云母和电气石矿物化学特征对西昆仑大红柳滩地区伟晶岩型锂矿化的指示

夏永旗 ,  庹明洁 ,  李诺 ,  祁冬梅 ,  加纳提古丽·吾斯曼 ,  王慧慧 ,  王文波 ,  李婷 ,  邰宗尧

地球科学 ›› 2024, Vol. 49 ›› Issue (03) : 922 -938.

PDF (2731KB)
地球科学 ›› 2024, Vol. 49 ›› Issue (03) : 922 -938. DOI: 10.3799/dqkx.2023.213

云母和电气石矿物化学特征对西昆仑大红柳滩地区伟晶岩型锂矿化的指示

作者信息 +

Mineral Characteristics of Mica and Tourmaline and Geological Implication for the Pegmatite-Type Lithium Mineralization, Dahongliutan Area, West Kunlun

Author information +
文章历史 +
PDF (2796K)

摘要

大红柳滩二云母花岗岩被认为是白龙山等伟晶岩型锂矿的成矿母岩.为约束大红柳滩地区花岗岩‒伟晶岩的岩浆‒热液演化过程.本文选取大红柳滩岩体二云母花岗岩及不同矿化程度伟晶岩中的贯穿性矿物——云母和电气石,开展了背散射结构观察(BSE)和电子探针成分分析(EPMA).二云母花岗岩(Ms1)和白云母‒微斜长石伟晶岩(Ms2)中云母结构均一、化学成分变化小;白云母‒钠长石‒锂辉石伟晶岩(Ms3)中云母类型多样,除白云母外,还发育富锂多硅白云母、铁锂云母、锂云母,后者常交代白云母.Ms3中Li、F含量突增,其中Li2O最高可达4.68%、F可达6.47%.二云母花岗岩(Tur1)和白云母‒微斜长石伟晶岩(Tur2)中电气石为碱性黑电气石,白云母‒钠长石‒锂辉石伟晶岩中(Tur3)发育碱性锂电气石.相较于黑电气石,锂电气石具有富SiO2、Al2O3、Li2O,贫TiO2、MgO、CaO的特征.云母和电气石的成分和结构特征揭示,二云母花岗岩与白云母‒微斜长石伟晶岩形成于岩浆阶段,未发生锂矿化.白云母‒钠长石‒锂辉石伟晶岩形成于岩浆‒热液过渡期,锂元素发生了显著富集,发育锂辉石、富锂多硅白云母、铁锂云母、锂云母、锂电气石等.据此提出,岩浆‒热液转换期对于锂成矿具有重要意义.在伟晶岩型锂矿床中,锂电气石与锂云母的存在表明伟晶岩具有极高的岩浆演化程度.

关键词

稀有金属伟晶岩 / 云母 / 电气石 / 岩浆‒热液演化 / 矿物组成特征 / 矿物学 / 岩石学

Key words

rare-metal pegmatite / mica / tourmaline / magmatic-hydrothermal evolution / mineral composition characteristics / mineralogy / petrology

引用本文

引用格式 ▾
夏永旗,庹明洁,李诺,祁冬梅,加纳提古丽·吾斯曼,王慧慧,王文波,李婷,邰宗尧. 云母和电气石矿物化学特征对西昆仑大红柳滩地区伟晶岩型锂矿化的指示[J]. 地球科学, 2024, 49(03): 922-938 DOI:10.3799/dqkx.2023.213

登录浏览全文

4963

注册一个新账户 忘记密码

锂是重要的战略性关键金属,被广泛应用于航空航天、新能源、核工业和冶金等领域;随着新能源汽车和锂电池的快速发展,全球对锂的需求量大幅度提升(Linnen et al., 2012; 毛景文等, 2019; 许志琴等, 2021).伟晶岩型锂矿床是全球重要的锂矿类型之一(蒋少涌等, 2021; 陈衍景等, 2021).西昆仑大红柳滩一带是我国重要的锂矿集中区.从康西瓦至大红柳滩发育7 000余条伟晶岩脉(邹天人和李庆昌, 2006),孕育有白龙山超大型锂矿,509道班西、507、俘虏沟南等大型锂矿以及阿克塔斯、505、大红柳滩、大红柳滩东等中型锂矿,累计探获氧化锂资源量约250万吨,平均品位约为1.5%,预测锂资源潜力可达500万吨以上(王核等, 2017; 彭海练等, 2018; 王核等, 2020; 李文渊等, 2022; 唐俊林等, 2022; 孔会磊等, 2023).前人对大红柳滩岩体及锂矿化伟晶岩开展了矿床地质、岩体地球化学、成矿流体、成岩成矿年代学等研究(魏小鹏等, 2017; Zhang et al., 2017; 凤永刚等, 2019; Ding et al., 2019; 丁坤等, 2020; Zhang et al., 2021bYan et al., 2022;唐俊林等, 2022;王威等, 2022; Cao et al., 2023),认为伟晶岩与大红柳滩二云母花岗岩密切相关;这些伟晶岩围绕着大红柳滩花岗岩体分布,且具有良好的空间分带性.锡石及铌钽铁矿U-Pb测年结果显示伟晶岩成矿年龄为218~212 Ma(Yan et al., 2018),与二云母花岗岩成岩年龄(锆石U-Pb年龄220~208 Ma)在误差范围内一致(乔耿彪等, 2015; 魏小鹏等, 2017).伟晶岩中电气石的硼同位素(δ11B=-7.43‰~-10.43‰)(Cao et al., 2023)与二云母花岗岩的锆石铪同位素(ε Hft)=-9.49~-4.47;魏小鹏等, 2017)特征指示伟晶岩与花岗岩均为壳源物质部分熔融的产物.据此,多数学者倾向于二云母花岗岩是锂矿化伟晶岩的成矿母岩(Yan et al., 2018Cao et al., 2023),但对于岩浆‒热液演化过程的精细刻画尚有待深入研究.
伟晶岩中贯穿矿物(包括云母、长石、石英、电气石、石榴子石等)的结构和成分变化对示踪与稀有金属矿化有关的岩浆‒热液过程具有重要意义(蒋少涌等, 2021).云母是花岗岩和伟晶岩中最为常见的造岩矿物,既可以形成于岩浆阶段,也可以是热液演化的产物,其化学组成、结构特征和矿物共生组合能够指示稀有金属伟晶岩的演化过程和结晶条件,可为伟晶岩型矿床的成矿类型厘定和成矿潜力评价提供有效约束(Jolliff et al., 1987Kaeter et al., 2018; 王汝成等, 2019; 王臻等, 2019).电气石同样是大红柳滩地区伟晶岩的常见矿物.并且,电气石具有极强的稳定性和抗风化能力,即使经历了后期的蚀变和风化作用,仍然能够很好地保留原岩的地球化学和同位素信息,常被用于指示寄主岩石的成岩、成矿过程及源区性质(Henry and Guidotti, 1985van Hinsberg et al., 2011).本文即以大红柳滩岩体二云母花岗岩及不同矿化程度伟晶岩中的贯通性矿物——云母和电气石为研究对象,通过系统的岩相学观察、结构和矿物地球化学研究,查明云母和电气石的形成环境,约束伟晶岩的分异演化程度,探讨稀有金属伟晶岩的岩浆‒热液演化过程,可望为大红柳滩地区稀有金属伟晶岩的找矿工作提供有益启示.

1 区域地质和矿床地质

1.1 区域地质背景

西昆仑造山带位于青藏高原西北缘,塔里木盆地西南缘,总体上呈NW-SE走向的反“S”状展布(图1a),是特提斯构造域和古亚洲构造域的交汇部位(Xiao et al., 2001, 20032005; 张传林等, 2007; Bershaw et al., 2012).从北向南,分别以奥依塔格‒库地断裂、麻扎‒康西瓦缝合带和红山胡‒乔尔天山缝合带为界,可将西昆仑造山带划分为4个主要的构造单元(图1b):北昆仑地体、南昆仑地体、甜水海地体和喀喇昆仑地体(Mattern and Schneider, 2000; 张传林等, 2019; Wang et al., 2020).

大红柳滩稀有金属成矿带位于甜水海地体,区域出露的地层由新到老依次为:三叠系巴颜喀拉山群、二叠系黄羊岭群及古元古界康西瓦岩群,地层总体呈单斜产出.巴颜喀拉山群主要为一套浅变质碎屑岩夹少量碳酸盐岩建造,具复理石建造特征(乔耿彪等, 2015; 李侃等, 2019; 涂其军等, 2019);黄羊岭群为一套浅变质细碎屑岩,变质仅达低绿片岩相,岩性主要为变粒岩、变长石石英细砂岩、板岩等;康西瓦岩群为一套深变质、强变形岩石,岩性主要为黑云石英片岩、大理岩、片麻岩等(涂其军等, 2019).区内断裂构造发育,总体呈NW向展布.其中康西瓦断裂具长期活动的特征,控制着古生代至中生代岩浆岩和沉积建造的展布(冯京等, 2021).区内发育大规模的古生代‒中生代中酸性侵入岩,多以岩基形式沿北西‒南东向呈带状展布.其中三叠纪的大红柳滩岩体被认为与锂伟晶岩型矿化密切相关(Yan et al., 2018; Cao et al., 2023).该岩体具有明显的岩相分带:黑云母二长花岗岩和二长花岗岩位于岩体东部‒东北部,二云母花岗岩位于岩体西南部,但限于高海拔、深切割,地质工作难度极大,各岩相单元之间地质界限不明(孔会磊等, 2023).已有工作约束大红柳滩二云母花岗岩主体形成于220~208 Ma(锆石U-Pb定年),属高钾钙碱性系列、S型花岗岩(乔耿彪等, 2015; 魏小鹏等, 2017; Yan et al., 2018Ding et al., 2019; 丁坤等, 2020; Zhou et al., 2021);锡石、铌钽铁矿、锆石等矿物的U-Pb测年数据约束大红柳滩伟晶岩形成于218~207 Ma(Yan et al., 2018; 滕家欣等, 2021).然而,王威等(2022)获得矿化伟晶岩(锂辉石伟晶岩)中白云母的40Ar/39Ar坪年龄为188 Ma,远小于无矿化伟晶岩年龄,可能记录的并非伟晶岩形成或岩浆结晶的年龄,而是岩浆固结后热液封闭的时代(蒋少涌等, 2021).

1.2 矿床地质特征

大红柳滩伟晶岩型锂矿位于大红柳滩岩体东北侧.矿区出露地层主要为三叠纪巴颜喀拉山群,原岩主要为含碳砂泥岩等细碎屑岩,次为粗碎屑岩夹少量碳酸盐岩,经浅变质作用形成黑云母石英片岩、二云母石英片岩(冯京等, 2021).矿区构造为单斜构造,地层多发生扭曲,形成小的褶皱构造.区内节理极为发育,包括垂直节理、走向节理和斜交节理,其中走向节理与伟晶岩脉侵入关系更为密切,区内大多数伟晶岩脉受控于此(涂其军等, 2019).矿集区内发育114条伟晶岩脉,长度一般在1~ 250 m之间,宽2~42 m,个别可达100 m (Yan et al., 2018).伟晶岩脉围绕着大红柳滩岩体展布,显示典型的锂‒铯‒钽(LCT)型伟晶岩分带模式(图2),由岩体向外依次为:(Ⅰ)含石榴子石的白云母‒微斜长石伟晶岩:无矿化,常发育有伟晶状花岗结构带、文象结构带、变文象结构带以及块状微斜长石带等,见白云母‒石英集合体分布于脉体边部及各带之间(周兵等, 2011);(Ⅱ)白云母‒微斜长石‒钠长石型伟晶岩:铍矿化,一般可分出钠长石带,位于伟晶岩核部附近;(Ⅲ)锂辉石伟晶岩:锂(‒铌‒钽)矿化,主要由白云母‒钠长石‒锂辉石组成,靠近中心部位偶见石英‒锂辉石带断续分布,局部地段有白云母‒钠长石集合体存在,锂云母‒钠长石集合体分布较少(周兵等, 2011; Černý et al., 2012; 闫庆贺等, 2017; Yan et al., 2018; Cao et al., 2023).其中锂‒铍矿化伟晶岩脉41条,Li2O平均品位1.26%~1.83%,BeO平均品位0.041%~0.061%(涂其军等, 2019).伟晶岩脉常呈不规则扁豆状,多具收缩和膨胀现象,走向与地层一致或稍有斜交(涂其军等, 2019; 冯京等, 2021; Yan et al., 2022).主要矿石矿物为锂辉石、锂云母、绿柱石、锡石、铌钽铁矿等,脉石矿物可见有石英、钾长石、钠长石、白云母、黑云母和电气石等(闫庆贺等, 2017).

2 样品及测试方法

2.1 样品特征

本文所用样品主要采自大红柳滩二云母花岗岩及不同矿化程度的伟晶岩(图2),包括二云母花岗岩样品1件(采样坐标:35°37′24.68″N; 79°10′27″E),白云母‒微斜长石伟晶岩样品2件(Ⅰ带,采样坐标:35°37′28.74″N; 79°11′20.30″E),白云母‒钠长石‒锂辉石伟晶岩样品4件(Ⅲ带,采样坐标:35°58′29.03″N; 79°11′34.07″E).

二云母花岗岩(图3a~3c):呈灰白‒浅肉红色,细粒花岗结构、块状构造.主要由石英(25%~30%)、钾长石(~25%)、斜长石(~20%)、白云母(~10%)、电气石(8%~10%)、黑云母(~8%)组成,副矿物为锆石、榍石和磷灰石等.石英呈他形粒状,粒径0.1~1.0 mm.钾长石呈半自形‒他形,具典型的格子双晶结构,粒径0.6~1.3 mm.斜长石呈自形‒半自形板状,发育卡式双晶,粒径0.6~ 1.1 mm(图3b).电气石呈浸染状、团簇状分布于花岗岩中(图3a),横截面呈多边形或球面三角形状,粒径0.4~1.5 mm(图3c),背散射下未见结构分带 (图4e).白云母呈半自形‒他形片状‒鳞片状,略具定向性,粒径0.2~1.2 mm.黑云母呈半自形‒他形片状,粒径0.2~2.0 mm.图3b可见白云母包裹黑云母,因此白云母结晶略晚于黑云母.

白云母‒微斜长石伟晶岩(图3d~3f):岩石呈浅黄‒灰白色,伟晶结构,块状构造.主要由石英(~30%)、钾长石(~20%)、斜长石(~15%)、白云母(~15%)、电气石(~15%)、石榴子石(<5%)组成.石英为烟灰色,粒径较大,甚至可达厘米级(图3d).电气石呈柱状或团簇状产出,自形‒半自形,粒径0.1~0.8 mm(图3e3f),显微镜及背散射下无结构分带现象(图4b),可被少数钾长石和石英沿裂隙充填.白云母呈团簇状零星分布,呈半自形‒他形,可交代钾长石,粒径0.2~0.7 mm,背散射镜下未观察到结构分带(图4c).钾长石呈半自形‒他形,粒径0.8~1.6 mm.斜长石呈自形‒半自形板状,发育卡式双晶,粒径0.6~1.2 mm(图3e).

白云母‒钠长石‒锂辉石伟晶岩(图3g~3i):岩石呈红褐‒白色,伟晶结构,块状构造.主要由石英(~35%)、锂辉石(25%~30%)、钠长石(~15%)、电气石(8%)、白云母(7%~10%)及少量磷灰石、铌钽铁矿组成.锂辉石呈自形‒半自形板片状,粒径1.5~5.0 cm(图3g),晶内发育有不规则裂纹,边缘见有轻微碎裂和绢云母化(图3h3i).钠长石呈半自形‒他形,粒径0.2~0.4 mm,可交代白云母(图4d).石英呈他形粒状,粒径不均,最大可达数厘米(图3i).电气石呈自形‒半自形板状,粒径0.2~1.0 mm.白云母呈片状,粒径0.04~2.00 mm,可划分出至少两个期次:早期白云母以自形‒半自形片状与锂辉石共生(图3h),晚期锂云母则呈半自形‒他形片状交代白云母(图3h图4f).

2.2 测试方法

首先将待分析样品磨制成光薄片,进行详细显微镜下观察,确定矿物特征、矿物组合及共生关系,圈定待分析矿物位置,然后喷碳,进行背散射观察和电子探针分析.

云母和电气石的背散射和主量元素分析工作在核工业北京地质研究院分析测试中心完成,测试仪器为JXA-8100电子探针分析仪(EPMA).实验条件如下:加速电压为 15 kV,激发电流为20 nA,电子束斑直径为2 μm.根据不同的待测元素采用不同的标样矿物,其中Si以石英为标样,Na以钠长石为标样,Cl以石盐作为标样,K以钾长石为标样,Mg以橄榄石为标样,Mn和Ti以红钛锰矿为标样,Al以刚玉为标样,P以磷灰石为标样,Ca以硅灰石为标样,F以萤石为标样.Si、Ti、Al、Fe、Mn、Mg、Ca、Na、K、P、F和Cl峰位的测试时间为10 s,背景测试时间为峰位的一半.所有数据校正方式为ZAF.白云母和锂云母中Li2O计算方法依据Tischendorf et al.(1997).电气石中Li2O*、H2O及B2O3计算方法依据Henry and Guidotti(1985).

3 分析结果

3.1 云母结构和成分特征

云母以不同的比例产于大红柳滩二云母花岗岩及伟晶岩中,其结构、成分特征各异(附表1).二云母花岗岩中白云母(Ms1)粒径变化较小,为0.6~1.1 mm,常呈自形‒半自形片状,与斜长石共生(图3b),可包裹黑云母、石英颗粒.BSE显示白云母无环带结构,可沿电气石裂隙充填(图4a).电子探针分析获得Ms1中SiO2、Al2O3和K2O的含量(质量分数,后同)高且变化范围小,分别为45.08%~46.86%、34.70%~36.74%、9.95%~10.44%;FeO、TiO2和MgO、F含量较低且变化较大,分别为0.94%~1.58%、0~0.93%、0.22%~0.73%和0~0.25%.其MnO(0~0.06%)、Rb2O(0~0.08%)、Li2O*(0~0.06%)、 Cl(0~0.02%)含量都很低.在云母矿物分类图(图5)中,样品点全部落入白云母范围内.

白云母‒微斜长石伟晶岩中白云母(Ms2)粒径变化较大,从数十微米至几十毫米不等(图3e).这些白云母常呈自形‒半自形板片状被钾长石交代(图4c).BSE下白云母结构均一,无明显分带.与Ms1相比,Ms2具有更高的Al2O3(36.24%~36.84%)、Rb2O(0.36%~0.95%)、Na2O(0.29%~0.61%)以及Cs2O(0~0.07%)含量,以及更低的SiO2(45.00%~45.67%)、K2O(9.71%~10.12%)以及MgO(0~0.40%)含量.图5显示,这些云母同样属于白云母系列.

白云母‒钠长石‒锂辉石伟晶岩中同时发育原生和次生云母.原生白云母(Ms3I)粒径变化较大,其中细小的白云母呈他形片状被锂辉石包裹,较大白云母呈自形‒半自形片状与锂辉石共生(图3h).这类原生云母以白云母为主(图5),化学成分上SiO2(45.34%~52.81%)、Rb2O(0.81%~5.36%)、Li2O(0.43%~1.28%,计算值)和F(0~6.47%)含量较高,Na2O(0.03%~0.53%)和MgO(0~0.14%)含量较低,K2O(9.82%~10.68%)含量变化不大.次生云母(Ms3II)涵盖富锂多硅白云母、铁锂云母和锂云母(图5).可见富锂多硅白云母交代原生白云母(图4d),锂云母既可交代原生白云母(图3h),也可沿原生白云母边缘形成细带环边(图4e),常产于白云母和锂辉石的接触界限边缘(图4e4f).与原生云母Ms3I相比,次生云母(Ms3II)具有更低的Al2O3(21.19%~26.46%)、TiO2(0~0.05%)、Na2O(0.03%~0.11%)含量和更高的SiO2(49.48%~52.87%)、MnO(0.16%~0.41%)、Rb2O(0.90%~0.32%)、Li2O*(1.96%~4.66%)和F(3.36%~6.45%)含量.

总体而言,Ms1、Ms2和Ms3I的白云母成分较为接近;Ms3II具有明显偏高的SiO2、K2O、Rb2O、Li2O*(计算值)、MnO及F含量,以及偏低的Al2O3和Na2O含量(图6).

3.2 电气石结构和成分特征

与云母类似,电气石在二云母花岗岩及不同矿化伟晶岩中也以不同的比例存在.在二云母花岗岩中,电气石(Tur1)粒径变化较小(0.4~1.5 mm),常呈自形‒半自形板状,其裂隙可被白云母、石英等充填,BSE下显示无环带结构(图3c图4a).在白云母‒微斜长石伟晶岩中,电气石(Tur2)横截面呈球面三角形,可被斜长石交代,BSE下显示结构均一,包裹些许细粒石英颗粒(图3f图4b).在白云 母‒钠长石‒锂辉石伟晶岩中,电气石(Tur3)呈自 形‒半自形板状,显微镜下呈现出深蓝‒蓝绿多色性.

大红柳滩二云母花岗岩及不同矿化伟晶岩中电气石主量元素成分结果列于附表2.依照Henry and Guidotti(1985)提出的电气石分类图解(图7a),大红柳滩地区产出的电气石均属碱性电气石系列,其中,Tur1和Tur2为碱性黑电气石,Tur3为碱性锂电气石(图7b).总体而言,SiO2(33.68%~35.72%)、Al2O3(33.13%~37.47%)、FeO(7.66%~11.77%)以及B2O3 *(10.32%~10.66%)含量高且变化较小,MgO(0.02%~4.66%)、TiO2(0.11%~0.91%)、Na2O(0.02%~2.29%)、CaO(0.06%~0.29%)及MnO(0.08%~0.37%)含量低且变化范围大.其中,Tur3具有比Tur1和Tur2明显偏高的SiO2(34.79%~35.72%)、Al2O3(36.65%~37.47%)、F(0.77%~1.02%)和Li2O*(1.12%~1.20%)含量,而TiO2(0.16%~0.91%)、FeO(9.20%~11.77%)、MgO(0.40%~4.66%)、MnO(0.08%~0.29%)、CaO(0.06%~0.29%)、Na2O(1.89%~2.72%)以及K2O(0~0.06%)含量低于Tur1和Tur2.

4 讨论

4.1 云母和电气石中元素的类质同象替换机制

4.1.1 云母中元素的类质同象替换机制

云母是典型层状硅酸盐矿物,元素的类质同象现象非常普遍(Tischendorf et al., 1997Van Lichtervelde et al., 2010).云母类矿物的化学通式为AB 2C 4O10](OH)2A代表充填云母结构层之间12次配位位置的大半径阳离子K+、Ca2+、Na+、Rb+、Cs+和Ba2+等;B代表配位八面体层六次配位的阳离子,主要为Li+、Al3+、Mg2+、Mn2+、Ti4+、Fe2+、Fe3+等;C代表硅四面体层的Si4+、Al3+、Fe3+.此外,附加阴离子OH-也可与F发生类质同象替换,形成八面体络合物AIF(F-↔OH-)(Linnen, 1998; Černý et al., 2003).

由云母Fe+Mg+Mn-Altotal(apfu)图解可见(图8a),大红柳滩二云母花岗岩中白云母(Ms1)的Al与Fe+Mg+Mn之间存在负相关关系,显示Al2 R - 3 2 +的替代关系.并且,随Al2O3含量增加,Ms1的FeO、MgO、MnO含量呈现下降趋势(附表1).在云母Altotal-(Si+Li)(apfu)图解中(图8b),白云母‒微斜长石伟晶岩中白云母(Ms2)和白云母‒微斜长石伟晶岩中原生白云母(Ms3I)显示Al与Si负相关,与云母成分含量变化图相一致(图6a6b),指示Ms2和Ms3I中云母的元素替换机制主要为Al4Si-3-1.在白云母‒微斜长石伟晶岩中,次生含锂云母(Ms3II)主要显示Al与Si、Li之间存在负相关关系(图6a6b6f),从 Ms3I→M3II,SiO2与Li2O含量增加,而Al2O3含量急剧下降,表现为云母中四面体和八面体中Al被置换为Li和Si,从而形成富锂多硅白云母、铁锂云母和锂云母,表现为Si2LiAl-3的类质同象置换趋势.

4.1.2 电气石中元素的类质同象替换机制

电气石是一类化学成分复杂的硼硅酸盐矿物,化学通式为XY 3 Z 6T 6O18][BO33 V 3 W,式中X位置为K+、Ca2+、Na+Y位置为Li+、Mg2+、Al3+、Fe2+、Fe3+、Mn2+、Cr3+、V3+、Ti4+Z位置为Mg2+、Al3+、Fe3+、V3+、Cr3+T位置为Si4+、Al3+V位置为OH-、O2-W位置为OH-、O2-、F-、Cl-Henry and Guidotti, 1985).

根据电气石 YR 2+- Y Al图解( Y Al=Altotal+1.33Ti+Si-12; YR 2+=Fe+Mn+Mg+ Y Al),Tur1与Tur3沿同一方向演化,与 YR 2+ Y Al之间存在正相关关系,遵循LiAl(Fe,Mg)-2替代关系(图9a).从电气石Fe-Al图解中可见(图9b),Tur1中Al含量的变化对Fe含量影响不大,显示X Al(Na,Mg)-1的替代机制,Tur2中Al含量与Fe含量之间存在正相关关系,Tur3中Al含量与Fe含量呈负相关,遵循Fe3+Al-1的替代特征.在X -Na和Al+X -Na+Mg图解中,所有电气石都遵循(Na,Mg)Al(X Al)-1发生成分演化(图9c9d).

4.2 云母族矿物成分演化及指示意义

云母对结晶介质的化学条件变化非常敏感,其结构特征与化学成分信息常被用来示踪花岗岩和伟晶岩的形成、演化及成矿过程(Černý et al., 2003).

大红柳滩二云母花岗岩(Ms1)与白云母‒微斜长石伟晶岩(Ms2)中的白云母结构均一,未见成分分带,矿物成分波动范围小,指示相对稳定平衡的环境,为岩浆阶段的产物.白云母‒钠长石‒锂辉石伟晶岩中的云母(Ms3)成分变化较大,类型多样,常出现交代和不平衡结构:富锂多硅白云母交代原生白云母,锂云母既可沿原生白云母边缘交代形成不规则补丁状,也可呈独立矿物沿白云母和锂辉石的接触界限产出(图4d~4f).上述现象表明,白云母处在不平衡、不稳定的状态,经历了后期热液流体的选择性交代.Xing et al.(2020)在白龙山锂矿化伟晶岩发现了类似现象,即随着岩浆演化至热液阶段,锂矿化伟晶岩中的次生云母会沿原生白云母解理面和边缘进行交代.

前人研究表明,在花岗岩‒伟晶岩体系中,岩浆演化早期主要结晶出无水或少水矿物,随着结晶分异的进行,体系中晶体与熔体比例不断升高,残余岩浆中Li、F等挥发分含量不断增加;到岩浆演化晚期,流体相达到饱和或过饱和,将出现以晶体相、熔体相和流体相三相共存为特征的岩浆‒热液阶段(Thomas et al., 2000, 2012Veksler et al., 2002Veksler, 2004).云母结构和成分的变化,尤其是Li、F含量等,可记录岩浆阶段向热液阶段转换的过程(Veksler, 2004).同时,云母中稀有金属含量(Li、Rb)会随着岩浆演化而不断富集(李乐广等, 2023).本文研究结果揭示,大红柳滩二云母花岗岩和不同矿化程度的伟晶岩中原生云母均落在白云母区域内,次生云母伴随着F、Li、Rb含量增加,依次落在富锂多硅白云母、铁锂云母及锂云母范围内.由Ms1→Ms2→Ms3I,云母由白云母向富锂多硅白云母、铁锂云母、锂云母演化,Li2O、F、Rb2O的质量分数略有上升;而到了Ms3II,Li、F、Rb含量突增,可交代原生白云母,指示后者形成于富流体的环境,可能对应于岩浆阶段向热液阶段的转换期.在岩浆作用阶段,Ms1和Ms2形成时,云母相对贫Li,且未见锂辉石等富锂矿物;在岩浆‒热液作用阶段,Ms3形成,锂元素发生了显著富集,富锂矿物除富锂多硅白云母、铁锂云母、锂云母外,还出现了大量锂辉石.据此,提出岩浆‒热液转换期对于锂成矿具有重要意义.

4.3 电气石成分演化及其指示意义

已有研究揭示,岩浆成因的电气石结构相对均一,无成分分带,化学成分上以高的Fe/Mg比值和在Y位上具有高Al阳离子为特征;而热液成因电气石经常出现成分的振荡分带,成分上以富Mg和Y位置上无Al或低Al为特征(London and Manning, 1995van Hinsberg et al., 2011).

来自大红柳滩二云母花岗岩(Tur1)和白云母‒微斜长石伟晶岩(Tur2)的电气石,无论是在光学显微镜下还是BSE下观察,均无明显的结构分带(图3c3f图4a4b).Tur1中Fe/Mg为1.2~1.8,Y位置上具有高Al阳离子数(0.32~0.38);Tur2中Fe/Mg为14.05~16.03,Y位置上具有高Al阳离子数(0.82~0.89).在电气石主量元素分类图中(图7),Tur1和Tur2全部落在碱性黑电气石区域内,这与大多数岩浆成因电气石类似(蒋少涌等, 2000; Trumbull et al., 2013; 凤永刚等, 2022),亦与上文得到的云母(Ms1、Ms2)结构特征及形成条件吻合.而白云母‒钠长石‒锂辉石伟晶岩中发育的锂电气石(Tur3),不仅结构上发育分带,化学成分上也表现出显著差异,为碱性锂电气石(图7b),表明其形成时体系条件发生了改变,由岩浆阶段向热液阶段演化.

在花岗岩‒伟晶岩系统中,电气石的化学成分可以指示伟晶岩的岩浆演化过程,随着岩浆演化程度的增加,电气石中Li含量也会随之增加(London and Manning, 1995Zhang et al., 2008; 李乐广等, 2023).如凤永刚等(2022)通过对东秦岭不同矿化程度伟晶岩中电气石研究发现,电气石Li含量从无矿化伟晶岩→铍矿化伟晶岩→铌钽矿化伟晶岩→锂矿化伟晶岩逐渐增加,直至锂矿化伟晶岩中锂电气石的Li含量达到最大.本文获得大红柳滩地区电气石的成分亦显示类似趋势:在电气石Al-Fe-Mg分类图解中(图10a),Tur1落在贫Li花岗岩及相关的伟晶岩、细晶岩区域,而Tur2、Tur3落在富Li花岗岩及相关的伟晶岩、细晶岩区域,指示了伟晶岩相较于二云母花岗岩更富Li.在电气石Ca-Fe-Mg分类图解中(图10b),Tur2落在贫Li花岗岩及相关的伟晶岩、细晶岩区域,Tur3大部分落在了富Li花岗岩及相关的伟晶岩、细晶岩区域,表明Tur3比Tur2更富Li.Tur1落在贫Ca变质泥岩、变质砂岩和石英‒电气石岩区域,这一特征与魏小鹏等(2017)提出的大红柳滩二云母花岗岩源于壳源变质沉积岩的部分熔融一致.

花岗岩‒伟晶岩体系中电气石的化学成分常用于指示岩浆‒热液演化过程(van Hinsberg et al., 2011Yang and Jiang, 2012).对于黑电气 石‒锂电气石系列而言,其形成温度约在700~350 ℃,在花岗质岩浆分异演化到伟晶岩的过程中,由黑电气石‒铁锂电气石‒锂电气石逐渐演化(van Hinsberg et al., 2011).其中,黑电气石形成的温度最高,是岩浆分异早期产物,多产于花岗岩、无矿化伟晶岩和绿柱石型伟晶岩中;铁锂电气石形成温度较低,是岩浆演化中期产物;锂电气石形成温度最低,在岩浆分异演化的晚期至热液作用阶段结晶,主要产于锂辉石、绿柱石和锂云母型伟晶岩中(邹天人和杨岳清, 1996; 赵建忠等, 2019).

大红柳滩花岗岩及不同矿化程度伟晶岩中电气石发育.其中二云母花岗岩与白云母‒微斜长石伟晶岩中以黑(铁)电气石为主(图11a).随着岩浆演化程度增加,电气石中的Li、Al元素逐渐富集,Fe含量降低,电气石Y位置上的Fe逐渐被Li代替,黑(铁)电气石逐渐转变为锂电气石,指示了稀有金属Li随岩浆演化不断富集的过程(图11a11b).与之对应,随着岩浆分异演化过程进行,由电气石成分约束的寄主岩石的形成温度由Tur1(615~585 ℃)经Tur2(560~547 ℃)到Tur3(522~515 ℃)逐渐降低(图12).这也与空间上不同分带伟晶岩距离二云母花岗岩的远近程度相一致,暗示二者之间可能存在成因联系.

4.4 花岗‒伟晶岩岩浆‒热液演化过程及矿化程度标志

上已述及,大红柳滩白云母‒钠长石‒锂辉石伟晶岩形成于有热液流体参与的环境,但岩浆‒热液作用的时限及程度仍有待确定.张辉等(2008)对可可托海3号脉伟晶岩矿床研究指出,岩浆‒热液过渡阶段通常只持续很短的时间,且以某个指示性原生矿物的化学成分突变代表着一次流体出溶事件,流体出溶后快速扩散,体系由此进入岩浆‒热液过渡阶段.云母与电气石是大红柳滩地区花岗岩和伟晶岩中的贯通性矿物,其化学成分对环境变化非常敏感,使得二者成为研究大红柳滩伟晶岩脉岩浆‒热液演化过程的理想指标矿物.从不同岩性中云母的结构和化学成分可以看出,Ms1、Ms2云母结构均一、成分稳定,到Ms3时云母结构突变、稀有金属元素呈跳跃式上升(图6e6f).对于电气石而言,Tur1、Tur2结构均一,到Tur3时电气石结构与类型发生改变,Li元素显著增加(图11a11b).因此,云母与电气石结构和成分的突变可用于指示流体出溶事件的发生.

李建康等(2023)提出,锂辉石伟晶岩中Li2O品位的高低与热液作用的强弱有着紧密联系:较强的热液交代作用会导致锂辉石中Li元素的流失,从而降低Li2O的品位,而热液交代作用较弱时易形成具高品位的锂辉石伟晶岩,如:西昆仑白龙山、川西甲基卡、可可托海3号脉等伟晶岩矿床.大红柳滩地区伟晶岩具有较高的Li2O品位(平均为1.5%)(李文渊等, 2022; 孔会磊等, 2023),且锂辉石发育完整,仅边缘部分发生轻微蚀变,表明其遭受热液作用的影响较弱或时间不长.综合上述,大红柳滩二云母花岗岩和白云母‒微斜长石伟晶岩中云母和电气石为单一的岩浆演化成因,白云母‒钠长石‒锂辉石伟晶岩形成于岩浆‒热液过渡期.

前人研究表明,含锂矿物的结晶通常具有时序性,相较于锂辉石、透锂长石,锂电气石、锂云母的结晶往往代表了更高程度的演化水平,它们的形成是锂成矿作用的直接体现,指示着花岗伟晶岩质岩浆具有高程度的结晶分异特征(刘晨等, 2021; Zhang et al., 2021a).本次研究表明,锂辉石伟晶岩中富锂矿物除锂辉石外,还可见锂电气石、锂云母,表明伟晶岩具有高的岩浆演化程度.因此,在伟晶岩型矿床中,锂电气石和锂云母的存在可被作为寻找高分异锂矿床的潜在标型矿物.

5 结论

(1)大红柳滩地区二云母花岗岩与白云母‒微斜长石伟晶岩中的白云母形成于岩浆阶段,白云母‒钠长石‒锂辉石中的云母形成于岩浆‒热液过渡期.其中二云母花岗岩中白云母替代机制为Al2 R - 3 2 +,白云母‒微斜长石伟晶岩和白云母‒钠长石‒锂辉石中原生云母的元素替换机制主要为Al4Si-3-1,白云母‒钠长石‒锂辉石中次生云母具有Si2LiAl-3类质同象的置换趋势.

(2)电气石的Li、 Y Al等含量可作为伟晶岩矿化程度指标.随着岩浆演化进行,电气石中Li、 Y Al含量上升,由二云母花岗岩、白云母‒微斜长石伟晶岩到白云母‒钠长石‒锂辉石,电气石由黑电气石(615~585 ℃),经黑电气石(560~547 ℃),向锂电气石(522~515 ℃)演化.

(3)大红柳滩地区锂辉石伟晶岩经历了高度结晶分异,岩浆‒热液过渡期对于锂成矿具有重要意义.

附表见期刊官网(www.earth-science.net).

参考文献

[1]

Bershaw, J., Garzione, C. N., Schoenbohm, L., et al., 2012. Cenozoic Evolution of the Pamir Plateau Based on Stratigraphy, Zircon Provenance, and Stable Isotopes of Foreland Basin Sediments at Oytag (Wuyitake) in the Tarim Basin (West China). Journal of Asian Earth Sciences, 44: 136-148. https://doi.org/10.1016/j.jseaes.2011.04.020

[2]

Cao, R., Gao, Y. B., Chen, B., et al., 2023. Pegmatite Magmatic Evolution and Rare Metal Mineralization of the Dahongliutan Pegmatite Field, Western Kunlun Orogen: Constraints from the B Isotopic Composition and Mineral-Chemistry. International Geology Review, 65(7): 1224-1242. https://doi.org/10.1080/00206814.2021.1899062

[3]

Černý, P., Chapman, R., Teertstra, D. K., et al., 2003. Rubidium- and Cesium-Dominant Micas in Granitic Pegmatites. American Mineralogist, 88(11-12): 1832-1835. https://doi.org/10.2138/am-2003-11-1226

[4]

Černý, P., London, D., Novák, M., 2012. Granitic Pegmatites as Reflections of Their Sources. Elements, 8(4): 289-294. https://doi.org/10.2113/gselements.8.4.289

[5]

Chen, Y. J., Xue, L. Z., Wang, X. L., et al., 2021. Progress in Geological Study of Pegmatite-Type Lithium Deposits in the World. Acta Geologica Sinica, 95(10): 2971-2995 (in Chinese with English abstract).

[6]

Ding, K., Liang, T., Yang, X. Q., et al., 2019. Geochronology, Petrogenesis and Tectonic Significance of Dahongliutan Pluton in Western Kunlun Orogenic Belt, NW China. Journal of Central South University, 26(12): 3420-3435. https://doi.org/10.1007/s11771-019-4264-7

[7]

Ding, K., Liang, T., Zhou, Y., et al., 2020. Petrogenesis of Dahongliutan Biotite Monzogranite in Western Kunlun Orogen: Evidence from Zircon U-Pb Age and Li-Hf Isotope. Northwestern Geology, 53(1): 24-34 (in Chinese with English abstract).

[8]

Feng, J., Jia, H. X., Xu, S. Q., et al., 2021. Prospecting Model of Pegmatite Type Lithium Beryllium Deposit in Dahongliutan Ore Concentration Area of West Kunlun and Its Geological Implications. Xinjiang Geology, 39(3): 410-417 (in Chinese with English abstract).

[9]

Feng, Y. G., Liang, T., Wang, M. X., et al., 2022. Geochemistry of Tourmaline from Granitic Pegmatites in East Qinling and Its Implications for Mineralization. Acta Petrologica Sinica, 38(2): 428-444 (in Chinese with English abstract).

[10]

Feng, Y. G., Wang, Y. Q., Zhang, Z., et al., 2019. Geochemistry of Triphylite in Dahongliutan Lithium Pegmatites, Xinjiang: Implications for Pegmatite Evolution. Acta Geologica Sinica, 93(6): 1405-1421 (in Chinese with English abstract).

[11]

Henry, D. J., Guidotti, C. V., 1985. Tourmaline as a Petrogenetic Indicator Mineral: An Example from the Staurolite-Grade Metapelites of NW Maine. American Mineralogist, 70(1-2): 1-15. https://doi.org/10.1530/JME-15-0227

[12]

Jiang, S. Y., Wang, C. L., Zhang, L., et al., 2021. In Situ Trace Element Tracing and Isotopic Dating Ofpegmatite Type Lithium Deposits: An Overview. Acta Geologica Sinica, 95(10): 3017-3038 (in Chinese with English abstract).

[13]

Jiang, S.Y., Yu, J.M., Ni, P., et al., 2000. Tourmaline—A Sensitive Tracer for Petrogenesis and Minerogenesis. Geological Review, 46(6): 594-604 (in Chinese with English abstract).

[14]

Jolliff, B. L., Papike, J. J., Shearer, C. K., 1987. Fractionation Trends in Mica and Tourmaline as Indicators of Pegmatite Internal Evolution: Bob Ingersoll Pegmatite, Black Hills, South Dakota. Geochimica et Cosmochimica Acta, 51(3): 519-534. https://doi.org/10.1016/0016-7037(87)90066-4

[15]

Kaeter, D., Barros, R., Menuge, J. F., et al., 2018. The Magmatic-Hydrothermal Transition in Rare-Element Pegmatites from Southeast Ireland: LA-ICP-MS Chemical Mapping of Muscovite and Columbite-Tantalite. Geochimica et Cosmochimica Acta, 240: 98-130. https://doi.org/10.1016/j.gca.2018.08.024

[16]

Kong, H. L., Ren, G. L., Li, W. Y., et al., 2023. Geochronology, Geochemistry and Their Geological Significances of Spodumene Pegmatite Veins in the Dahongliutandong Deposit, Western Kunlun, China. Northwestern Geology, 56(2): 61-79 (in Chinese with English abstract).

[17]

Li, J. K., Li, P., Huang, Z. B., et al., 2023. Geological Features and Formation Mechanism of Pegmatite-Type Rare-Metal Deposits in the Renli Orefield, Northern Hunan, China—An Overview. Earth Science Frontiers, 30(5): 1-25 (in Chinese with English abstract).

[18]

Li, K., Gao, Y. B., Teng, J. X., et al., 2019. Metallogenic Geological Characteristics, Mineralization Age and Resource Potential of the Granite-Pegmatite-Type Rare Metal Deposits in Dahongliutan Area, Hetian County, Xinjiang. Northwestern Geology, 52(4): 206-221 (in Chinese with English abstract).

[19]

Li, L. G., Wang, L. X., Zhu, Y. X., et al., 2023. Metallogenic Age and Process of Rare Metal-Bearing Pegmatites from the Northern Margin of Mufushan Complex, South China. Earth Science, 48(9): 3221-3244 (in Chinese with English abstract).

[20]

Li, W. Y., Zhang, Z. W., Gao, Y. B., et al., 2022. Tectonic Transformation of the Kunlun Paleo-Tethyan Orogenic Belt and Related Mineralization of Critical Mineral Resources of Nickel, Cobalt, Manganese and Lithium. Geology in China, 49(5): 1385-1407 (in Chinese with English abstract).

[21]

Linnen, R. L., 1998. The Solubility of Nb-Ta-Zr-Hf-W in Granitic Melts with Li and Li + F; Constraints for Mineralization in Rare Metal Granites and Pegmatites. Economic Geology, 93(7): 1013-1025. https://doi.org/10.2113/gsecongeo.93.7.1013

[22]

Linnen, R. L., Van Lichtervelde, M., Cerny, P., 2012. Granitic Pegmatites as Sources of Strategic Metals. Elements, 8(4): 275-280. https://doi.org/10.2113/gselements.8.4.275

[23]

Liu, C., Wang, R. C., Wu, F. Y., et al., 2021. Lithium Mineralization in Qomolangma: First Report of Elbaite-Lepidolite Subtype Pegmatite in the Himalaya Leucogranite Belt. Acta Petrologica Sinica, 37(11): 3287-3294 (in Chinese with English abstract).

[24]

London, D., Manning, D. A. C., 1995. Chemical Variation and Significance of Tourmaline from Southwest England. Economic Geology, 90(3): 495-519. https://doi.org/10.2113/gsecongeo.90.3.495

[25]

Mao, J. W., Yang, Z. X., Xie, G. Q., et al., 2019. Critical Minerals: International Trends and Thinking. Mineral Deposits, 38(4): 689-698 (in Chinese with English abstract).

[26]

Mattern, F., Schneider, W., 2000. Suturing of the Proto- and Paleo-Tethys Oceans in the Western Kunlun (Xinjiang, China). Journal of Asian Earth Sciences, 18(6): 637-650. https://doi.org/10.1016/S1367-9120(00)00011-0

[27]

Peng, H. L., He, N. Q., Wang, M. C., et al., 2018. Geological Characteristics and Metallogenic Regularity of West Track 509 Rare Polymetallic Deposit in Dahongliutan Region, Hetian, Xinjiang. Northwestern Geology, 51(3): 146-154 (in Chinese with English abstract).

[28]

Qiao, G. B., Zhang, H. D., Wu, Y. Z., et al., 2015. Petrogenesis of the Dahongliutan Monzogranite in Western Kunlun: Constraints from SHRIMP Zircon U-Pb Geochronology and Geochemical Characteristics. Acta Geologica Sinica, 89(7): 1180-1194 (in Chinese with English abstract).

[29]

Roda-Robles, E., Pesquera, A., Gil-Crespo, P. P., et al., 2006. Mineralogy and Geochemistry of Micas from the Pinilla de Fermoselle Pegmatite (Zamora, Spain). European Journal of Mineralogy, 18(3): 369-377. https://doi.org/10.1127/0935-1221/2006/0018-0369

[30]

Selway, J. B., 2005. A Review of Rare-Element (Li-Cs-Ta) Pegmatite Exploration Techniques for the Superior Province, Canada, and Large Worldwide Tantalum Deposits. Exploration and Mining Geology, 14(1-4): 1-30. https://doi.org/10.2113/gsemg.14.1-4.1

[31]

Tang, J. L., Ke, Q., Xu, X. W., et al., 2022. Magma Evolution and Mineralization of Longmenshan Lithium- Beryllium Pegmatite in Dahongliutan Area, West Kunlun. Acta Petrologica Sinica, 38(3): 655-675 (in Chinese with English abstract).

[32]

Teng, J. X., Gao, Y. B., He, Y. K., et al., 2021. Metallogenic Regularity and Resource Potential of Manganese, Lithium, Lead, Zinc and Iron in West Kunlun. Geological Publishing House, Beijing (in Chinese).

[33]

Thomas, R., Davidson, P., Beurlen, H., 2012. The Competing Models for the Origin and Internal Evolution of Granitic Pegmatites in the Light of Melt and Fluid Inclusion Research. Mineralogy and Petrology, 106(1): 55-73. https://doi.org/10.1007/s00710-012-0212-z

[34]

Thomas, R., Webster, J. D., Heinrich, W., 2000. Melt Inclusions in Pegmatite Quartz: Complete Miscibility between Silicate Melts and Hydrous Fluids at Low Pressure. Contributions to Mineralogy and Petrology, 139(4): 394-401. https://doi.org/10.1007/s004100000120

[35]

Tischendorf, G., Gottesmann, B., Förster, H. J., et al., 1997. On Li-Bearing Micas: Estimating Li from Electron Microprobe Analyses and an Improved Diagram for Graphical Representation. Mineralogical Magazine, 61(409): 809-834. https://doi.org/10.1180/minmag.1997.061.409.05

[36]

Trumbull, R. B., Beurlen, H., Wiedenbeck, M., et al., 2013. The Diversity of B-Isotope Variations in Tourmaline from Rare-Element Pegmatites in the Borborema Province of Brazil. Chemical Geology, 352: 47-62. https://doi.org/10.1016/j.chemgeo.2013.05.021

[37]

Tu, Q. J., Han, Q., Li, P., et al., 2019. Basic Characteristics and Exploration Progress of the Spodumene Ore Deposit in the Dahongliutan Area, West Kunlun. Acta Geologica Sinica, 93(11): 2862-2873 (in Chinese with English abstract).

[38]

van Hinsberg, V. J., Henry, D. J., Dutrow, B. L., 2011. Tourmaline as a Petrologic Forensic Mineral: A Unique Recorder of Its Geologic Past. Elements, 7(5): 327-332. https://doi.org/10.2113/gselements.7.5.327

[39]

Van Lichtervelde, M., Holtz, F., Hanchar, J. M., 2010. Solubility of Manganotantalite, Zircon and Hafnon in Highly Fluxed Peralkaline to Peraluminous Pegmatitic Melts. Contributions to Mineralogy and Petrology, 160(1): 17-32. https://doi.org/10.1007/s00410-009-0462-x

[40]

Veksler, I. V., 2004. Liquid Immiscibility and Its Role at the Magmatic-Hydrothermal Transition: A Summary of Experimental Studies. Chemical Geology, 210(1-4): 7-31. https://doi.org/10.1016/j.chemgeo.2004.06.002

[41]

Veksler, I. V., Thomas, R., Schmidt, C., 2002. Experimental Evidence of Three Coexisting Immiscible Fluids in Synthetic Granitic Pegmatite. American Mineralogist, 87(5-6): 775-779. https://doi.org/10.2138/am-2002-5-621

[42]

Wang, H., Gao, H., Ma, H. D., et al., 2020. Geological Characteristics and Pegmatite Vein Group Zoning of the Xuefengling, Xuepen, and Shuangya Lithium Deposits in Karakorum, Hetian, Xinjiang. Geotectonica et Metallogenia, 44(1): 57-68 (in Chinese with English abstract).

[43]

Wang, H., Li, P., Ma, H. D., et al., 2017. Discovery of the Bailongshan Superlarge Lithium-Rubidium Deposit in Karakorum, Hetian, Xinjiang, and Its Prospecting Implication. Geotectonica et Metallogenia, 41(6): 1053-1062 (in Chinese with English abstract).

[44]

Wang, R. C., Xie, L., Zhu, Z. Y., et al., 2019. Micas: Important Indicators of Granite-Pegmatite-Related Rare-Metal Mineralization. Acta Petrologica Sinica, 35(1): 69-75 (in Chinese with English abstract).

[45]

Wang, W., Du, X. F., Liu, W., et al., 2022. Geological Characteristic and Discussion on Metallogenic Age of the West 509-Daoban Li-Be Rare Metal Deposit in the West Kunlun Orogenic Belt. Acta Petrologica Sinica, 38(7): 1967-1980 (in Chinese with English abstract).

[46]

Wang, Z., Chen, Z. Y., Li, J. K., et al., 2019. Indication of Mica Minerals for Magmatic-Hydrothermal Evolution of Renli Rare Metal Pegmatite Deposit. Mineral Deposits, 38(5): 1039-1052 (in Chinese with English abstract).

[47]

Wang, H., Gao, H., Zhang, X. Y., et al., 2020. Geology and Geochronology of the Super-Large Bailongshan Li-Rb-(Be) Rare-Metal Pegmatite Deposit, West Kunlun Orogenic Belt, NW China. Lithos, 360-361: 105449. https://doi.org/10.1016/j.lithos.2020.105449

[48]

Wei, X. P., Wang, H., Hu, J., et al., 2017. Geochemistry and Geochronology of the Dahongliutan Two-Mica Granite Pluton in Western Kunlun Orogen: Geotectonic Implications. Geochimica, 46(1): 66-80 (in Chinese with English abstract).

[49]

Xiao, W. J., Han, F. L., Windley, B. F., et al., 2003. Multiple Accretionary Orogenesis and Episodic Growth of Continents: Insights from the Western Kunlun Range, Central Asia. International Geology Review, 45(4): 303-328. https://doi.org/10.2747/0020-6814.45.4.303

[50]

Xiao, W. J., Windley, B. F., Fang, A. M., et al., 2001. Palaeozoic-Early Mesozoic Accretionary Tectonics of the Western Kunlun Range, NW China. Gondwana Research, 4(4): 826-827. https://doi.org/10.1016/S1342-937X(05)70611-0

[51]

Xiao, W. J., Windley, B. F., Liu, D., et al., 2005. Accretionary Tectonics of the Western Kunlun Orogen, China: A Paleozoic-Early Mesozoic, Long-Lived Active Continental Margin with Implications for the Growth of Southern Eurasia. The Journal of Geology, 113(6): 687-705. https://doi.org/10.1086/449326

[52]

Xing, C. M., Wang, C. Y., Wang, H., 2020. Magmatic-Hydrothermal Processes Recorded by Muscovite and Columbite-Group Minerals from the Bailongshan Rare-Element Pegmatites in the West Kunlun-Karakorum Orogenic Belt, NW China. Lithos, 364-365: 105507. https://doi.org/10.1016/j.lithos.2020.105507

[53]

Xu, Z. Q., Zhu, W. B., Zheng, B. H., et al., 2021. New Energy Strategy for Lithium Resource and the Continental Dynamics Research—Celebrating the Centenary of the School of Earth Sciences and Engineering, Nanjing University. Acta Geologica Sinica, 95(10): 2937-2954 (in Chinese with English abstract).

[54]

Yan, Q. H., Wang, H., Qiu, Z. W., et al., 2017. Chronology and Geological Significance of Cassiterite and Niobium-Tantalum Ore Deposits in Dahongliutan Rare Metal in West Kunlun. The 9th National Member Congress and 16th Annual Conference of Chinese Society of Mineralogy, Petrology and Geochemistry, Xi’an (in Chinese with English abstract).

[55]

Yan, Q. H., Qiu, Z. W., Wang, H., et al., 2018. Age of the Dahongliutan Rare Metal Pegmatite Deposit, West Kunlun, Xinjiang (NW China): Constraints from LA-ICP-MS U-Pb Dating of Columbite-(Fe) and Cassiterite. Ore Geology Reviews, 100: 561-573. https://doi.org/10.1016/j.oregeorev.2016.11.010

[56]

Yan, Q. H., Wang, H., Chi, G. X., et al., 2022. Recognition of a 600-km-Long Late Triassic Rare Metal (Li-Rb-Be-Nb-Ta) Pegmatite Belt in the Western Kunlun Orogenic Belt, Western China. Economic Geology, 117(1): 213-236. https://doi.org/10.5382/econgeo.4858

[57]

Yang, S. Y., Jiang, S. Y., 2012. Chemical and Boron Isotopic Composition of Tourmaline in the Xiangshan Volcanic-Intrusive Complex, Southeast China: Evidence for Boron Mobilization and Infiltration during Magmatic-Hydrothermal Processes. Chemical Geology, 312-313: 177-189. https://doi.org/10.1016/j.chemgeo.2012.04.026

[58]

Zhang, C. L., Lu, S. N., Yu, H. F., et al., 2007. Tectonic Evolution of the West Kunlun Orogenic Belt on the Northern Margin of Qinghai-Tibet Plateau: Evidence from Zircon SHRIMP and LA-ICP-MS Dating. Science in China (Series D), 37(2): 145-154 (in Chinese).

[59]

Zhang, C.L., Ma, H.D., Zhu, B.Y., et al., 2019. Tectonic Evolution of the Western Kunlun-Karakorum Orogenic Belt and Its Coupling with the Mineralization Effect. Geological Review, 65(5): 1077-1102 (in Chinese with English abstract).

[60]

Zhang, H., Wang, R. C., Tang, Y., 2008. How Long Does the Magma-Hydrothermal Transition Stage Last. Bulletin of Mineralogy Petrology and Geochemistry, 27 (Suppl.): 22-23 (in Chinese with English abstract).

[61]

Zhang, A. C., Wang, R. C., Jiang, S. Y., et al., 2008. Chemical and Textural Features of Tourmaline from the Spodumene-Subtype Koktokay No. 3 Pegmatite, Altai, Northwestern China: A Record of Magmatic to Hydrothermal Evolution. The Canadian Mineralogist, 46(1): 41-58. https://doi.org/10.3749/canmin.46.1.41

[62]

Zhang, H. J., Tian, S. H., Wang, D. H., et al., 2021a. Lithium Isotope Behavior during Magmatic Differentiation and Fluid Exsolution in the Jiajika Granite-Pegmatite Deposit, Sichuan, China. Ore Geology Reviews, 134: 104139. https://doi.org/10.1016/j.oregeorev.2021.104139

[63]

Zhang, L., Long, X. P., Zhang, R., et al., 2017. Source Characteristics and Provenance of Metasedimentary Rocks from the Kangxiwa Group in the Western Kunlun Orogenic Belt, NW China: Implications for Tectonic Setting and Crustal Growth. Gondwana Research, 46: 43-56. https://doi.org/10.1016/j.gr.2017.02.014

[64]

Zhang, Z. Y., Jiang, Y. H., Niu, H. C., et al., 2021b. Fluid Inclusion and Stable Isotope Constraints on the Source and Evolution of Ore-Forming Fluids in the Bailongshan Pegmatitic Li-Rb Deposit, Xinjiang, Western China. Lithos, 380-381: 105824. https://doi.org/10.1016/j.lithos.2020.105824

[65]

Zhao, J. Z., Cao, Z. J., Zhang, Z. J., et al., 2019. Analysis of the Genesis of Tourmaline and Lithium Beryllium Ore. Xinjiang Nonferrous Metals, 42(6): 57-60 (in Chinese with English abstract).

[66]

Zhou, B., Sun, Y. X., Kong, D. Y., 2011. Geological Features and Prospecting Potential of Rare Metallic Deposits in the Dahongliutan Region, Xinjiang. Acta Geologica Sichuan, 31(3): 288-292 (in Chinese with English abstract).

[67]

Zhou, J. S., Wang, Q., Xu, Y. G., et al., 2021. Geochronology, Petrology, and Lithium Isotope Geochemistry of the Bailongshan Granite-Pegmatite System, Northern Tibet: Implications for the Ore-Forming Potential of Pegmatites. Chemical Geology, 584: 120484. https://doi.org/10.1016/j.chemgeo.2021.120484

[68]

Zou, T. R., Li, Q. C., 2006. Rare and Rare Earth Metallic Deposits in Xinjiang, China. Geological Publishing House, Beijing (in Chinese with English abstract).

[69]

Zou, T. R., Yang, Y. Q., 1996. Color and Composition of Tourmaline in China. Mineral Deposits. 15(S1): 65-68 (in Chinese with English abstract).

基金资助

国家自然科学基金项目(42122014)

新疆维吾尔自治区重大科技专项(2021A03001-2)

新疆维吾尔自治区重点实验室开放课题(2023D04067)

第三次新疆科学考察项目(2022xjkk1301)

AI Summary AI Mindmap
PDF (2731KB)

176

访问

0

被引

详细

导航
相关文章

AI思维导图

/