实时高温作用下砂岩的热损伤与能量特征

廖安杰 ,  张岩 ,  王飞 ,  马煜

地球科学 ›› 2025, Vol. 50 ›› Issue (01) : 286 -298.

PDF (2843KB)
地球科学 ›› 2025, Vol. 50 ›› Issue (01) : 286 -298. DOI: 10.3799/dqkx.2023.206

实时高温作用下砂岩的热损伤与能量特征

作者信息 +

Thermal Damage and Energy Characteristics of Sandstone under Real⁃Time High Temperatures

Author information +
文章历史 +
PDF (2910K)

摘要

岩石实时高温下的损伤破坏及能量演化特征是深部地质工程的热点与难点问题.利用MTS815型程控伺服刚性试验机和PCI-Ⅱ声发射仪对砂岩开展实时高温作用下的三轴压缩试验,基于试验结果并引入能耗演化规律,分析探讨高温作用下砂岩的力学特性与能量特征.结果表明:(1)温度120~150 ℃之间存在温度阈值,导致砂岩内部出现热损伤,其峰值强度大幅度降低,宏观破裂形式由剪切破坏过渡到张拉破坏;(2)温度25~120 ℃之间,砂岩累计AE能量、储存和释放能量随着温度升高而增大,而温度150 ℃时,砂岩内部开始产生热损伤,声发射累计AE能量、储能能力和能量释放能力大幅度减弱;(3)随着温度的升高,砂岩脆性指标BE不断减小,温度120~150 ℃之间,砂岩BE值从0.5大幅度减小到0.26,表现出明显的塑性破坏特征.系统地分析了温度作用对砂岩的力学性质、破坏模式、声发射活动、应变能演化过程及脆性状态的影响规律,发现存在明显的温度阈值使砂岩的各类行为在阈值前后产生较为明显的转变.

Abstract

The damage and energy evolution characteristics of rocks under real-time high temperature are hot and difficult issues in deep geological engineering. MTS815 program-controlled servo rigid testing machine and PCI-II acoustic emission instrument were used for triaxial compression tests of sandstone under real-time high temperatures in this study, and the mechanical and energy characteristics of sandstone under high temperature were analyzed and discussed based on the test results and introducing the law of energy consumption evolution. The results show that: (1) There is a temperature threshold between 120 ℃ and 150 ℃,which leads to thermal damage inside sandstone, and its peak strength is greatly reduced, and the macroscopic failure form is transformed from shear failure to tensile failure. (2) When the temperature is between 20 ℃ and 120 ℃, the accumulated AE energy, stored energy and released energy of sandstone increase with the increase of temperature; and when the temperature is 150 ℃, thermal damage occurs inside sandstone. Ac cumulative AE energy, energy storage capacity and energy release capacity were significantly reduced. (3) The brittleness index of rock BE decreases with the increase of temperature. At the temperature of 120-150 ℃, the sandstone BE value decreases greatly from about 0.5 to 0.26, showing obvious plastic characteristics. The influence of temperature on the mechanical properties, failure mode, acoustic emission activity, strain energy evolution process and brittle state of sandstone is systematically analyzed. It is found that there is an obvious temperature threshold, which changes all kinds of behaviors of sandstone obviously before and after the threshold.

Graphical abstract

关键词

实时高温 / 热损伤 / 声发射 / 应变能 / 脆性 / 地质工程.

Key words

real⁃time high temperature / thermal damage / acoustic emission / strain energy / brittleness / geological engineering

引用本文

引用格式 ▾
廖安杰,张岩,王飞,马煜. 实时高温作用下砂岩的热损伤与能量特征[J]. 地球科学, 2025, 50(01): 286-298 DOI:10.3799/dqkx.2023.206

登录浏览全文

4963

注册一个新账户 忘记密码

0 引言

岩土体所处的复杂地质环境使得其在不同因素耦合下的力学行为与工程地质特性各不相同,从而对工程的稳定性与安全产生重要影响(Hajiabdolmajid and Kaiser, 2003;唐辉明等, 2007;邓华锋等, 2014;王新刚等, 2016;Zhang et al., 2018;汤明高等, 2022;刘新锋等, 2022;李长冬等, 2023).中国西南部地区,长大隧道多,埋深大,岩体常处于一定的高温环境中,如:新疆的布仑口‒公格尔水电站引水隧洞总长17.4 km,掌子面最高环境温度67 ℃、钻孔内最高温度达82 ℃;雅鲁藏布江上的墨脱水电站修建的40 km引水隧道,围岩地温将达到90 ℃以上;大理‒瑞丽铁路高黎贡山隧道,围岩最高温度达106 ℃.高温隧道不仅会对施工人员造成影响和危害,同时也会对岩体内部产生热应力,使岩石物理力学性质发生较大变化,影响围岩的稳定性,甚至还会促进片帮、岩爆等灾害的发生,对隧道及地下工程的设计、施工安全造成巨大的挑战(Zunino et al.,2015Gautam et al., 2016Bai et al., 2017Kumari et al., 2017;李波波等, 2017;Zhang et al., 2019Qin et al., 2020;蒙伟等,2022).

因此,不少学者对此进行了大量研究,取得了丰硕成果,张连英等(2007)、左建平等(2008)、苏承东等(2008)、尹光志等(2009)、Yang et al.(2017)在高温作用后对砂岩开展单轴压缩试验,分析砂岩的力学性质随温度的变化关系;万志军等(2008)开展高温三轴压缩试验,分析花岗岩的变形破坏与力学性质随温度的变化规律;孟陆波等(2012)在实时高温作用下对页岩进行三轴压缩试验,分析页岩变形破坏与温度的关系;吴刚等(2012)、李庆森等(2014)对高温作用后的砂岩开展声发射试验,分析温度作用下砂岩的力学性质和声发射特性;张航等(2014)在常温~130 ℃范围内对花岗岩进行声发射测试,分析花岗岩破坏过程中能量参数随温度的变化规律;陈海清和孟陆波(2019)在常温~800 ℃作用后对灰岩进行声发射试验,分析了灰岩的力学特性及声发射特征的高温后效应.可见,温度对岩石力学与工程特性的影响是十分重要的,也是目前研究的热点和难点.

上述试验和研究工作都表明,温度变化对岩石的力学性质及能量特征有重要影响,但在实时高温作用下,基于能耗演化规律和声发射测试研究岩石的温度效应目前仍然相对较少.因此,本文以砂岩为研究对象,开展高温三轴压缩试验,研究砂岩力学特性在高温作用下的变化规律,并在试验过程中同步进行声发射测试,从声发射特征和能耗演化规律分析不同温度作用下砂岩的能量特征,以期为在高温环境岩体中从事工程活动提供一定的理论依据.

1 试验方法

试样采用砖红色砂岩,主要由石英、斜长石、方解石及伊利石等矿物组成,根据《水利水电工程岩石试验规程》(SL264⁃2001),试件形状为圆柱体,直径约为50 mm,高度约为100 mm,试件完整且没有明显裂纹等缺陷.

力学试验和声发射试验系统是由加载系统、AE监测系统组成,试验设备见图1,加载系统采用美国生产的MTS815型程控伺服刚性试验机,声发射试验系统采用美国声学物理公司研制的PCI⁃Ⅱ声发射仪,采样频率为5 MHz,门槛值为55 dB.

试验温度设置为25 ℃、60 ℃、90 ℃、120 ℃和150 ℃,岩石加温速率为2 ℃/min.为了避免加温后砂岩试样内外产生较大温差,按照试验方案对试样加热到相应温度后再恒温4 h,采用应力控制方式施加至预定围压值后始终保持不变.试验围压设置为30 MPa,再施加轴向应力,加载速率为0.5 kN/min,当轴向力达到1 kN时采用位移控制方式,加载速率为0.1 mm/min,直至试件破坏,声发射检测与力学试验同步进行.

2 试验结果分析

在不同温度作用下,对砂岩进行了三轴压缩试验,其结果见表1.

2.1 应力‒应变曲线

高温三轴压缩下砂岩试样的应力‒应变曲线如图2所示.由图2可知,不同温度下,砂岩试样应力‒应变曲线基本相似,在加荷初期,岩石内部存在的大量微裂隙逐渐闭合;在弹性阶段,应力‒应变曲线为线性关系;进入微裂纹扩展阶段,随着轴向应力的增大,岩石内部强度较低的微元体开始逐渐破坏,形成大量新的裂纹,随后微裂纹迅速扩展演化至贯通,形成宏观破坏面,岩石出现塑性变形;达到峰值应力后,应力‒应变曲线下降,应力瞬间跌落;温度25~120 ℃,砂岩破坏后应力‒应变曲线保持一定的残余强度,而温度150 ℃环境下,岩样的残余强度接近于0.

2.2 变形参数

岩石的弹性模量E和泊松比μ被用来反映岩石的变性特征.不同温度作用下砂岩的弹性模量和泊松比随温度的变化分别如图3图4所示.由图3可知,温度25~120 ℃,砂岩的弹性模量随温度的升高而增大,由25 ℃的30.01 GPa增大到31.14 Pa,增幅达到了3.77%;120~150 ℃范围,砂岩的弹性模量随温度的升高而减小,150 ℃时弹性模量为 28.20 GPa,降幅达到了9.44%,表明砂岩的弹性模量随着温度升高先增大后减小.此外,从图4中可以发现砂岩的泊松比随温度的升高呈现增加的演化趋势.

2.3 峰值强度

不同温度作用下砂岩的峰值强度与温度的关系如图5所示.温度25 ℃、60 ℃、90 ℃、120 ℃、150 ℃时,砂岩的峰值强度分别为 246.41 MPa、248.33 MPa、251.98 MPa、 254.07 MPa、112.29 MPa,峰值强度相较于温度25 ℃时的变化分别为0.78%、2.24%、3.17%、-51.76%.温度25~120 ℃,砂岩的峰值强度随温度的变化不大,略有增长;温度超过120 ℃,砂岩的峰值强度大幅度降低. 综上所述,砂岩的峰值强度随温度的升高,先缓慢增长后急剧减小,峰值强度在温度120 ℃时取得最大、150 ℃时取得最小.

2.4 破坏模式

不同温度作用下砂岩试样破坏形态如图6所示.由图6可知,温度25~120 ℃范围内,砂岩的宏观破裂形式为剪切破坏,剪切面为单一且贯穿整个试样的平整破裂面;而温度150 ℃时,试样外形出现鼓胀现象,岩石破坏加剧,破裂面数量增多,试样中上部位出现张拉破裂面,中下部位出现剪切破坏面,导致试样的宏观破裂形式为张剪破坏.表明随着温度的升高,该砂岩的破坏模式由剪切破坏过渡到张拉破坏.

2.5 声发射特征

声发射试验能直观反映岩石内部损伤以及变形破坏的演化过程(王珍珍等,2022).其中AE能量是声发射的重要参数,能量的大小则反映了声发射事件的强弱.不同温度作用下砂岩应力和AE能量与时间的关系曲线如图7所示.由图7可以看出:(1)在压密阶段,岩样内部的初始微裂隙不同程度地被压密、闭合,声发射活动较少,有少量的能量释放;弹性阶段为能量释放的平静期,声发射活动微弱,释放的能量也较少;当试样进入微裂纹扩展及加速扩展阶段,随着轴向力的增大,岩石内部形成大量新的微裂纹,并迅速速扩展、演化,声发射活动逐渐增强,释放能量,当砂岩达到峰值应力,岩样发生破坏,声发射瞬间释放大量的应变能,声发射AE能量取得最大值;随后声发射活动减弱.(2)温度25~120 ℃,声发射活动中释放的高能量都主要集中在裂纹加速扩展阶段和应力跌落阶段,表明砂岩出现明显的脆性破坏;温度150 ℃时,虽然最大AE能量仍出现在裂纹加速扩展阶段和应力跌落阶段,但是弹性阶段、微裂纹扩展阶段能量的释放较低温也相对增强,声发射事件更为分散,能量释放强度也明显降低,表明砂岩呈现一定的塑性破坏特征.

图8给出了不同温度下砂岩累计AE能量与温度的关系.由图8可以看出:温度25~120 ℃,声发射累计AE能量随温度升高而增大,砂岩储存能量和释放能量的能力增强,砂岩脆性特征明显;而温度150 ℃,声发射累计能量大幅度降低,在高温作用下砂岩内部产生热损伤,砂岩储能能力和能量释放能力减弱,塑性特征增强.

温度对砂岩声发射活动影响较为明显,砂岩累计AE能量随温度的升高,先增大后降低,累计AE能量在温度120 ℃取得最大、150 ℃时取得最小.表明在试验温度范围内,120~150 ℃之间存在温度阈值,导致砂岩的声发射活动和AE能量发生突变.

3 基于能耗演化规律的温度效应

温度条件对岩石的力学性质会造成较大的影响,因此本文引入能量观点,从能耗演化规律进一步分析不同温度条件对砂岩试样的影响.

3.1 能量原理

图9显示了岩石单元总能量U、弹性应变能Ue和耗散能Ud的关系(谢和平等,2005).在荷载作用下岩石单元会产生变形,根据热力学第一定律,假设岩石在试验过程中与外界没有热量交换,力对岩石所做的功被岩石全部吸收,则岩石吸收的总能量U可以根据下式计算:

            U=Ue+Ud

式中:Ue为弹性应变能,Ud为耗散能.

由于本次试验中σ2=σ3,则岩体单元的总能量和弹性应变能可表示为:

            U=σ1dε1+2σ3dε3
            Ue=12E[σ12+2σ32-2μ(2σ1σ3+σ32)]

式中:σ1σ3分别为最大主应力、最小主应力;ε1ε3分别为轴向应变、横向应变;Eμ为岩石的弹性模量和泊松比.

3.2 岩石破坏全过程能耗特征

在外力作用下岩石会发生变形破坏,从能量角度认为,能量耗散主要出现在岩石内部裂纹的产生和扩展阶段,能量释放则是岩石发生破坏的内在原因(李天斌等,2015).图10为砂岩应力‒轴向应变‒应变能的关系曲线.从图10可以看出在压密阶段(OA)和弹性阶段(AB),在荷载作用下砂岩会吸收能量,并以弹性应变能的形式储存在岩石内部,总能量和弹性应变能不断增大,而耗散能较小,总能量曲线和弹性应变能曲线基本重合;进入微裂纹扩展阶段(BC),由于岩石内部强度较低的微元体开始逐渐破坏,形成大量新的裂纹,耗散能开始增加,弹性应变能的增速变缓,导致总能量曲线和弹性应变能曲线开始分叉;到裂纹加速扩展阶段(CD),岩石内部微裂纹迅速扩展至出现宏观裂纹贯通,总能量和弹性应变能均达到最大值,弹性应变能变化较小(基本保持不变),耗散能迅速增大,表明该阶段岩石从外界吸收的能量几乎以耗散能的形式耗散;应力跌落阶段(DE),砂岩取得峰值应力而发生破坏,内部储存的弹性应变能快速释放,耗散能急剧增大,最后由于围压的作用,弹性应变能保持一定的残余水平.

3.3 温度对能量特征影响

为了进一步分析砂岩能量随温度的变化,对25~150 ℃温度下的砂岩应力‒应变‒能量曲线进行统计分析,得出砂岩能量参数与温度的关系曲线,如图11所示.从图11可知,总能量、弹性应变能和耗散能随温度的变化规律一致,25~120 ℃,砂岩能量参数随温度升高而增大,超过120 ℃,能量参数大幅度减小.

图12所示为曲线峰值点处砂岩的弹性应变能和耗散能占总能量比例关系.从图中看出,弹性应变能比例和耗散能比例随温度的变化相反,25~120 ℃,弹性应变能比例随温度升高而减小,耗散能比例随温度升高而升高;温度超过120 ℃,弹性应变能比例明显增大,而耗散能比例减小.这是由于温度25~120 ℃,砂岩强度略有所提高,岩石能更多地从外界吸收并积聚能量,当岩石内部微裂纹迅速扩展至出现宏观破坏面时所需的耗散能也明显增多;温度超过120 ℃,砂岩的强度大幅度降低,砂岩内部产生热损伤,岩石发生破坏时所需的耗散能较少.

4 讨论

砂岩在不同温度作用下,三轴压缩峰值强度、弹性模量、破坏模式以及声发射测试结果均有一定影响.

4.1 温度对力学特征的影响

岩石受到温度作用后,由于水分蒸发作用、岩石内部介质的软化、热破裂作用等影响,岩石的力学参数弹性模量会发生明显变化.为了描述不同温度作用下砂岩内部热损伤变化情况,采用弹性模量来定义砂岩的热损伤因子DT (刘泉声和许锡昌,2000;蒋浩鹏等,2021;梁书锋等,2021),假设常温25 ℃时砂岩的损伤为0(不考虑砂岩的初始损伤),则其他温度下的损伤因子为:

            DT=1-ETE0,

式中:ETE0分别为砂岩在温度T和25 ℃时的弹性模量.

砂岩热损伤随温度的变化关系如图13所示.从图13可知,温度25~120 ℃时,砂岩热损伤因子为负值,称为“负损伤”;而150 ℃时,热损伤因子为正值,砂岩内部出现热损伤,表明岩石的热损伤存在某个阈值.

为了进一步探究热损伤对砂岩的力学性质劣化的微观作用,对不同温度作用下的砂岩表面进行SEM扫描,结果如图14所示.可以看出温度25 ℃时砂岩表面较为光滑,棱角分明,出现切晶断裂和晶间断裂;温度60~120 ℃,砂岩表面比较粗糙,断口处堆积着大量岩粉和矿物碎片,微观破坏仍为切晶断裂和晶间断裂,与常温相比,砂岩裂隙数量和张开度较小,矿物颗粒较为紧密;温度150 ℃时,砂岩表面不平整,裂隙较多,微观破坏为撕裂断裂,碎片剥落较多,主要堆积在撕裂裂隙中及附近.

这是由于温度在25~120 ℃时,岩石内部的水分和气体挥发,在荷载作用下为砂岩的压密提供空间,微裂纹逐渐闭合,导致砂岩的强度略有所提高,微观破坏为切晶断裂和沿晶断裂,和宏观破裂形式为剪切破坏相吻合;砂岩中含有大量以方解石、伊利石等为重要成分的钙质胶结和黏质胶结,当温度超过120 ℃,在高温作用下,胶结物结构发生变化,造成矿物颗粒之间的胶结作用减弱,甚至颗粒与胶结分离;砂岩的抗拉强度随之降低,使得砂岩内部微裂纹扩展或产生大量新裂缝,且裂纹发展方向与轴向应力平行;微观变形出现撕裂断裂,加快砂岩的内部损伤,导致砂岩的峰值强度大幅度降低,并发生张拉破坏.

因此,对于该砂岩而言,在试验温度范围内,120~150 ℃之间存在阈值温度,导致砂岩内部产生热损伤,力学性质和破坏模式均发生突变.

4.2 温度对砂岩脆性的影响

岩石脆性是一种非常重要的力学指标,脆性评价对于岩体工程意义重大(Altindag, 2003Tarasov and Potvin, 2013Ai et al., 2016Chen et al., 2019;温韬等,2021;Zhang et al., 2021).由于岩石的脆性破坏与其内部微裂纹产生、蔓延、贯通以及峰后岩石破坏模式等全过程密切相关,陈国庆等(2020)综合考虑峰前弹性能的积聚特性和峰后弹性能的释放特性,提出了一种基于弹性能演化全过程的岩石脆性评价指标BE,该评价指标能较为全面反映岩石脆性特征.本文采用岩石脆性指标BE来分析温度对砂岩试样脆性、塑性破坏的影响,其计算公式如下:

            BE=BEpre+BEpost2,

BEpre为岩石峰前脆性指标,可用峰前弹性能积聚率表示;BEpost为峰后脆性指标,可用峰后弹性能耗散率表示.

         BEpre=S2S1+S2,
         BEpost=S2-S4S2+S3-S4,
         S2=σp22E,
         S4=σr22E,

式中:S1为峰前耗散能,等于峰前机械能减去峰前弹性能;S2为峰前弹性能;σp为应力‒应变曲线峰值强度;E为弹性模量;S3为峰后外力对岩石的机械功增量,以维持岩石的峰后破裂行为,弥补峰前储存弹性能的不足,即峰后机械能;S4为岩石处于残余应力状态时内部残留的弹性能.σr为应力‒应变曲线残余强度.

脆性指标BE的取值范围为(0,1),对于理想脆性岩石,BEpre=BEpost=1,则BE=1;对于理想塑性岩石,BEpre=BEpost=0,则BE=0.

按照BE指标的计算方法对试验数据进行分析,得到结果如表2所示,砂岩脆性指标BE与温度关系见图15.整体来看,随着温度的升高,砂岩的脆性指标BE表现为不断减小的变化规律,温度25~120 ℃范围内,砂岩BE值维持在0.46~0.59,而150 ℃时,砂岩BE值大幅度减小到0.26,试样表现出明显的塑性特征.表明在温度120~150 ℃之间确实存在阈值温度,砂岩试样从脆性逐渐向塑性转化.

5 结论

本文对砂岩开展不同温度作用下三轴压缩试验和声发射测试,基于试验结果并引入能耗演化规律,分析探讨高温作用下砂岩的力学特性与能量特征,得出如下结论:

(1)温度作用对砂岩力学性质和破坏模式有明显影响,温度120~150 ℃之间存在温度阈值,导致砂岩内部出现热损伤,其峰值强度大幅度降低,宏观破裂形式由剪切破坏过渡到张拉破坏.

(2)砂岩总能量、弹性应变能和耗散能随温度的变化规律一致,25~120 ℃,砂岩能量参数随着温度升高而增大,超过120 ℃,能量参数大幅度减小;而弹性应变能比例和耗散能比例随温度的变化规律相反.

(3)温度对砂岩声发射活动影响也较为明显,温度20~120 ℃,声发射累计AE能量随温度升高而增大,砂岩储存能量和释放能量的能力增强,脆性明显;150 ℃,砂岩内部产生热损伤,声发射累计AE能量大幅度降低,砂岩储能能力和能量释放能力减弱,塑性增强.

(4)岩石脆性指标BE,随着温度的升高,砂岩脆性指标BE不断减小.温度120~150 ℃,砂岩BE值从0.5左右大幅度减小到0.26,表现出明显的塑性特征,表明高温作用下,试样从脆性逐渐向塑性转化.

参考文献

[1]

Ai, C., Zhang, J., Li, Y. W., et al., 2016. Estimation Criteria for Rock Brittleness Based on Energy Analysis during the Rupturing Process. Rock Mechanics and Rock Engineering, 49(12): 4681-4698. https://doi.org/10.1007/s00603⁃016⁃1078⁃x

[2]

Altindag, R., 2003. Correlation of Specific Energy with Rock Brittleness Concepts on Rock Cutting. Journal of the South African Institute of Mining and Metallurgy, 103(3): 163-171.

[3]

Bai, F. T., Sun, Y. H., Liu, Y. M., et al., 2017. Evaluation of the Porous Structure of Huadian Oil Shale during Pyrolysis Using Multiple Approaches. Fuel, 187: 1-8. https://doi.org/10.1016/j.fuel.2016.09.012

[4]

Chen, G. Q., Jiang, W. Z., Sun, X., et al., 2019. Quantitative Evaluation of Rock Brittleness Based on Crack Initiation Stress and Complete Stress⁃Strain Curves. Bulletin of Engineering Geology and the Environment, 78(8): 5919-5936. https://doi.org/10.1007/s10064⁃019⁃01486⁃2

[5]

Chen, G.Q., Wu, J.C., Jiang, W.Z., et al., 2020. An Evaluation Method of Rock Brittleness Based on the Whole Process of Elastic Energy Evolution. Chinese Journal of Rock Mechanics and Engineering, 39(5): 901-911 (in Chinese with English abstract).

[6]

Chen, H.Q., Meng, L.B., 2019. Mechanical Characteristics and Acoustic Emission Characteristics of Limestone Triaxial Unloading after High Temperature Effect. Safety in Coal Mines, 50(4): 58-62 (in Chinese with English abstract).

[7]

Deng, H. F.,Yuan, X. F., Li, J. L., et al., 2014. Fracture Mechanics Characteristics and Deterioration Mechanism of Sandstone under Reservoir Immersion Interaction. Earth Science, 39(1): 108-114 (in Chinese with English abstract).

[8]

Gautam, P. K., Verma, A. K., Maheshwar, S., et al., 2016. Thermomechanical Analysis of Different Types of Sandstone at Elevated Temperature. Rock Mechanics and Rock Engineering, 49(5): 1985-1993. https://doi.org/10.1007/s00603⁃015⁃0797⁃8

[9]

Hajiabdolmajid, V., Kaiser, P., 2003. Brittleness of Rock and Stability Assessment in Hard Rock Tunneling. Tunnelling and Underground Space Technology, 18(1): 35-48. https://doi.org/10.1016/S0886⁃7798(02)00100⁃1

[10]

Jiang, H.P., Jiang, A.N., Yang, X.R., 2021. Statistical Damage Constitutive Model of High Temperature Rock Based on Weibull Distribution and Its Verification. Rock and Soil Mechanics, 42(7): 1894-1902 (in Chinese with English abstract).

[11]

Kumari, W. G. P., Ranjith, P. G., Perera, M. S. A., et al., 2017. Mechanical Behaviour of Australian Strathbogie Granite under In⁃Situ Stress and Temperature Conditions: An Application to Geothermal Energy Extraction. Geothermics, 65: 44-59. https://doi.org/10.1016/j.geothermics.2016.07.002

[12]

Li, B.B., Yang, K., Yuan, M., et al., 2017. Effect of Pore Pressure on Seepage Characteristics of Coal and Rock at Different Temperatures. Earth Science, 42(8): 1403-1412 (in Chinese with English abstract).

[13]

Li, C.D., Meng, J., Xiang, L.Y., et al., 2023. Multi⁃Scale Evolution Mechanism of Sandstone Structure in Baihetan Reservoir Head Region. Earth Science, 48(12): 4658-4667 (in Chinese with English abstract).

[14]

Li, Q.S., Yang, S.Q., Chen, G.F., 2014. Strength and Deformation Properties of Post⁃High⁃Temperature Joint Sandstone. Journal of China Coal Society, 39(4): 651-657 (in Chinese with English abstract).

[15]

Li, T.B., Chen, Z.Q., Chen, G.Q., et al., 2015. An Experimental Study of Energy Mechanism of Sandstone with Different Moisture Contents. Rock and Soil Mechanics, 36(S2): 229-236 (in Chinese with English abstract).

[16]

Liang, S. F., Fang, S. Z.,Wei, G. H., et al.,2021. Experiments on Mechanical Properties of Siliceous Sandstone after High Temperature. Journal of Zhengzhou University (Engineering Science), 42(3): 87-92 (in Chinese with English abstract).

[17]

Liu, Q. S., Xu, X.C., 2000. Damage Analysis of Brittle Rock at High Temperature. Chinese Journal of Rock Mechanics and Engineering, 19(4):408-411 (in Chinese with English abstract).

[18]

Liu, X. F., Zhao, Y. Q., Wang, X. R., et al., 2022. Current Status and Prospects of Research on Fatigue Damage and Failure Precursors of Rocks. Earth Science, 47(6): 2190-2198 (in Chinese with English abstract).

[19]

Meng, L.B., Li, T.B., Xu, J., et al., 2012. Experimental Study on Influence of Confining Pressure on Shale Mechanical Properties under High Temperature Condition. Journal of China Coal Society, 37(11): 1829-1833 (in Chinese with English abstract).

[20]

Meng, W., He, C., Wu, F. Y., et al., 2022. Effects of Thermal Stress of Rock Masses Generated by Geothermal Gradient on Rockburst Prediction. Journal of Southwest Jiaotong University, 57(4): 903-909 (in Chinese with English abstract).

[21]

Qin, Y., Tian, H., Xu, N. X., et al., 2020. Physical and Mechanical Properties of Granite after High⁃ Temperature Treatment. Rock Mechanics and Rock Engineering, 53: 305-322. https://doi.org/10.1007/s00603⁃019⁃01919⁃0

[22]

Su, C.D., Guo, W.B., Li, X.S., 2008. Experimental Research on Mechanical Properties of Coarse Sandstone after High Temperatures. Chinese Journal of Rock Mechanics and Engineering, 27(6): 1162-1170 (in Chinese with English abstract).

[23]

Tang, H.M., Zhang, Y.H., Sun, Y.Z., 2007. A Study of Equivalent Deformability Parameters in Rock Masses. Earth Science, 32(3): 389-396 (in Chinese with English abstract).

[24]

Tang, M. G., Xu, Q., Deng, W. F., et al., 2022. Degradation Law of Mechanical Properties of Typical Rock in Sichuan⁃Tibet Traffic Corridor under Freeze⁃Thaw and Unloading Conditions. Earth Science, 47(6): 1917-1931 (in Chinese with English abstract).

[25]

Tarasov, B.G., Potvin, Y., 2013. Universal Criteria for Rock Brittleness Estimation under Triaxial Compression. International Journal of Rock Mechanics and Mining Sciences, 59(4): 57-69. https://doi.org/10.1016/j.ijrmms.2012.12.011

[26]

Wan, Z.J., Zhao, Y.S., Dong, F.K., et al., 2008. Experimental Study on Mechanical Characteristics of Granite under High Temperatures and Triaxial Stresses. Chinese Journal of Rock Mechanics and Engineering, 27(1): 72-77 (in Chinese with English abstract).

[27]

Wang, X.G., Hu, B., Tang, H.M., et al., 2016. Triaxial Rheological Experiments and Rheological Constitutive of Mudstone under Hydro⁃Mechanical Coupling State. Earth Science, 41(5): 886-894 (in Chinese with English abstract).

[28]

Wang, Z.Z., Qin, B.D., Guo,J. Q., et al., 2022. Influence of High Temperature Treatment on Mechanical Properties and Energy Evolution Mechanism of Sandstone. Journal of Henan Polytechnic University (Natural Science), 41(6): 181-187 (in Chinese with English abstract).

[29]

Wen, T., Zhang, X., Sun, J. S., et al., 2021. Brittle Evaluation Based on Energy Evolution at Pre⁃Peak and Post⁃Peak Stage. Earth Science, 46(9): 3385-3396 (in Chinese with English abstract).

[30]

Wu, G., Wang, D. Y., Zhai, S. T., 2012. Acoustic Emission Characteristics of Sandstone after High Temperature under Uniaxial Compression. Rock and Soil Mechanics, 33(11): 3237-3242 (in Chinese with English abstract).

[31]

Xie, H.P., Ju, Y., Li, L.Y., 2005. Criteria for Strength and Structural Failure of Rocks Based on Energy Dissipation and Energy Release Principles. Chinese Journal of Rock Mechanics and Engineering, 24(17): 3003-3010 (in Chinese with English abstract).

[32]

Yang, S. Q., Ranjith, P. G., Jing, H. W., et al., 2017. An Experimental Investigation on Thermal Damage and Failure Mechanical Behavior of Granite after Exposure to Different High Temperature Treatments. Geothermics, 65: 180-197. https://doi.org/10.1016/j.geothermics.2016.09.008

[33]

Yin, G.Z., Li, X.S., Zhao, H.B., 2009. Experimental Investigation on Mechanical Properties of Coarse Sandstone after High Temperature under Conventional Triaxial Compression. Chinese Journal of Rock Mechanics and Engineering, 28(3): 598-604 (in Chinese with English abstract).

[34]

Zhang, H., Li, T.B., Chen, G.Q., et al., 2014. Acoustic Emission Characteristics of Granite in a Triaxial Compression Test at Different Temperatures. Modern Tunnelling Technology, 51(5): 33-40 (in Chinese with English abstract).

[35]

Zhang, J., Ai, C., Li, Y. W., et al., 2018. Energy⁃Based Brittleness Index and Acoustic Emission Characteristics of Anisotropic Coal under Triaxial Stress Condition. Rock Mechanics and Rock Engineering, 51: 3343-3360. https://doi.org/10.1007/s00603⁃018⁃1535⁃9

[36]

Zhang, L.Y., Lu, W. T.,Mao, X. B., 2007. Experimental Research on Mechanical Properties of Sandstone at High Temperature. Journal of Mining & Safety Engineering, 24(3): 293-297 (in Chinese with English abstract).

[37]

Zhang, Y., Feng, X. T., Yang, C. X., et al., 2019. Fracturing Evolution Analysis of Beishan Granite under True Triaxial Compression Based on Acoustic Emission and Strain Energy. International Journal of Rock Mechanics and Mining Sciences, 117: 150-161. https://doi.org/10.1016/j.ijrmms.2019.03.029

[38]

Zhang, Y., Feng, X. T., Yang, C. X., et al., 2021. Evaluation Method of Rock Brittleness under True Triaxial Stress States Based on Pre⁃Peak Deformation Characteristic and Post⁃Peak Energy Evolution. Rock Mechanics and Rock Engineering, 54: 1277-1291. https://doi.org/10.1007/s00603⁃020⁃02330⁃w

[39]

Zunino, F., Castro, J., Lopez, M., 2015. Thermo⁃ Mechanical Assessment of Concrete Microcracking Damage Due to Early⁃Age Temperature Rise. Construction and Building Materials, 81: 140-153. https://doi.org/10.1016/j.conbuildmat.2014.12.126

[40]

Zuo, J.P., Zhou, H.W., Xie, H.P., et al., 2008. Meso⁃Experimental Research on Sandstone Failure Behavior under Thermal⁃Mechanical Coupling Effect. Rock and Soil Mechanics, 29(6): 1477-1482 (in Chinese with English abstract).

基金资助

四川省乐山市科技局重点研究项目(21GZD019)

国家自然科学基金项目(42107211)

四川省自然科学基金项目(2025ZNSFSC0097)

地质灾害防治与地质环境保护国家重点实验室自主课题(SKLGP2022Z008)

AI Summary AI Mindmap
PDF (2843KB)

86

访问

0

被引

详细

导航
相关文章

AI思维导图

/