A.,Abdelhafez,N.A.,Embabi,A.M.,2023.3D-Static Reservoir and Basin Modeling of a Lacustrine Fan-Deltaic System in the Gulf of Suez,Egypt. Petroleum Research, 8( 1): 18- 35.https://doi.org/10.1016/j.ptlrs.2022.05.002

[3]

Allen,P.A.,1984.Reconstruction of Ancient Sea Conditions with an Example from the Swiss Molasse. Marine Geology,60(1-4):455-473.https://doi.org/10.1016/0025-3227(84)90162-2

[4]

Allen,P.A.,2008a.From Landscapes into Geological History. Nature,451:274-276.https://doi.org/10.1038/nature06586

[5]

Allen,P.A.,2008b.Time Scales of Tectonic Landscapes and Their Sediment Routing Systems. Geological Society, London, Special Publications,296(1):7-28.https://doi.org/10.1144/sp296.2

[6]

Allen,P.A.,2017.Sediment Routing Systems:The Fate of Sediment from Source to Sink.Cambridge University Press,Cambridge,UK.

[7]

Allen,P.A.,Armitage,J.J.,Carter,A.,et al.,2013.The Q s Problem:Sediment Volumetric Balance of Proximal Foreland Basin Systems. Sedimentology, 60( 1): 102- 130.https://doi.org/10.1111/sed.12015

[8]

Allen,P.A.,Hovius,N.,1998.Sediment Supply from Landslide-Dominated Catchments:Implications for Basin-Margin Fans. Basin Research, 10( 1): 19- 35.

[9]

Anthony,E.J.,Julian,M.,1999.Source-to-Sink Sediment Transfers,Environmental Engineering and Hazard Mitigation in the Steep Var River Catchment,French Riviera,Southeastern France. Geomorphology,31(1-4):337-354.https://doi.org/10.1016/s0169-555x(99)00088-4

[10]

Attal, M.,Mudd,S. M.,Hurst,M. D.,et al.,2015. Impact of Change in Erosion Rate and Landscape Steepness on Hillslope and Fluvial Sediments Grain Size in the Feather River Basin (Sierra Nevada,California). Earth Surface Dynamics, 3( 1): 201- 222.

[11]

Beaumont,C.,Kooi,H.,Willet,S.,2000.Coupled Tectonic-Surface Process Models with Applications to Rifted Margins and Collisional Orogens.In:Summerfield,M.A.,ed.,Geomorphology and Global Tectonics.Wiley,Chichester,U.S.A..

[12]

Bentley,S.J.,Blum,M.D.,Maloney,J.,et al.,2016.The Mississippi River Source-to-Sink System:Perspectives on Tectonic,Climatic,and Anthropogenic Influences,Miocene to Anthropocene. Earth-Science Reviews, 153: 139- 174.https://doi.org/10.1016/j.earscirev.2015.11.001

[13]

Bhattacharya,J.P.,Copeland,P.,Lawton,T.F.,et al.,2016.Estimation of Source Area,River Paleo-Discharge,Paleoslope,and Sediment Budgets of Linked Deep-Time Depositional Systems and Implications for Hydrocarbon Potential. Earth-Science Reviews, 153: 77- 110.https://doi.org/10.1016/j.earscirev.2015.10.013

[14]

Blum,M.,2019.Organization and Reorganization of Drainage and Sediment Routing through Time:The Mississippi River System. Geological Society, London, Special Publications, 488( 1): 15- 45.https://doi.org/10.1144/sp488-2018-166

[15]

Blum,M.,Pecha,M.,2014.Mid-Cretaceous to Paleocene North American Drainage Reorganization from Detrital Zircons. Geology, 42( 7): 607- 610.https://doi.org/10.1130/g35513.1

[16]

Blum,M.D.,Hattier-Womack,J.,2009.Climate Change,Sea-Level Change,and Fluvial Sediment Supply to Deepwater Depositional Systems. External Controls of Deep-Water Depositional Systems, SEPM,Special Publication, 92: 15- 39.https://doi.org/10.2110/sepmsp.092.015

[17]

Bouton,A.,Vennin,E.,Amiotte-Suchet,P.,et al.,2020.Prediction of the Calcium Carbonate Budget in a Sedimentary Basin:A “Source-to-Sink” Approach Applied to Great Salt Lake,Utah,USA. Basin Research, 32( 5): 1005- 1034.https://doi.org/10.1111/bre.12412

[18]

Brewer,C.J.,Hampson,G.J.,Whittaker,A.C.,et al.,2020.Comparison of Methods to Estimate Sediment Flux in Ancient Sediment Routing Systems. Earth-Science Reviews, 207:103217.https://doi.org/10.1016/j.earscirev.2020.103217

[19]

Brown,W.M.,Ritter,J.R.,1971.Sediment Transport and Turbidity in the Eel River Basin,California.US Government Printing Office,Washington,U.S.A..

[20]

Buma,B.,Johnson,A.C.,2015.The Role of Windstorm Exposure and Yellow Cedar Decline on Landslide Susceptibility in Southeast Alaskan Temperate Rainforests. Geomorphology, 228: 504- 511.https://doi.org/10.1016/j.geomorph.2014.10.014

[21]

Caldeira,K.,2006.Forests,Climate,and Silicate Rock Weathering. Journal of Geochemical Exploration,88(1-3):419-422.https://doi.org/10.1016/j.gexplo.2005.08.089

[22]

Catuneanu,O.,2022.Principles of Sequence Stratigraphy(2nd).Elsevier Science,San Diego.

[23]

Cawood,P.A.,Mulder,J.,Chowdhury,P.,2022.Secular Evolution of Tectonics and Volcano-Sedimentology.Proceedings of the 21st International Sedimentological Congress,Beijing.

[24]

Chen,H.H.,Wood,L.J.,Gawthorpe,R.L.,2021.Sediment Dispersal and Redistributive Processes in Axial and Transverse Deep-Time Source-to-Sink Systems of Marine Rift Basins:Dampier Sub-Basin,Northwest Shelf,Australia. Basin Research, 33( 1): 227- 249.https://doi.org/10.1111/bre.12462

[25]

Chen,H.H.,Zhu,X.M.,Gawthorpe,R.L.,et al.,2022.The Interactions of Volcanism and Clastic Sedimentation in Rift Basins:Insights from the Palaeogene-Neogene Shaleitian Uplift and Surrounding Sub-Basins,Bohai Bay Basin,China. Basin Research, 34( 3): 1084- 1112

[26]

Chen,H.H.,Zhu,X.M.,Huang,H.D.,et al.,2017.Sediment Provenance of Shahejie Formation in Lixian Slope of Raoyang Depression Based on the Detrital Zircon Dating Analysis. Earth Science, 42( 11): 1955- 1971 (in Chinese with English abstract).

[27]

Chen,H.H.,Zhu,X.M.,Wood,L.J.,et al.,2020.Evolution of Drainage,Sediment-Flux and Fluvio-Deltaic Sedimentary Systems Response in Hanging Wall Depocentres in Evolving Non-Marine Rift Basins:Paleogene of Raoyang Sag,Bohai Bay Basin,China. Basin Research, 32( 1): 116- 145.https://doi.org/10.1111/bre.12371

[28]

Chevalier,M.,Davis,B.A.S.,Heiri,O.,et al.,2020.Pollen-Based Climate Reconstruction Techniques for Late Quaternary Studies. Earth-Science Reviews, 210:103384.https://doi.org/10.1016/j.earscirev.2020.103384

[29]

Clift,P.D.,Jonell,T.N.,2021.Monsoon Controls on Sediment Generation and Transport:Mass Budget and Provenance Constraints from the Indus River Catchment,Delta and Submarine Fan over Tectonic and Multimillennial Timescales. Earth-Science Reviews, 220:103682.https://doi.org/10.1016/j.earscirev.2021.103682

[30]

Crockett,J.S.,Nittrouer,C.A.,Ogston,A.S.,et al.,2008.Morphology and Filling of Incised Submarine Valleys on the Continental Shelf near the Mouth of the Fly River,Gulf of Papua. Journal of Geophysical Research: Earth Surface,113(F1).https://doi.org/10.1029/2006jf000674

[31]

Cullen,T.M.,Collier,R.E.L.,Gawthorpe,R.L.,et al.,2020.Axial and Transverse Deep-Water Sediment Supply to Syn-Rift Fault Terraces:Insights from the West Xylokastro Fault Block,Gulf of Corinth,Greece. Basin Research, 32( 5): 1105- 1139.https://doi.org/10.1111/bre.12416

[32]

D'Elia,L.,Martí,J.,Muravchik,M.,et al.,2018.Impact of Volcanism on the Sedimentary Record of the Neuquén Rift Basin,Argentina:Towards a Cause and Effect Model. Basin Research,30(S1):311-335.https://doi.org/10.1111/bre.12222

[33]

Dickinson,W.R.,Gehrels,G.E.,2010.Insights into North American Paleogeography and Paleotectonics from U-Pb Ages of Detrital Zircons in Mesozoic Strata of the Colorado Plateau,USA. International Journal of Earth Sciences, 99( 6): 1247- 1265.https://doi.org/10.1007/s00531-009-0462-0

[34]

Dickinson,W.R.,Lawton,T.F.,Gehrels,G.E.,2009.Recycling Detrital Zircons:A Case Study from the Cretaceous Bisbee Group of Southern Arizona. Geology, 37( 6): 503- 506.https://doi.org/10.1130/g25646a.1

[35]

Druitt,T.,Kutterolf,S.,Höfig,T.W.,2022.Expedition 398 Scientific Prospectus:Hellenic Arc Volcanic Field.International Ocean Discovery Program.https://doi.org/10.14379/iodp.sp.398.2022

[36]

Du,J.Y.,Zhang,X.T.,Liu,P.,et al.,2021.Classification of Paleogene Source-to-Sink System and Its Petroleum Geological Significance in Zhuyi Depression of Pearl River Mouth Basin. Earth Science, 46( 10): 3690- 3706 (in Chinese with English abstract).

[37]

Elliott,G.M.,Wilson,P.,Jackson,C.A.L.,et al.,2012.The Linkage between Fault Throw and Footwall Scarp Erosion Patterns:An Example from the Bremstein Fault Complex,Offshore Mid-Norway. Basin Research, 24( 2): 180- 197.https://doi.org/10.1111/j.1365-2117.2011.00524.x

[38]

Emmel,B.,de Jager,G.,Zieba,K.,et al.,2015.A 3D,Map Based Approach to Reconstruct and Calibrate Palaeo-Bathymetries—Testing the Cretaceous Water Depth of the Hammerfest Basin,Southwestern Barents Sea. Continental Shelf Research, 97: 21- 31.https://doi.org/10.1016/j.csr.2015.02.003

[39]

Ershov,S.V.,2016.Paleobathymetry of the Late Jurassic-Neocomian Basin in Northern West Siberia and the Impact of Natural Processes. Russian Geology and Geophysics, 57( 8): 1221- 1238.https://doi.org/10.1016/j.rgg.2016.08.008

[40]

Fei,S.L.,Phillips,J.,Shouse,M.,2014.Biogeomorphic Impacts of Invasive Species. Annual Review of Ecology, Evolution, and Systematics, 45: 69- 87.https://doi.org/10.1146/annurev-ecolsys-120213-091928

[41]

Francis,J.M.,Daniell,J.J.,Droxler,A.W.,et al.,2008.Deep Water Geomorphology of the Mixed Siliciclastic-Carbonate System,Gulf of Papua. Journal of Geophysical Research: Earth Surface,113(F1).https://doi.org/10.1029/2007jf000851

[42]

Fu,C.F.,Fang,X.M.,Song,Y.G.,et al.,2005.Two Quantitative Methods of Studying Orogenic Belt Uplift and Denudation through Basin-Range Sedimentary Coupling. Marine Geology & Quaternary Geology, 25( 1): 105- 112 (in Chinese with English abstract).

[43]

Ganti,V.,Lamb,M.P.,McElroy,B.,2014.Quantitative Bounds on Morphodynamics and Implications for Reading the Sedimentary Record. Nature Communications, 5:3298.https://doi.org/10.1038/ncomms4298

[44]

Gao,Y.D.,Peng,G.R.,Zhang,X.T.,et al.,2023.Characteristics and Evolution of the Source-to-Sink System of the Paleogene Wenchang Formation in Baiyun Sag,Pearl River Mouth Basin. Oil & Gas Geology, 44( 3): 584- 599 (in Chinese with English abstract).

[45]

Gawthorpe,R.L.,Leeder,M.R.,2000.Tectono-Sedimentary Evolution of Active Extensional Basins. Basin Research,12(3-4):195-218.https://doi.org/10.1111/j.1365-2117.2000.00121.x

[46]

Gazzetti,E.,2015.Autogenic Signals in an Experimental Source-To-Sink System (Dissertation).University of Minnesota,Minnesota,U.S.A..

[47]

Geier,C.,Bouchal,J.M.,Ulrich,S.,et al.,2022.Paleovegetation and Paleoclimate Inferences of the Early Late Sarmatian Palynoflora from the Gleisdorf Fm.at Gratkorn,Styria,Austria. Review of Palaeobotany and Palynology, 307:104767.https://doi.org/10.1016/j.revpalbo.2022.104767

[48]

Gérard,B.,Rouby,D.,Huismans,R.S.,et al.,2023.Impact of Inherited Foreland Relief on Retro-Foreland Basin Architecture. Journal of Geophysical Research: Solid Earth,128(3):e2022JB024967.https://doi.org/10.1029/2022jb024967

[49]

Gernon,T.M.,Hincks,T.K.,Merdith,A.S.,et al.,2021.Global Chemical Weathering Dominated by Continental Arcs since the Mid-Palaeozoic. Nature Geoscience, 14( 9): 690- 696.https://doi.org/10.1038/s41561-021-00806-0

[50]

Gilbert,G.K.,1917.Hydraulic-Mining Debris in the Sierra Nevada (No.105).US Government Printing Office,U.S.A..

[51]

Gong,C.L.,Qi,K.,Xu,J.,et al.,2021.Process-Product Linkages and Feedback Mechanisms of Deepwater Source-to-Sink Responses to Multi-Scale Climate Changes. Acta Sedimentologica Sinica, 39( 1): 231- 252 (in Chinese with English abstract).

[52]

Grodek,T.,Morin,E.,Helman,D.,et al.,2020.Eco-Hydrology and Geomorphology of the Largest Floods along the Hyperarid Kuiseb River,Namibia. Journal of Hydrology, 582:124450.https://doi.org/10.1016/j.jhydrol.2019.124450

[53]

Harishidayat,D.,Emmel,B.U.,De Jager,G.,et al.,2022.Assessment of Continental Margin Clinoform Systems in the Sørvestsnaget Basin,Western Barents Sea:From Clinoform Parameters towards Paleo-Water Depth. Marine Geophysical Research, 43(2):22.https://doi.org/10.1007/s11001-022-09485-x

[54]

Helland-Hansen,W.,Sømme,T.O.,Martinsen,O.J.,et al.,2016.Deciphering Earth's Natural Hourglasses:Perspectives on Source-to-Sink Analysis. Journal of Sedimentary Research, 86( 9): 1008- 1033.https://doi.org/10.2110/jsr.2016.56

[55]

Hinderer,M.,2012.From Gullies to Mountain Belts:A Review of Sediment Budgets at Various Scales. Sedimentary Geology, 280: 21- 59.https://doi.org/10.1016/j.sedgeo.2012.03.009

[56]

Hodgson,D.M.,Bernhardt,A.,Clare,M.A.,et al.,2018.Grand Challenges (and Great Opportunities) in Sedimentology,Stratigraphy,and Diagenesis Research. Frontiers in Earth Science, 6:173.https://doi.org/10.3389/feart.2018.00173

[57]

Hu,X.F.,Pan,B.T.,Li,Q.,2014.Principles of the Stream Power Erosion Model and Its Latest Progress in Research. Journal of Lanzhou University ( Natural Sciences), 50( 6): 824- 831 (in Chinese with English abstract).

[58]

Hu,X.M.,Xue,W.W.,Lai,W.,et al.,2021.Sedimentary Basins in Orogenic Belt and Continental Geodynamics. Acta Geologica Sinica, 95( 1): 139- 158 (in Chinese with English abstract).

[59]

Jackson,C.A.L.,Schofield,N.,Golenkov,B.,2013.Geometry and Controls on the Development of Igneous Sill-Related Forced Folds:A 2-D Seismic Reflection Case Study from Offshore Southern Australia. Geological Society of America Bulletin,125(11-12):1874-1890.https://doi.org/10.1130/b30833.1

[60]

Jerolmack,D.J.,Paola,C.,2010.Shredding of Environmental Signals by Sediment Transport. Geophysical Research Letters, 37( 19): L19401..https://doi.org/10.1029/2010gl044638

[61]

John,C.M.,Karner,G.D.,Mutti,M.,2004.δ 18O and Marion Plateau Backstripping:Combining Two Approaches to Constrain Late Middle Miocene Eustatic Amplitude. Geology, 32(9):829.https://doi.org/10.1130/g20580.1

[62]

Jones,D.J.R.,Dodd,T.J.H.,McCarthy,D.J.,2023.The Influence of Complex Palaeobathymetry on Development of Deep-Lacustrine Fan Systems. Marine and Petroleum Geology, 149:106090.https://doi.org/10.1016/j.marpetgeo.2022.106090

[63]

Kataoka,K.S.2022.Volcanic Source to Sink:From Subaerial Eruptions to Deep-Water Turbidity Currents.Proceedings of the 21st International Sedimentological Congress,Beijing.

[64]

Kimiaghalam,N.,Goharrokhi,M.,Clark,S.P.,et al.,2015.A Comprehensive Fluvial Geomorphology Study of Riverbank Erosion on the Red River in Winnipeg,Manitoba,Canada. Journal of Hydrology, 529: 1488- 1498.https://doi.org/10.1016/j.jhydrol.2015.08.033

[65]

Kirby,E.,Whipple,K.X.,2012.Expression of Active Tectonics in Erosional Landscapes. Journal of Structural Geology, 44: 54- 75.https://doi.org/10.1016/j.jsg.2012.07.009

[66]

Larsen,I.J.,Eger,A.,Almond,P.C.,et al.,2023.The Influence of Erosion and Vegetation on Soil Production and Chemical Weathering Rates in the Southern Alps,New Zealand. Earth and Planetary Science Letters, 608:118036.

[67]

Li,J.B.,Gao,S.,2004.Basin Evolution and Resource Effect of China Marginal Sea.Ocean Press,Beijing (in Chinese).

[68]

Li,Y.H.,Song,F.X.,Han,P.,et al.,2019.A Ternary Sand Control Model of River-Dominated Delta in Tectonic Stability Period. Journal of Palaeogeography, 21( 3): 397- 406 (in Chinese).

[69]

Li,Y.T.,Clift,P.D.,O’Sullivan,P.,2019.Millennial and Centennial Variations in Zircon U-Pb Ages in the Quaternary Indus Submarine Canyon. Basin Research, 31( 1): 155- 170.https://doi.org/10.1111/bre.12313

[70]

Li,Z.Q.,Yang,B.,Han,Z.J.,et al.,2022.Tectonic-Thermal Evolution of Meso-Cenozoic Rift Basin in South Yellow Sea,Offshore Eastern China:Implications for Basin-Forming Mechanism and Thermal Evolution of Source Rocks. Earth Science, 47( 5): 1652- 1668 (in Chinese with English abstract).

[71]

Li,Z.Y.,Liu,Q.H.,Zhu,H.T.,et al.,2021a.Compositional Relationship between the Source-to-Sink Segments and Their Sedimentary Response to Diverse Geomorphology Types in the Intrabasinal Lower Uplift of Continental Basins. Marine and Petroleum Geology, 123:104716.https://doi.org/10.1016/j.marpetgeo.2020.104716

[72]

Li,Y.Q.,Yu,K.F.,Bian,L.Z.,et al.,2021b.Paleo-Water Depth Variations since the Pliocene as Recorded by Coralline Algae in the South China Sea. Palaeogeography, Palaeoclimatology, Palaeoecology, 562:110107.https://doi.org/10.1016/j.palaeo.2020.110107

[73]

Lin,C.S.,Shi,H.S.,Li,H.,et al.,2018.Sequence Architecture,Depositional Evolution and Controlling Processes of Continental Slope in Pearl River Mouth Basin,Northern South China Sea. Earth Science, 43( 10): 3407- 3422 (in Chinese with English abstract).

[74]

Lin,C.S.,Xia,Q.L.,Shi,H.S.,et al.,2015.Geomorphological Evolution,Source to Sink System and Basin Analysis. Earth Science Frontiers, 22( 1): 9- 20 (in Chinese with English abstract).

[75]

Liu,H.,Tom van Loon,A.J.,Xu,J.E.,et al.,2020.Relationships between Tectonic Activity and Sedimentary Source-to-Sink System Parameters in a Lacustrine Rift Basin:A Quantitative Case Study of the Huanghekou Depression (Bohai Bay Basin, China). Basin Research, 32( 4): 587- 612.https://doi.org/10.1111/bre.12374

[76]

Liu,J.,Peng,G.R.,Zheng,J.Y.,et al.,2023.Sedimentary Transformation and Source-to-Sink Response to the Eocene Rifting Detachment in the Western Baiyun Sag,Pearl River Mouth Basin. Oil & Gas Geology, 44( 3): 600- 612 (in Chinese with English abstract).

[77]

Liu,J.P.,Xian,B.Z.,Tan,X.F.,et al.,2022.Depositional Process and Dispersal Pattern of a Faulted Margin Hyperpycnal System:The Eocene Dongying Depression,Bohai Bay Basin,China. Marine and Petroleum Geology, 135:105405.https://doi.org/10.1016/j.marpetgeo.2021.105405

[78]

Liu,Q.H.,2016.“Source-to-Sink” System Coupling Analysis of the Paleogene,Shaleitian Uplift,Bohai Bay Basin,China (Dissertation).China University of Petroleum,Beijing (in Chinese with English abstract).

[79]

Liu,Q.H.,Zhu,H.T.,Zhu,X.M.,et al.,2019a.Proportional Relationship between the Flux of Catchment-Fluvial Segment and Their Sedimentary Response to Diverse Bedrock Types in Subtropical Lacustrine Rift Basins. Marine and Petroleum Geology, 107: 351- 364.https://doi.org/10.1016/j.marpetgeo.2019.05.031

[80]

Liu,Q.H.,Zhu,X.M.,Zeng,H.L.,et al.,2019b.Source-to-Sink Analysis in an Eocene Rifted Lacustrine Basin Margin of Western Shaleitian Uplift Area,Offshore Bohai Bay Basin,Eastern China. Marine and Petroleum Geology, 107: 41- 58.https://doi.org/10.1016/j.marpetgeo.2019.05.013

[81]

Liu,Q.H.,Zhu,X.M.,Li,S.L.,et al.,2016.Pre-Palaeogene Bedrock Distribution and Source-to-Sink System Analysis in the Shaleitian Uplift. Earth Science, 41( 11): 1935- 1949 (in Chinese with English abstract).

[82]

Liu,Z.F.,Zhao,Y.L.,Colin,C.,et al.,2016a.Source-to-Sink Transport Processes of Fluvial Sediments in the South China Sea. Earth-Science Reviews, 153: 238- 273.https://doi.org/10.1016/j.earscirev.2015.08.005.

[83]

Liu,Q.H.,Zhu,X.M.,Yang,Y.,et al.,2016b.Sequence Stratigraphy and Seismic Geomorphology Application of Facies Architecture and Sediment-Dispersal Patterns Analysis in the Third Member of Eocene Shahejie Formation,Slope System of Zhanhua Sag,Bohai Bay Basin,China. Marine and Petroleum Geology, 78: 766- 784.https://doi.org/10.1016/j.marpetgeo.2015.11.015

[84]

Liu,Q.H.,Zhu,X.M.,Zhou,Z.Q.,et al.,2023.Provenance Identification and Source-to-Sink Studies from an Intrabasinal Subaqueous Uplift in the Eocene Western Bohai Bay Basin,Eastern North China. Marine and Petroleum Geology, 149:106087.https://doi.org/10.1016/j.marpetgeo.2022.106087

[85]

Liu,Q.H.,Zhu,X.M.,Zhu,H.T.,et al.,2017.Three-Dimensional Forward Stratigraphic Modelling of the Gravel-to Mud-Rich Fan-Delta in the Slope System of Zhanhua Sag,Bohai Bay Basin,China. Marine and Petroleum Geology, 79: 18- 30.https://doi.org/10.1016/j.marpetgeo.2016.10.030

[86]

Liu,Z.F.,Colin,C.,Huang,W.,et al.,2007a.Clay Minerals in Surface Sediments of Pearl River Basin and Their Contribution to Sediments in South China Sea. Chinese Science Bulletin,52(4):448-456 (in Chinese).

[87]

Liu,Z.F.,Zhao,Y.L.,Li,J.R.,et al.,2007b.Late Quaternary Clay Mineral Records off Vietnam Coast in Western South China Sea:Provenance Analysis and Evolution of East Asian Monsoon. Science in China ( Series D),37(9):1176-1184 (in Chinese).

[88]

Liu,Z.F.,Li,X.J.,Colin,C.,et al.,2010.High-Resolution Clay Mineral Records and Their Time Series Provenance Analysis since the last Glacial Maximum in the Northern South China Sea. Chinese Science Bulletin, 55( 29): 2852- 2862 (in Chinese).

[89]

Liu,Z.F.,Trentesaux,A.S.C.C.,Wang,P.X.,2003.Quaternary Clay Mineral Records at ODP1146 Station on the Northern Slope of the South China Sea:Ocean Current Transport and East Asian Monsoon Evolution. Science in China ( Series D), 33( 3): 271- 280 (in Chinese).

[90]

Liu,Z.F.,Zhao,Y.L.,Wang,Y.J.,et al.,2017.Clay Mineralogical Proxy of the East Asian Monsoon Evolution during the Quaternary in the South China Sea. Quaternary Sciences, 37( 5): 921- 933 (in Chinese with English abstract).

[91]

Magee,C.,Jackson,C.A.L.,Schofield,N.,2013.The Influence of Normal Fault Geometry on Igneous Sill Emplacement and Morphology. Geology, 41( 4): 407- 410.https://doi.org/10.1130/g33824.1

[92]

Malkowski,M.,Johnstone,S.,Sharman,G.,et al.,2022.Continental Shelves as Detrital Mixers:U-Pb and Lu-Hf Detrital Zircon Provenance of the Pleistocene-Holocene Bering Sea and Its Margins. The Depositional Record, 8: 1008- 1030.https://doi.org/10.1002/dep2.203

[93]

Michael,N.2013.Functioning of an Ancient Routing System,the Escanilla Formation,South Central Pyrenee.Imperial College London,London,UK.

[94]

Nyberg,B.,Gawthorpe,R.L.,Helland-Hansen,W.,2018b.The Distribution of Rivers to Terrestrial Sinks:Implications for Sediment Routing Systems. Geomorphology, 316: 1- 23.https://doi.org/10.1016/j.geomorph.2018.05.007

[95]

Nyberg,B.,Helland-Hansen,W.,Gawthorpe,R.L.,et al.,2018a.Revisiting Morphological Relationships of Modern Source-to-Sink Segments as a First-Order Approach to Scale Ancient Sedimentary Systems. Sedimentary Geology, 373: 111- 133.https://doi.org/10.1016/j.sedgeo.2018.06.007

[96]

Olsen,P.E.,1986.A 40-Million-Year Lake Record of Early Mesozoic Orbital Climatic Forcing. Science, 234( 4778): 842- 848.https://doi.org/10.1126/science.234.4778.842

[97]

Pang,X.,Peng,D.J.,Chen,C.M.,et al.,2007.Three Hierarchies “Source-Conduit-Sink” Coupling Analysis of the Pearl River Deep-Water Fan System. Acta Geologica Sinica, 81( 6): 857- 864 (in Chinese with English abstract).

[98]

Pawlik,Ł.,Phillips,J.D.,Šamonil,P.,2016.Roots,Rock,and Regolith:Biomechanical and Biochemical Weathering by Trees and Its Impact on Hillslopes:A Critical Literature Review. Earth-Science Reviews, 159: 142- 159.https://doi.org/10.1016/j.earscirev.2016.06.002

[99]

Pechlivanidou,S.,Cowie,P.A.,Hannisdal,B.,et al.,2018.Source-to-Sink Analysis in an Active Extensional Setting:Holocene Erosion and Deposition in the Sperchios Rift,Central Greece. Basin Research, 30( 3): 522- 543.https://doi.org/10.1111/bre.12263

[100]

Peng,G.R.,Wang,X.C.,Chen,W.T.,et al.,2023.Source-to-Sink System during Rifting-Depression Transition Period and Its Exploration Significance:A Case Study of the Upper Enping Formation at Southeastern Margin of Huizhou 26 Sub-Sag,Pearl River Mouth Basin. Oil & Gas Geology, 44( 3): 613- 625 (in Chinese with English abstract).

[101]

Pérez,F.L.,2023.Geoecology of a Granite Dome:Spatial Interactions between Gnammas,Rills,Soils,and Plant Cover,Enchanted Rock (Texas,USA). Catena, 223:106938.https://doi.org/10.1016/j.catena.2023.106938

[102]

Phillips,J.D.,Turkington,A.V.,Marion,D.A.,2008.Weathering and Vegetation Effects in Early Stages of Soil Formation. Catena, 72( 1): 21- 28.https://doi.org/10.1016/j.catena.2007.03.020

[103]

Planke,S.,Millett,J.M.,Maharjan,D.,et al.,2017.Igneous Seismic Geomorphology of Buried Lava Fields and Coastal Escarpments on the Vøring Volcanic Rifted Margin. Interpretation, 5( 3): SK161- SK177.https://doi.org/10.1190/int-2016-0164.1

[104]

Quick,L.,Sinclair,H.D.,Attal,M.,et al.,2020.Conglomerate Recycling in the Himalayan Foreland Basin:Implications for Grain Size and Provenance. GSA Bulletin,132(7-8):1639-1656.https://doi.org/10.1130/b35334.1

[105]

Reiners,P.W.,Campbell,I.H.,Nicolescu,S.,et al.,2005.(U-Th)/(He-Pb) Double Dating of Detrital Zircons. American Journal of Science, 305( 4): 259- 311.https://doi.org/10.2475/ajs.305.4.259

[106]

Ren,J.Y.,Lu,Y.C.,Zhang,Q.L.,2004.Forming Mechanism of Structural Slope-Break and Its Control on Sequence Style in Faulted Basin. Earth Science, 29( 5): 596- 602 (in Chinese with English abstract).

[107]

Roda-Boluda,D.C.,Whittaker,A.C.,2018.Normal Fault Evolution and Coupled Landscape Response:Examples from the Southern Apennines,Italy. Basin Research,30(Suppl.1):186-209.https://doi.org/10.1111/bre.12215.

[108]

Romans,B.W.,Castelltort,S.,Covault,J. A.,et al.,2016.Environmental Signal Propagation in Sedimentary Systems across Timescales. Earth- Science Reviews, 153: 7- 29. https://doi.org/10.1016/j.earscirev.2015.07.012

[109]

Romans,B.W.,Graham,S.A.,2013.A Deep-Time Perspective of Land-Ocean Linkages in the Sedimentary Record. Annual Review of Marine Science, 5: 69- 94.https://doi.org/10.1146/annurev-marine-121211-172426

[110]

Rowley,D.B.,Garzione,C.N.,2007.Stable Isotope-Based Paleoaltimetry. Annual Review of Earth and Planetary Sciences, 35: 463- 508.https://doi.org/10.1146/annurev.earth.35.031306.140155

[111]

Ryan,D.A.,Bostock,H.C.,Brooke,B.P.,et al.,2007.Bathymetric Expression of the Fitzroy River Palaeochannel,Northeast Australia:Response of a Major River to Sea-Level Change on a Semi-Rimmed,Mixed Siliciclastic-Carbonate Shelf. Sedimentary Geology,201(1-2):196-211.https://doi.org/10.1016/j.sedgeo.2007.05.018

[112]

Sadler,P.M.,1981.Sediment Accumulation Rates and the Completeness of Stratigraphic Sections. The Journal of Geology, 89( 5): 569- 584.https://doi.org/10.1086/628623

[113]

Salles,T.,Husson,L.,Rey,P.,et al.,2023.Hundred Million Years of Landscape Dynamics from Catchment to Global Scale. Science, 379( 6635): 918- 923.https://doi.org/10.1126/science.add2541

[114]

Santos,A.,Da Silva,R.,Neto,E.,et al.,2021.Weathering and Pedogenesis of Mafic Rock in the Brazilian Atlantic Forest. Journal of South American Earth Sciences, 111:103452.https://doi.org/10.1016/j.jsames.2021.103452

[115]

Saylor,J.E.,Stockli,D.F.,Horton,B.K.,et al.,2012.Discriminating Rapid Exhumation from Syndepositional Volcanism Using Detrital Zircon Double Dating:Implications for the Tectonic History of the Eastern Cordillera,Colombia. Geological Society of America Bulletin,124(5-6):762-779.https://doi.org/10.1130/b30534.1

[116]

Scholz,C.A.,Johnson,T.C.,Cohen,A.S.,et al.,2007.East African Megadroughts between 135 and 75 Thousand Years ago and Bearing on Early-Modern Human Origins. Proceedings of the National Academy of Sciences of the United States of America, 104( 42): 16416- 16421.https://doi.org/10.1073/pnas.0703874104

[117]

Schumer,R.,Jerolmack,D.J.,2009.Real and Apparent Changes in Sediment Deposition Rates through Time. Journal of Geophysical Research: Earth Surface,114(F3).https://doi.org/10.1029/2009jf001266.

[118]

Sennikov,N.V.,Obut,O.T.,Bukolova,E.V.,et al.,2011.The Depths of the Early Paleozoic Sedimentary Basins of the Paleoasian Ocean:Lithofacies and Bioindicator Estimates. Russian Geology and Geophysics, 52( 10): 1171- 1194.https://doi.org/10.1016/j.rgg.2011.09.010

[119]

Shaanan,U.,Rosenbaum,G.,2018.Detrital Zircons as Palaeodrainage Indicators:Insights into Southeastern Gondwana from Permian Basins in Eastern Australia. Basin Research,30(Suppl.1):36-47.https://doi.org/10.1111/bre.12204

[120]

Shao,L.,Cao,L.C.,Qiao,P.J.,et al.,2017.Cretaceous-Eocene Provenance Connections between the Palawan Continental Terrane and the Northern South China Sea Margin. Earth and Planetary Science Letters, 477: 97- 107.https://doi.org/10.1016/j.epsl.2017.08.019

[121]

Shao,L.Y.,Wang,X.T.,Li,Y.N.,et al.,2019.Review on Palaeogeographic Reconstruction of Deep-Time Source-to-Sink Systems. Journal of Palaeogeography, 21( 1): 67- 81 (in Chinese with English abstract).

[122]

Sharman,G.R.,Hubbard,S.M.,Covault,J.A.,et al.,2018.Sediment Routing Evolution in the North Alpine Foreland Basin,Austria:Interplay of Transverse and Longitudinal Sediment Dispersal. Basin Research, 30( 3): 426- 447.

[123]

Sharman,G.R.,Johnstone,S.A.,2017.Sediment Unmixing Using Detrital Geochronology. Earth and Planetary Science Letters, 477: 183- 194.https://doi.org/10.1016/j.epsl.2017.07.044

[124]

Sklar,L.S.,Riebe,C.S.,Marshall,J.A.,et al.,2017.The Problem of Predicting the Size Distribution of Sediment Supplied by Hillslopes to Rivers. Geomorphology, 277: 31- 49.https://doi.org/10.1016/j.geomorph.2016.05.005

[125]

Slingerland,R.,Driscoll,N.W.,Milliman,J.D.,et al.,2008.Anatomy and Growth of a Holocene Clinothem in the Gulf of Papua. Journal of Geophysical Research: Earth Surface,113(F1).https://doi.org/10.1029/2006jf000628

[126]

Sømme,T.O.,Helland-Hansen,W.,Martinsen,O.J.,et al.,2009.Relationships between Morphological and Sedimentological Parameters in Source-to-Sink Systems:A Basis for Predicting Semi-Quantitative Characteristics in Subsurface Systems. Basin Research, 21( 4): 361- 387.https://doi.org/10.1111/j.1365-2117.2009.00397.x

[127]

Sømme,T.O.,Martinsen,O.J.,Lunt,I.,2013.Linking Offshore Stratigraphy to Onshore Paleotopography:The Late Jurassic-Paleocene Evolution of the South Norwegian Margin. Geological Society of America Bulletin,125(7-8):1164-1186.https://doi.org/10.1130/b30747.1

[128]

Soreghan,G.S.,Bralower,T.J.,Chandler,M.A.,et al.2005.Geosystems;Probing Earth's Deep-Time Climate and Linked Systems.University of Oklahoma Printing Service,Oklahoma,U.S.A..

[129]

Sun,S.,Wang,C.S.,2009.Deep Time and Sedimentology. Acta Sedimentologica Sinica, 27( 5): 792- 810 (in Chinese with English abstract).

[130]

Sundell,K.E.,Saylor,J.E.,2017.Unmixing Detrital Geochronology Age Distributions. Geochemistry, Geophysics, Geosystems, 18( 8): 2872- 2886.https://doi.org/10.1002/2016gc006774

[131]

Syvitski,J.P.M.,Milliman,J.D.,2007.Geology,Geography,and Humans Battle for Dominance over the Delivery of Fluvial Sediment to the Coastal Ocean. The Journal of Geology, 115( 1): 1- 19.https://doi.org/10.1086/509246

[132]

Syvitski,J.P.M.,Paola,R.,Slingerland,R.,et al.2004.Building a Community Surface Dynamics Modeling System Rationale and Strategy.A Report to the National Science Foundation.State College.Penn State University,Pennsylvania,U.S.A..

[133]

Tamura,T.,2012.Beach Ridges and Prograded Beach Deposits as Palaeoenvironment Records. Earth-Science Reviews,114(3-4):279-297.https://doi.org/10.1016/j.earscirev.2012.06.004

[134]

Tan,M.,Zhu,X.,Wei,W.,et al.,2018.The Sequence Stratigraphy and Depositional Characteristics of Fan-Delta Complexes in the Upper Bayingebi Member (Lower Cretaceous) in Chagan Sag,Inner Mongolia,China. Geological Journal, 53( 1): 349- 370.

[135]

Tan,M.X.,Scholz,C.A.,2021.Source-to-Sink Response to High-Amplitude Lake Level Rise Driven by Orbital-Scale Climate Change:An Example from the Pleistocene Lake Malawi (Nyasa) Rift,East Africa. Sedimentology, 68( 7): 3494- 3522.https://doi.org/10.1111/sed.12909

[136]

Tan,M.X.,Zhu,X.M.,Zhang,Z.L.,et al.,2020.Summary of Sedimentological Issues and Fundamental Approaches in Terms of Ancient “Source-to-Sink” Systems. Oil & Gas Geology, 41( 5): 1107- 1118 (in Chinese with English abstract).

[137]

Taylor,L.L.,Banwart,S.A.,Valdes,P.J.,et al.,2012.Evaluating the Effects of Terrestrial Ecosystems,Climate and Carbon Dioxide on Weathering over Geological Time:A Global-Scale Process-Based Approach. Philosophical Transactions of the Royal Society B: Biological Sciences, 367( 1588): 565- 582.https://doi.org/10.1098/rstb.2011.0251

[138]

Thomas,A.L.,Fujita,K.,Iryu,Y.,et al.,2012.Assessing Subsidence Rates and Paleo Water-Depths for Tahiti Reefs Using U-Th Chronology of Altered Corals. Marine Geology,295/296/297/298:86-94.https://doi.org/10.1016/j.margeo.2011.12.006

[139]

Tian,L.X.,2021.Sedimentary-Reservoir Characteristics under Control of Transfer Model and Implications for Hydrocarbon Exploration in Huizhou Depression,Pearl River Mouth Basin. Earth Science, 46( 11): 4043- 4056 (in Chinese with English abstract).

[140]

Walsh,J.P.,Wiberg,P.L.,Aalto,R.,et al.,2016.Source-to-Sink Research:Economy of the Earth’s Surface and Its Strata. Earth-Science Reviews, 153: 1- 6.https://doi.org/10.1016/j.earscirev.2015.11.010

[141]

Wang,J.D.,Yu,J.G.,Sun,M.J.,1998.Depositional Mode and Seismic Recognition of Sandstone and Conglomerate Fan Bodies in the Abrupt Slope Zone of Terrestrial Facies Lake Basin. Geophysical Prospecting for Petroleum, 37( 3): 40- 47 (in Chinese with English abstract).

[142]

Wang,P.J.,Zhang,G.C.,Meng,Q.A.,et al.,2011.Applications of Seismic Volcanostratigraphy to the Volcanic Rifted Basins of China. Chinese Journal of Geophysics, 54( 2): 597- 610 (in Chinese with English abstract).

[143]

Wang,X.H.,Wang,Y.K.,Danzengpingcuo,et al.,2022.Sediment Flux Simulation Paleogeomorphological Implications in the Terrestrial Source-to-Sink System:A Case Study in Nima Area,Central Tibet. Acta Sedimentologica Sinica, 40( 4): 912- 923 (in Chinese with English abstract).

[144]

Wang,X.S.,Zhang,J.,Qin,Z.,2013.Methods for Measuring Erosion Rate of Rock:An Overview. Advances in Earth Science, 28( 4): 447- 454 (in Chinese with English abstract).

[145]

Wang,X.T.,Shao,L.Y.,Eriksson,K.,et al.,2022.Using BQART Model to Reconstruct Paleo-Relief in Deep Time Based on Quantitative Paleogeography:A Case Study from the Late Permian Central Emeishan Large Igneous Province. Acta Sedimentologica Sinica, 40( 6): 1461- 1480,1449 (in Chinese with English abstract).

[146]

Watkins,S.E.,Whittaker,A.C.,Bell,R.E.,et al.,2019.Are Landscapes Buffered to High-Frequency Climate Change? A Comparison of Sediment Fluxes and Depositional Volumes in the Corinth Rift,Central Greece,over the Past 130 k.y.. GSA Bulletin,131(3-4):372-388.https://doi.org/10.1130/b31953.1

[147]

Weltje,G.J.,2012.Quantitative Models of Sediment Generation and Provenance:State of the Art and Future Developments. Sedimentary Geology, 280: 4- 20.https://doi.org/10.1016/j.sedgeo.2012.03.010

[148]

Whipple,K.X.,Tucker,G.E.,1999.Dynamics of the Stream-Power River Incision Model:Implications for Height Limits of Mountain Ranges,Landscape Response Timescales,and Research Needs. Journal of Geophysical Research: Solid Earth,104(B8):17661-17674.https://doi.org/10.1029/1999jb900120

[149]

Whittaker,A.C.,2012.How do Landscapes Record Tectonics and Climate? Lithosphere, 4( 2): 160- 164.https://doi.org/10.1130/rf.l003.1

[150]

Whittaker,A.C.,Attal,M.,Allen,P.A.,2010.Characterising the Origin,Nature and Fate of Sediment Exported from Catchments Perturbed by Active Tectonics. Basin Research, 22( 6): 809- 828.https://doi.org/10.1111/j.1365-2117.2009.00447.x

[151]

Whittaker,A.C.,Walker,A.S.,2015.Geomorphic Constraints on Fault Throw Rates and Linkage Times:Examples from the Northern Gulf of Evia,Greece. Journal of Geophysical Research: Earth Surface, 120( 1): 137- 158.https://doi.org/10.1002/2014jf003318

[152]

Wolf,L.,Huismans,R.S.,Rouby,D.,et al.,2022.Links between Faulting,Topography,and Sediment Production during Continental Rifting:Insights from Coupled Surface Process,Thermomechanical Modeling. Journal of Geophysical Research: Solid Earth,127(3).https://doi.org/10.1029/2021jb023490

[153]

Wrona,T.,Whittaker,A.C.,Bell,R.E.,et al.,2022.Rift Kinematics Preserved in Deep-Time Erosional Landscape below the Northern North Sea. Basin Research, 35( 2): 744- 761.https://doi.org/10.1111/bre.12732

[154]

Wu,H.,Ji,Y.L.,Wu,C.L.,et al.,2019.Stratigraphic Response to Spatiotemporally Varying Tectonic Forcing in Rifted Continental Basin:Insight from a Coupled Tectonic-Stratigraphic Numerical Model. Basin Research, 31( 2): 311- 336.https://doi.org/10.1111/bre.12322

[155]

Xu,C.G.,2013.Controlling Sand Principle of Source-Sink Coupling in Time and Space in Continental Rift Basins:Basic Idea,Conceptual Systems and Controlling Sand Models. China Offshore Oil and Gas, 25( 4): 1- 11,21,88 (in Chinese with English abstract).

[156]

Xu,C.G.,Du,X.F.,Zhu,H.T.,2020.Principle and Application of Sand Control in Source-Sink System of Continental Rift Basin.Science Press,Beijing (in Chinese).

[157]

Xu,C.G.,Gong,C.L.,2023.Predictive Stratigraphy:From Sequence Stratigraphy to Source-to-Sink System. Oil & Gas Geology, 44( 3): 521- 538 (in Chinese with English abstract).

[158]

Xu,J.,Jiang,Z.X.,2019.Provenance Analysis of Clastic Rocks:Current Research Status and Prospect. Journal of Palaeogeography, 21( 3): 379- 396 (in Chinese with English abstract).

[159]

Xu,J.,Stockli,D.F.,Snedden,J.W.,2017.Enhanced Provenance Interpretation Using Combined U-Pb and (U-Th)/He Double Dating of Detrital Zircon Grains from Lower Miocene Strata,Proximal Gulf of Mexico Basin,North America. Earth and Planetary Science Letters, 475: 44- 57.https://doi.org/10.1016/j.epsl.2017.07.024

[160]

Xu,M.M.,Wei,X.C.,Yang,R.,et al.,2021.Research Progress of Provenance Tracing Method for Heavy Mineral Analysis. Advances in Earth Science, 36( 2): 154- 171 (in Chinese with English abstract).

[161]

Yan,B.,Jia,D.,Lai,W.,et al.,2023.Sandbox Modeling on Development of Source-to-Sink System along Strike-Slip Fault. Acta Geologica Sinica, 97( 9): 3043- 3055 (in Chinese with English abstract).

[162]

Yan,B.,Jia,D.,Wang,M.M.,2023.Drainage Development on the Northern Tibetan Plateau Controlled by the Altyn Tagh Fault:Insights from Analogue Modelling. Earth Surface Processes and Landforms, 48( 10): 2005- 2022.https://doi.org/10.1002/esp.5600

[163]

Yang,J.H.,Ma,Y.,2017.Paleoclimate Perspectives of Source-to-Sink Sedimentary Processes. Earth Science, 42( 11): 1910- 1921 (in Chinese with English abstract).

[164]

Yang,R.,2017.A Brief Review of Several Models of Topographic Evolution. Seismology and Geology, 39( 6): 1173- 1184 (in Chinese with English abstract).

[165]

Yao,G.Q.,Jiang,P.,2021.Method and Application of Reservoir “Source-Route-Sink-Rock” System Analysis. Earth Science, 46( 8): 2934- 2943 (in Chinese with English abstract).

[166]

Yao,W.T.,Guan,Y.N.,Guo,S.,et al.,2017.Spatial Distribution of Land Surface Vegetation-Energy Relationship in Sanya Tropical Rain Forest Regions. Journal of Geo-Information Science, 19( 7): 950- 961 (in Chinese with English abstract).

[167]

Zhang,J.Y.,Covault,J.,Pyrcz,M.,et al.,2018.Quantifying Sediment Supply to Continental Margins:Application to the Paleogene Wilcox Group,Gulf of Mexico. AAPG Bulletin, 102( 9): 1685- 1702.https://doi.org/10.1306/01081817308

[168]

Zhang,J.Y.,Olariu,C.,Steel,R.,et al.,2020.Climatically Controlled Lacustrine Clinoforms:Theory and Modelling Results. Basin Research, 32( 2): 240- 250.https://doi.org/10.1111/bre.12383

[169]

Zhang,P.,Najman,Y.,Mei,L.F.,et al.,2019.Palaeodrainage Evolution of the Large Rivers of East Asia,and Himalayan-Tibet Tectonics. Earth-Science Reviews, 192: 601- 630.https://doi.org/10.1016/j.earscirev.2019.02.003

[170]

Zheng,H.B.,Wei,X.C.,Wang,P.,et al.,2017.Geological Evolution of the Yangtze River. Science in China ( Series D), 47( 4): 385- 393 (in Chinese).

[171]

Zhou,Z.Q.,Zhu,H.T.,Liu,Q.H.,et al.,2022.Coupled Response of Concordant-Discordant Input Systems and Depositional Interactions within Beibuwan Basin,South China Sea:A Case Study from C Sag,Weixinan Depression. Earth Science, 47( 7): 2521- 2535 (in Chinese with English abstract).

[172]

Zhu,H.T.,Yang,X.H.,Liu,K.Y.,et al.,2014.Seismic-Based Sediment Provenance Analysis in Continental Lacustrine Rift Basins:An Example from the Bohai Bay Basin,China. AAPG Bulletin, 98( 10): 1995- 2018.https://doi.org/10.1306/05081412159

[173]

Zhu,H.T.,Yang,X.H.,Zhou,X.H.,et al.,2013.Sediment Transport Pathway Characteristics of Continental Lacustrine Basins Based on 3-D Seismic Data:An Example from Dongying Formation of Western Slope of Bozhong Sag. Earth Science, 38( 1): 121- 129 (in Chinese with English abstract).

[174]

Zhu,X.M.,Chen,H.H.,Ge,J.W.,et al.,2022.Characterization of Sequence Architectures and Sandbody Distribution in Continental Rift Basins. Oil & Gas Geology, 43( 4): 746- 762 (in Chinese with English abstract).

[175]

Zhu,X.M.,Kang,A.,Han,D.X.,et al.,2003.Relation among Quaternary Environmental Evolution,Tectonic Deformation in the Qaidam Basin and Uplifting of the Qinghai-Tibet Plateau. Chinese Journal of Geology, 38( 3): 367- 376 (in Chinese with English abstract).

[176]

Zhu,X.M.,Li,S.L.,Liu,Q.H.,et al.,2017.Source to Sink Studies between the Shaleitian Uplift and Surrounding Sags:Perspectives on the Importance of Hinterland Relief and Catchment Area for Sediment Budget,Western Bohai Bay Basin,China. Interpretation, 5( 4): ST65- ST84.https://doi.org/10.1190/int-2017-0027.1

[177]

Zhu,X.M.,Liu,Y.,Fang,Q.,et al.,2012.Formation and Sedimentary Model of Shallow Delta in Large-Scale Lake.Example from Cretaceous Quantou Formation in Sanzhao Sag,Songliao Basin. Earth Science Frontiers, 19( 1): 89- 99 (in Chinese with English abstract).

[178]

Zhu,Y.H.,Zhu,W.L.,Xu,Q.,et al.,2011.Sedimentary Response to Shelf-Edge Delta and Slope Deep-Water Fan in 13.8 Ma of Miocene Epoch in Pearl River Mouth Basin. Journal of Central South University ( Science and Technology), 42( 12): 3827- 3834 (in Chinese with English abstract).

[179]

Zhu,Y.J.,Xia,R.,Zheng,Y.K.,et al.,2020.Architectures and Evolution of Arid Alluvial Fans:Insights from a Flume Experiment. Journal of Palaeogeography, 22( 6): 1081- 1094 (in Chinese with English abstract).

[180]

陈贺贺,朱筱敏,黄捍东,等,2017.基于碎屑锆石定年的饶阳凹陷蠡县斜坡沙河街组物源分析.地球科学, 42( 11): 1955- 1971.

[181]

杜家元,张向涛,刘培,等,2021.珠江口盆地珠一坳陷古近系 “源-汇” 系统分类及石油地质意义.地球科学, 46( 10): 3690- 3706.

[182]

符超峰,方小敏,宋友桂,等,2005.盆山沉积耦合原理在定量恢复造山带隆升剥蚀过程中的应用.海洋地质与第四纪地质, 25( 1): 105- 112.

[183]

高阳东,彭光荣,张向涛,等,2023.珠江口盆地白云凹陷古近系文昌组源-汇系统特征及演化.石油与天然气地质, 44( 3): 584- 599.

[184]

龚承林,齐昆,徐杰,等,2021.深水源—汇系统对多尺度气候变化的过程响应与反馈机制.沉积学报, 39( 1): 231- 252.

[185]

胡小飞,潘保田,李琼,2014.基岩河道水力侵蚀模型原理及其最新研究进展.兰州大学学报(自然科学版), 50( 6): 824- 831.

[186]

胡修棉,薛伟伟,赖文,等,2021.造山带沉积盆地与大陆动力学.地质学报, 95( 1): 139- 158.

[187]

李家彪,高抒,2004.中国边缘海海盆演化与资源效应.北京:海洋出版社.

[188]

李元昊,宋方新,韩鹏,等,2019.构造稳定时期河控三角洲三元控砂模式.古地理学报, 21( 3): 397- 406.

[189]

李志强,杨波,韩自军,等,2022.南黄海中-新生代裂谷盆地构造-热演化:对成盆机制和烃源岩热演化的指示.地球科学, 47( 5): 1652- 1668.

[190]

林畅松,施和生,李浩,等,2018.南海北部珠江口盆地陆架边缘斜坡带层序结构和沉积演化及控制作用.地球科学, 43( 10): 3407- 3422.

[191]

林畅松,夏庆龙,施和生,等,2015.地貌演化、源-汇过程与盆地分析.地学前缘, 22( 1): 9- 20.

[192]

刘军,彭光荣,郑金云,等,2023.珠江口盆地白云凹陷西区始新世张裂-拆离作用下沉积转换及源-汇响应.石油与天然气地质, 44( 3): 600- 612.

[193]

刘强虎,2016.渤海湾盆地沙垒田凸起古近系“源-渠-汇”系统耦合研究(博士学位论文).北京:中国石油大学.

[194]

刘强虎,朱筱敏,李顺利,等,2016.沙垒田凸起前古近系基岩分布及源-汇过程.地球科学, 41( 11): 1935- 1949.

[195]

刘志飞,Colin,C.,黄维,等,2007a.珠江流域盆地表层沉积物的黏土矿物及其对南海沉积物的贡献.科学通报,52(4):448-456.

[196]

刘志飞,赵玉龙,李建如,等,2007b.南海西部越南岸外晚第四纪黏土矿物记录:物源分析与东亚季风演化.中国科学(D辑),37(9):1176-1184.

[197]

刘志飞,李夏晶,Colin,C.,等,2010.南海北部末次冰盛期以来高分辨率黏土矿物记录及其时间序列物源区分析.科学通报, 55( 29): 2852- 2862.

[198]

刘志飞,Trentesaux,A.S.C.C.,汪品先,2003.南海北坡ODP1146站第四纪粘土矿物记录:洋流搬运与东亚季风演化.中国科学(D辑), 33( 3): 271- 280.

[199]

刘志飞,赵玉龙,王轶婕,等,2017.南海第四纪东亚季风演化的粘土矿物指标.第四纪研究, 37( 5): 921- 933.

[200]

庞雄,彭大钧,陈长民,等,2007.三级“源-渠-汇”耦合研究珠江深水扇系统.地质学报, 81( 6): 857- 864.

[201]

彭光荣,王绪诚,陈维涛,等,2023.珠江口盆地惠州26洼东南缘古近系恩平组上段断-拗转换期源-汇系统及勘探意义.石油与天然气地质, 44( 3): 613- 625.

[202]

任建业,陆永潮,张青林,2004.断陷盆地构造坡折带形成机制及其对层序发育样式的控制.地球科学, 29( 5): 596- 602.

[203]

邵龙义,王学天,李雅楠,等,2019.深时源-汇系统古地理重建方法评述.古地理学报, 21( 1): 67- 81.

[204]

孙枢,王成善,2009.“深时”(Deep Time)研究与沉积学.沉积学报, 27( 5): 792- 810.

[205]

谈明轩,朱筱敏,张自力,等,2020.古“源-汇”系统沉积学问题及基本研究方法简述.石油与天然气地质, 41( 5): 1107- 1118.

[206]

田立新,2021.珠江口盆地惠州凹陷转换体控沉-控储特性及其油气地质意义.地球科学, 46( 11): 4043- 4056.

[207]

王金铎,于建国,孙明江,1998.陆相湖盆陡坡带砂砾岩扇体的沉积模式及地震识别.石油物探, 37( 3): 40- 47.

[208]

王璞珺,张功成,蒙启安,等,2011.地震火山地层学及其在我国火山岩盆地中的应用.地球物理学报, 54( 2): 597- 610.

[209]

王新航,汪银奎,旦增平措,等,2022.陆相流域盆地沉积通量模拟及古地貌意义:以西藏尼玛地区为例.沉积学报, 40( 4): 912- 923.

[210]

王兴山,张捷,秦中,2013.岩石侵蚀速率测算方法研究综述及展望.地球科学进展, 28( 4): 447- 454.

[211]

王学天,邵龙义,Eriksson,K.,等,2022.基于定量古地理的BQART模型深时古地势重建方法:以晚二叠世峨眉山大火成岩省内带为例.沉积学报, 40( 6): 1461- 1480,1449.

[212]

徐长贵,2013.陆相断陷盆地源-汇时空耦合控砂原理:基本思想、概念体系及控砂模式.中国海上油气, 25( 4): 1- 11,21,88.

[213]

徐长贵,杜晓峰,朱红涛,2020.陆相断陷盆地源汇系统控砂原理与应用.北京:科学出版社.

[214]

徐长贵,龚承林,2023.从层序地层走向源-汇系统的储层预测之路.石油与天然气地质, 44( 3): 521- 538.

[215]

徐杰,姜在兴,2019.碎屑岩物源研究进展与展望.古地理学报, 21( 3): 379- 396.

[216]

许苗苗,魏晓椿,杨蓉,等,2021.重矿物分析物源示踪方法研究进展.地球科学进展, 36( 2): 154- 171.

[217]

闫兵,贾东,赖文,等,2023.走滑断层相关源-汇体系演化的砂箱物理模拟实验.地质学报, 97( 9): 3043- 3055.

[218]

杨江海,马严,2017.源-汇沉积过程的深时古气候意义.地球科学, 42( 11): 1910- 1921.

[219]

杨蓉,2017.几种地形演化的数值模拟模型简述.地震地质, 39( 6): 1173- 1184.

[220]

姚光庆,姜平,2021.储层 “源-径-汇-岩” 系统分析的思路方法与应用.地球科学, 46( 8): 2934- 2943.

[221]

姚武韬,关燕宁,郭杉,等,2017.三亚热带雨林环境植被和地表能量空间分布特征.地球信息科学学报, 19( 7): 950- 961.

[222]

郑洪波,魏晓椿,王平,等,2017.长江的前世今生.中国科学:地球科学, 47( 4): 385- 393.

[223]

周子强,朱红涛,刘强虎,等,2022.南海北部湾盆地协调-非协调供源样式与沉积交互作用耦合响应:以涠西南凹陷C洼为例.地球科学, 47( 7): 2521- 2535.

[224]

朱红涛,杨香华,周心怀,等,2013.基于地震资料的陆相湖盆物源通道特征分析:以渤中凹陷西斜坡东营组为例.地球科学, 38( 1): 121- 129.

[225]

朱筱敏,陈贺贺,葛家旺,等,2022.陆相断陷湖盆层序构型与砂体发育分布特征.石油与天然气地质, 43( 4): 746- 762.

[226]

朱筱敏,康安,韩德馨,等,2003.柴达木盆地第四纪环境演变、构造变形与青藏高原隆升的关系.地质科学, 38( 3): 367- 376.

[227]

朱筱敏,刘媛,方庆,等,2012.大型坳陷湖盆浅水三角洲形成条件和沉积模式:以松辽盆地三肇凹陷扶余油层为例.地学前缘, 19( 1): 89- 99.

[228]

朱一杰,夏瑞,郑云柯,等,2020.干旱条件下冲积扇的沉积构型和演化过程:基于水槽模拟实验.古地理学报, 22( 6): 1081- 1094.

[229]

祝彦贺,朱伟林,徐强,等,2011.珠江口盆地13.8Ma陆架边缘三角洲与陆坡深水扇的“源-汇”关系.中南大学学报(自然科学版), 42( 12): 3827- 3834.

基金资助

国家自然科学基金项目(41902112;42306083;42002117)

AI Summary AI Mindmap
PDF (9343KB)

303

访问

0

被引

详细

导航
相关文章

AI思维导图

/