全新世长江中下游地区降水变化及其驱动机制
徐家豪 , 张志平 , 陈钧伟 , 孙炜毅 , 申忠伟 , 贾鑫
地球科学 ›› 2025, Vol. 50 ›› Issue (02) : 699 -717.
全新世长江中下游地区降水变化及其驱动机制
Holocene Precipitation Change in the Middle and Lower Reaches of the Yangtze River and Its Forcing Mechanisms
,
,
为调和不同研究重建的全新世长江中下游地区降水演化之间的矛盾,集成分析了具有年代可靠、指示意义明确的12条全新世长江中游降水记录和18条全新世长江下游降水记录. 结果显示,长江中下游地区降水自全新世伊始逐步增多,中全新世后降水逐渐减少;晚全新世,长江中下游地区降水演化模式出现分异:长江中游整体重新转为湿润,长江下游在波动中趋于干旱. 机制方面,全新世长江中下游地区降水演化总体受控于北半球夏季太阳辐射影响. 晚全新世,ENSO活动显著增强,亚洲西风急流位置偏南,叠加印度夏季风环流异常,不仅导致长江中下游地区降水演化模式偏离北半球夏季太阳辐射变化趋势,也造成长江中游相对于长江下游形成更为湿润的气候.
In order to reconcile the contradictions among the Holocene precipitation records retrieved from different nature archives in the middle and lower reaches of the Yangtze River (MLRYR), this study analyzed 12 Holocene precipitation records in the middle reaches of the Yangtze River and 18 Holocene precipitation records in the lower reaches of the Yangtze River. The results show that the precipitation in the MLRYR has gradually increased since the onset of the Holocene, and then decreased after the middle Holocene. During the late Holocene, the precipitation evolution pattern in the MLRYR was decoupled: the precipitation in the middle reaches of the Yangtze River increased again, while the precipitation in the lower reaches of the Yangtze River tended to decrease with fluctuations. In terms of mechanisms, the Holocene precipitation evolution in the MLRYR was generally controlled by the Northern Hemisphere summer insolation (NHSI). During the late Holocene, the ENSO activity increased significantly, and the position of the Asian westerly jet was shifted to the south, superimposed on the anomalies of the Indian summer monsoon circulation, which not only led to the deviation of the precipitation pattern in the MLRYR from the variation trend of NHSI, but also resulted in the formation of a more wet climate in the middle reaches of the Yangtze River relative to the lower reaches of the Yangtze River.
全新世 / 长江中下游地区 / 东亚夏季风 / 降水变化 / 驱动机制 / 地貌学.
Holocene / Middle and lower reaches of the Yangtze River / East Asian summer monsoon / precipitation changes / forcing mechanisms / geomorphology
| [1] |
An, Z. S., Porter, S. C., Kutzbach, J. E., et al., 2000.Asynchronous Holocene Optimum of the East Asian Monsoon. Quaternary Science Reviews, 19(8): 743-762. https://doi.org/10.1016/s0277⁃3791(99)00031⁃1 |
| [2] |
Bi, L., Yang, S.Y., Zhao, Y., et al., 2017. Provenance Study of the Holocene Sediments in the Changjiang (Yangtze River) Estuary and Inner Shelf of the East China Sea. Quaternary International, 441:147-161. https://doi.org/10.1016/j.quaint.2016.12.004 |
| [3] |
Bhushan, R., Sati, S. P., Rana, N., et al., 2018. High⁃Resolution Millennial and Centennial Scale Holocene Monsoon Variability in the Higher Central Himalayas. Palaeogeography, Palaeoclimatology, Palaeoecology, 489: 95-104. https://doi.org/10.1016/j.palaeo.2017.09.032 |
| [4] |
Caley, T., Roche, D. M., Renssen, H., et al., 2014. Orbital Asian Summer Monsoon Dynamics Revealed Using an Isotope⁃Enabled Global Climate Model. Nature Communications, 5(1). https://doi.org/10.1038/ncomms6371 |
| [5] |
Cai, Y. J., Fung, I. Y., Edwards, R. L.,et al., 2015. Variability of Stalagmite⁃Inferred Indian Monsoon Precipitation over the Past 252,000 y. Proceedings of the National Academy of Sciences, 112(10): 2954-2959. https://doi.org/10.1073/pnas.1424035112 |
| [6] |
Cao, J., Wu,L., G., 2016. Asymmetric Impact of Last Glacial Maximum Ice Sheets on Global Monsoon Activity. Journal of the Meteorological Sciences, 36(4):425-435 (in Chinese with English abstract). |
| [7] |
Chen, Z. Y., Hong, X. Q., Li S., et al., 1997. Study of Archaeology Related Environment Evolution of Taihu Lake in Southern Chang Jiang Delta Plain. Acta Geographica Sinica, 52(2): 131-137 (in Chinese with English abstract). |
| [8] |
Chen, F. H., Yu, Z. C., Yang, M., et al., 2008. Holocene Moisture Evolution in Arid Central Asia and Its Out⁃of⁃Phase Relationship with Asian Monsoon History. Quaternary Science Reviews, 27(3-4): 351-364. https://doi.org/10.1016/j.quascirev.2010.02.017 |
| [9] |
Chen, W., Wang, W.M., Dai, X.R.,2009. Holocene Vegetation History with Implications of Human Impact in the Lake Chaohu Area, Anhui Province, East China. Vegetation History and Archaeobotany, 18(2): 137-146. https://doi.org/10.1007/s00334⁃008⁃0173⁃7 |
| [10] |
Chen, S. S., Wang, X. F., 2014. The Terrain and Climatic Change of Jianghan Plain since Holocene. Geographical Science Research, 3: 39 (in Chinese with English abstract). |
| [11] |
Chen, F. H., Xu, Q. H., Chen, J. H., et al., 2015a. East Asian Summer Monsoon Precipitation Variability since the Last Deglaciation. Scientific Reports, 5(1):1-11. https://doi.org/10.1038/srep11186 |
| [12] |
Chen, J. H., Chen, F. H., Feng, S., et al., 2015b. Hydroclimatic Changes in China and Surroundings during the Medieval Climate Anomaly and Little Ice Age: Spatial Patterns and Possible Mechanisms. Quaternary Science Reviews, 107:98-111. https://doi.org/10.1016/j.quascirev.2014.10.012 |
| [13] |
Chen, J. H., Rao, Z. G., Liu, J. B., et al., 2016. On the Timing of the East Asian Summer Monsoon Maximum during the Holocene: Does the Speleothem Oxygen Isotope Record Reflect Monsoon Rainfall Variability?Science China Earth Sciences, 59(12): 2328-2338. https://doi.org/10.1007/s11430⁃015⁃5500⁃5 |
| [14] |
Chen, F. H., Fu B. J., Xia J., et al., 2019. Major Advances in Studies of the Physical Geography and LIving Environment of China during the Past 70 Years and Future Prospects. Science China Earth Sciences, 62: 1665-1701 (in Chinese). |
| [15] |
Chen, W., Song, B., Shu, J.W., et al., 2021. Vegetation History with Implication of Climate Changes and Human Impacts over the Last 9000 Years in the Lake Nanyi Area, Anhui Province, East China. Palaeoworld, 30(3): 583-592. https://doi.org/10.1016/j.palwor.2020.09.006 |
| [16] |
Cheng, H., Sinha, A., Wang, X. F., et al., 2012. The Global Paleomonsoon as Seen through Speleothem Records from Asia and the Americas. Climate Dynamics, 39(5): 1045-1062. https://doi.org/10.1007/s00382⁃012⁃1363⁃7 |
| [17] |
Cheng, H., Edwards, R. L., Sinha, A., et al., 2016. The Asian Monsoon over the Past 640,000 Years and Ice Age Terminations.Nature, 534(7609): 640-646. https://doi.org/10.1038/nature18591 |
| [18] |
Cohen, K. M., Finney, S. C., Gibbard, P. L., et al., 2013. The ICS International Chronostratigraphic Chart. Episodes, 36(3): 199-204. https://doi.org/10.18814/epiiugs/2013/v36i3/002 |
| [19] |
Ding, Y. H., Chan, J. C. L.,2005. The East Asian Summer Monsoon: An Overview. Meteorology and Atmospheric Physics, 89(1-4): 117-142. https://doi.org/10.1007/s00703⁃005⁃0125⁃z |
| [20] |
Dong, J. G., Wang, Y. J., Cheng H., et al., 2010. A High⁃Resolution Stalagmite Record of the Holocene East Asian Monsoon from Mt Shennongjia, Central China. The Holocene, 20(2): 257-264. https://doi.org/10.1177/0959683609350393 |
| [21] |
Du, X. J., Hendy, I., Hinnov, L., et al., 2021. High⁃Resolution Interannual Precipitation Reconstruction of Southern California: Implications for Holocene ENSO Evolution. Earth and Planetary Science Letters, 554: 116670. https://doi.org/10.1016/j.epsl.2020.116670 |
| [22] |
Dyke, A. S., 2004. An Outline of North American Deglaciation with Emphasis on Central and Northern Canada.North America,Developments in Quaternary Sciences, 2:373-424. https://doi.org/10.1016/s1571⁃0866(04)80209⁃4 |
| [23] |
Gu, Y. S., Wang, H., Huang, X., et al., 2012. Phytolith Records of the Climate Change Since the Past 15000 Years in the Middle Reach of the Yangtze River in China. Frontiers of Earth Science, 6: 10-17. https://doi.org/10.1007/sl1707⁃012⁃0302⁃6 |
| [24] |
Gu, Y. S., Liu, H. Y., Guan, S., et al., 2018. Possible El Niño⁃Southern Oscillation⁃Related Lacustrine Facies Developed in Southern Lake Poyang during the Late Holocene: Evidence from Spore⁃Pollen Records. The Holocene, 28(4): 503-512. https://doi.org/10.1177/0959683617735593 |
| [25] |
Guo, Y. Q., Huang, C. C., Zhou, Y. L., et al., 2016. Extraordinary Flood Events and the Response to Monsoonal Climatic Change during the Last 3000 Years along the Middle Yangtze River Valley, China. Palaeogeography, Palaeoclimatology, Palaeoecology, 462: 70-84. https://doi.org/10.1016/j.palaeo.2016.09.005 |
| [26] |
Guan, S., Yang, Q., Li, Y. N., et al., 2022. River Flooding Response to ENSO⁃Related Monsoon Precipitation: Evidence from Late Holocene Core Sediments in the Jianghan Plain. Palaeogeography, Palaeoclimatology, Palaeoecology, 589: 110834. https://doi.org/10.1016/j.palaeo. 2022.110834 |
| [27] |
Hao, Q. Z., Wang, L., Oldfield, F., et al., 2012. Delayed Build⁃Up of Arctic Ice Sheets during 400,000⁃Year Minima in Insolation Variability. Nature: 490(7420): 393-396. https://doi.org/10.1038/nature11493 |
| [28] |
He, Y. X., Zhao, C., Zheng, Z., et al., 2015. Peatland Evolution and Associated Environmental Changes in Central China over the Past 40,000 Years. Quaternary Research, 84(2): 255-261. https://doi.org/10.1016/j.yqres. 2015. 06.004 |
| [29] |
Herzschuh, U., Cao, X. Y., Laepple, T., et al., 2019. Position and Orientation of the Westerly Jet Determined Holocene Rainfall Patterns in China. Nature Communications, 10(1): 2376. https://doi.org/10.1038/s41467⁃019⁃09866⁃8 |
| [30] |
Hori, K., Saito, Y., 2007. An Early Holocene Sea⁃Level Jump and Delta Initiation. Geophysical Research Letters, 34(18). https://doi.org/10.1029/2007gl031029 |
| [31] |
Hu, C. Y., Henderson, G. M., Huang, J. H., et al., 2008. Quantification of Holocene Asian Monsoon Rainfall from Spatially Separated Cave Records. Earth and Planetary Science Letters, 266(3-4): 221-232. https://doi.org/10.1016/j.epsl.2007.10.015 |
| [32] |
Hu, S., Fedorov, A. V. 2018. Cross⁃Equatorial Winds Control El Niño Diversity and Change. Nature Climate Change, 8(9): 798-802. https://doi.org/10.1038/s41558⁃018⁃0248⁃0 |
| [33] |
Huang, X. Y., Pancost, R. D., Xue, J. T., et al., 2018. R Response of Carbon Cycle to Drier Conditions in the Mid⁃Holocene in Central China. Nature Communications, 9(1): 1369. https://doi.org/10.1038/s41467⁃018⁃03804⁃w |
| [34] |
Jiang, S. W., Zhou, X., Sachs, J. P., et al., 2021. Central Eastern China Hydrological Changes and ENSO⁃Like Variability over the Past 1 800 Yr. Geology, 49(11): 1386-1390.https://doi.org/10.1130/g48894.1 |
| [35] |
Jiang, S. W., Zhou, X., Tu, L. Y., et al., 2022. Radiocarbon Age Offset of Lake Sediments from Central Eastern China Modulated by Both Hydroclimate and Human Activity. Quaternary Science Reviews, 293: 107726. https://doi.org/10.1016/j.quascirev.2022.107726 |
| [36] |
Jiang, X. W., Li, Y.Q., Yang, S., 2011. Interannual and Interdecadal Variations of the South Asian and Western Pacific Subtropical Highs and Their Relationships with Asian⁃Pacific Summer Climate. Meteorology and Atmospheric Physics, 113(3-4): 171-180. https://doi.org/10.1007/s00703⁃011⁃0146⁃8 |
| [37] |
Jiang, Z. C., 1960.The Achaeological Discoveries in Jiangsu and Their Significance to the Study of Ancient History. Jianghai Academic Journal, (7): 39-47 (in Chinese). |
| [38] |
Jin, L. Y., Schneider, B., Park, W., et al., 2014. The Spatial⁃Temporal Patterns of Asian Summer Monsoon Precipitation in Response to Holocene Insolation Change: A Model⁃Data Synthesis. Quaternary Science Reviews, 85: 47-62. https://doi.org/10.1016/j.quascirev. 2013. 11.004 |
| [39] |
Kong, W. W., Swenson, L. M., Chiang, J. C., 2017. Seasonal Transitions and the Westerly Jet in the Holocene East Asian Summer Monsoon. Journal of Climate, 30(9): 3343-3365. https://doi.org/10.1016/10.1175/JCLI⁃D⁃16⁃0087.1 |
| [40] |
Kuang, X. Y., Zhang, Y. C., 2006. Impact of the Position Abnormalities of East Asian Subtropical Westerly Jet on Summer Precipitation in Middle⁃Lower Reaches of Yangtze River. Plateau Meteorology, 25(3): 382-389 (in Chinese with English abstract). |
| [41] |
Laskar, J., Robutel, P., Joutel, F., et al., 2004. A Long⁃Term Numerical Solution for the Insolation Quantities of the Earth. Astronomy & Astrophysics, 428(1):261-285. https://doi.org/10.1051/0004⁃6361:20041335 |
| [42] |
Li, X. L., Hu, C. Y., Huang, J. H., et al., 2014a. A 9 000⁃Year Carbon Isotopic Record of Acid⁃Soluble Organic Matter in a Stalagmite from Heshang Cave, Central China: Paleoclimate Implications. Chemical Geology, 388: 71-77. https://doi.org/10.1016/j.chemgeo.2014.08.029 |
| [43] |
Li, F., Zhu, C., Wu, L., Sun, W., et al., 2014b. “Environmental Humidity Changes Inferred from Multi⁃Indicators in the Jianghan Plain, Central China during the Last 12,700 Years. Quaternary International, 349: 68-78. https://doi.org/10.1016/j.quaint.2013.09.040 |
| [44] |
Li, Q., Wu, H. B., Yu, Y. Y, Sun, A. Z., et al., 2014c. Reconstructed Moisture Evolution of the Deserts in Northern China since the Last Glacial Maximum and Its Implications for the East Asian Summer Monsoon. Global and Planetary Change, 121: 101-112. https://doi.org/10.1016/j.gloplacha.2014.07.009 |
| [45] |
Li, J. Y, Xu, Q. H., Zheng, Z., et al., 2015. A Dataset of Spatial Distribution of Bioclimatic Variables in China at 1km Resolution. Quaternary Research, 83(2): 287-297. https://doi.org10.1016/j.yqres.2014.12.002 |
| [46] |
Li, B., Ma, C. M., Zhu, C., et al., 2018.Environmental Evolution of Eastern Taihu Plain During the Holocene Achieved by Pingwang Core.Acta PalaeontologicaSinica,57(4):513-523 (in Chinese with English abstract). |
| [47] |
Li, J. Y., Dodson, J., Yan, H., et al., 2018. Q Quantitative Holocene Climatic Reconstructions for the Lower Yangtze Region of China. Climate Dynamics, 50(3-4): 1101-1113. https://doi.org/10.1007/s00382⁃017⁃3664⁃3 |
| [48] |
Li, C. A., Zhang, Y. F., Xu, W. S., et al., 2023. Paleogeographic Pattern of Hankou and Hanjiang Estuary 350 Years Ago. Earth Science, 48(9): 3552-3561 (in Chinese with English abstract). |
| [49] |
Lin, Z. D., Fu, Y. H., Lu, R. Y., 2019. Intermodel Diversity in the Zonal Location of the Climatological East Asian Westerly Jet Core in Summer and Association with Rainfall over East Asia in CMIP5 Models. Advances in Atmospheric Sciences, 36(6): 614-622. https://doi.org/10.1007/s00376⁃019⁃8221⁃z |
| [50] |
Liu, Z. Y., Otto⁃Bliesner, B. L., He, F., et al., 2009. T Transient Simulation of Last Deglaciation with a New Mechanism for Bølling⁃Allerød Warming. Science, 325(5938): 310-314. https://doi.org/10.1126/science. 1171041 |
| [51] |
Liu, T., Chen, Z. Y., Sun, Q. L., et al., 2012. Migration of Neolithic Settlements in the Dongting Lake Area of the Middle Yangtze River Basin, China: Lake⁃Level and Monsoon Climate Responses. The Holocene, 22(6): 649-657. https://doi.org/10.1177/0959683611405084 |
| [52] |
Liu, Z. Y., Lu, Z. Y., Wen, X. Y., et al., 2014. Evolution and Forcing Mechanisms of El Niño over the Past 21,000 Years. Nature, 515(7528): 550-553. https://doi.org/10.1038/nature13963 |
| [53] |
Liu, Z. y., Wen, X. y., Brady, E. C., et al., 2014. Chinese Cave Records and the East Asia Summer Monsoon. Quaternary Science Reviews, 83: 115-128. https://doi.org/10.1016/j.quascirev.2013.10.021 |
| [54] |
Liu, J. B., Chen, J. H., Zhang, X. J., et al., 2015. Holocene East Asian Summer Monsoon Records in Northern China and Their Inconsistency with Chinese Stalagmite δ18O Records. Earth⁃Science Reviews, 148: 194-208. https://doi.org/10.1016/j.earscirev.2015.06.004 |
| [55] |
Liu, J. B., Chen, S. Q., Chen, J. H., et al., 2017. Chinese Cave δ18O Records Records Do Not Represent Northern East Asian Summer Monsoon Rainfall. Proceedings of the National Academy of Sciences,114(15): E2987-E2988. https://doi.org/10.1073/pnas.1703471114 |
| [56] |
Liu, H. Y., Gu, Y. S., Huang, X. Y, et al., 2019. A 13,000⁃Year Peatland Palaeohydrological Response to the ENSO⁃Related Asian Monsoon Precipitation Changes in the Middle Yangtze Valley. Quaternary Science Reviews, 212: 80-91. https://doi.org/10.1016/j.quascirev.2019.03.034 |
| [57] |
Liu, X. K., Liu, J. B., Chen, S. Q., et al., 2020. New Insights on Chinese Cave δ18O Records and Their Paleoclimatic Significance. Earth⁃Science Reviews, 207: 103216. https://doi.org/10.1016/j.earscirev.2020.103216 |
| [58] |
Liu, J. B., Shen, Z. W., Chen, W., et al., 2021. Dipolar Mode of Precipitation Changes between North China and the Yangtze River Valley Existed over the Entire Holocene: Evidence from the Sediment Record of Nanyi Lake. International Journal of Climatology, 41(3): 1667-1681. https://doi.org/10.1002/joc.6906 |
| [59] |
Lu, F. Z., Ma, C. M., Zhu, C., et al., 2019. Variability of East Asian Summer Monsoon Precipitation during the Holocene and Possible Forcing Mechanisms. Climate Dynamics, 52: 969-989.https://doi.org/10.1007/s00382⁃018⁃4175⁃6 |
| [60] |
Maher, B. A., 2016. Palaeoclimatic Records of the Loess/Palaeosol Sequences of the Chinese Loess Plateau. Quaternary Science Reviews, 154:23-84. https://doi.org/10.1016/j.quascirev.2016.08.004 |
| [61] |
Mu, D. X., 2021. A Comparative Study of the Middle and Lower Reaches of the Yangtze River in the Middle Neolithic Age(Dissertation). Shandong University, Jinan, 1-2 (in Chinese with English abstract). |
| [62] |
Orton, G. J., Reading, H. G., 1993. Variability of Deltaic Processes in Terms of Sediment Supply, with Particular Emphasis on Grain Size. Sedimentology, 40(3): 475-512. https://doi.org/10.1111/j.1365⁃3091.1993.tb01347.x |
| [63] |
Prell, W. L., Kutzbach, J. E., 1987. Monsoon Variability Over the Past 150,000 Years. Journal of Geophysical Research: Atmospheres, 92(D7): 8411-8425. https://doi.org/10.1029/JD092iD07p08411 |
| [64] |
Rohatgi, A., 2022. Webplotdigitizer: Version 4.6. Available from https://automeris.io/WebPlotDigitizer. (Last accessed on September, 2022) |
| [65] |
Shu, J. W., Wang, W. M.,Chen, W., 2007. Holocene Vegetation and Environment Changes in the NwTaihu Plain, Jiangsu Province, East China. Acta MicropalaeontologicaSinica,(2):210-221 (in Chinese). |
| [66] |
Sun, J., Ma, C. M., Cao, X. Y., et al., 2019. Quantitative Precipitation Reconstruction in the East⁃Central Monsoonal China since the Late Glacial Period. Quaternary International, 521: 175-184. https://doi.org/10.1016/j.quaint. 2019.05.033 |
| [67] |
Tao, J., Chen, M.T., Xu, S.Y., 2006. A Holocene Environmental Record from the Southern Yangtze River Delta, Eastern China. Palaeogeography, Palaeoclimatology, Palaeoecology, 230(3-4): 204-229. https://doi.org/10.1016/j.palaeo.2005.07.015 |
| [68] |
Tian, S. H., Xiao, G. Q., Yin, Q. Z., et al., 2023. ENSO⁃related East Asian Climate Transition at ~3 600 BP and Its Implications for the Rise of Pastoralism in North China. Palaeogeography, Palaeoclimatology, Palaeoecology, 630: 111810. https://doi.org/10.1021/acsomega.3c07134 |
| [69] |
Wang, Y. J., Cheng, H., Edwards, R. L., et al., 2008. Millennial⁃ and Orbital⁃Scale Changes in the East Asian Monsoon over the Past 224,000 Years. Nature, 451(7182): 1090-1093. https://doi.org/10.1038/nature06692 |
| [70] |
Wang, W. M.,Shu, J. W., Chen, W., 2010.Holocene Environmental Changes and Human Impact in the Yangtze River Delta Area/East China. Quaternary Sciences,30(2):233-244 (in Chinese with English abstract). |
| [71] |
Wang, Z. H., Zhuang, C. C., Saito, Y., et al., 2012. Early Mid⁃Holocene Sea⁃Level Change and Coastal Environmental Response on the Southern Yangtze Delta Plain, China: Implications for the Rise of Neolithic Culture. Quaternary Science Reviews, 35:51-62. https://doi.org/10.1016/j.quascirev.2012.01.005 |
| [72] |
Wang, Q., Yang, S. Y., 2013. Clay Mineralogy Indicates the Holocene Monsoon Climate in the Changjiang (Yangtze River) Catchment, China. Applied Clay Science, 74: 28-36. https://doi.org/10.1016/j.clay.2012.08.011 |
| [73] |
Wang, H. P, Chen, J. H., Zhang, X. J., et al., 2014. Palaeosol Development in the Chinese Loess Plateau as an Indicator of the Strength of the East Asian Summer Monsoon: Evidence for a Mid⁃Holocene Maximum. Quaternary International, 334: 155-164. https://doi.org/10.1016/j.quaint.2014.03.013 |
| [74] |
Wang, B., Li, J., He, Q., 2017. Variable and Robust East Asian Monsoon Rainfall Response to El Niño over the Past 60 Years (1957-2016). Advances in Atmospheric Sciences, 34(10): 1235-1248. https://doi.org/10.1007/s00376⁃017⁃7016⁃3 |
| [75] |
Wang, C. F., Bendle, J. A., Zhang, H. B., et al., 2018. Holocene Temperature and Hydrological Changes Reconstructed by Bacterial 3⁃Hydroxy Fatty Acids in a Stalagmite from Central China. Quaternary Science Reviews, 192:97-105. https://doi.org/10.1016/j.quascirev. 2018.05.030 |
| [76] |
Wang, Z. J., Chen, S. T., Wang, Y. J., et al., 2022. Climatic Implication of Stalagmite δ13C in the Middle Reaches of the Yangtze River since the Last Glacial Maximum and Coupling with δ18O. Palaeogeography, Palaeoclimatology, Palaeoecology, 608: 111290. https://doi.org/10.1016/j.palaeo.2022.111290 |
| [77] |
Wei, Z. Q., Zhong, W., Shang, S. T., et al., 2018. Lacustrine Mineral Magnetic Record of Postglacial Environmental Changes from Dahu Swamp, Southern China. Global and Planetary Change, 170: 62-75. https://doi.org/10.1016/j.gloplacha.2018.08.010 |
| [78] |
Wen, X. Y., Liu, Z. Y., Wang, S. W., et al., 2016. Correlation and Anti⁃Correlation of the East Asian Summer and Winter Monsoons during the Last 21,000 Years. Nature Communications, 7(1):11999. https://doi.org/10.1038/ncomms11999 |
| [79] |
Wu, C., 2018.Risk Assessment of Flood Disasters in the Middle⁃Lower Reaches of the Yangtze River. Wuhan University, Wuhan, 11-12 (in Chinese with English abstract). |
| [80] |
Wu, L., Li, L. Y., Zhou, H., et al., 2019. Holocene Fire in Relation to Environmental Change and Human Activity Reconstructed from Sedimentary Charcoal of Chaohu Lake, East China. Quaternary International, 507: 62-73. https://doi.org/10.1016/j.quaint.2018.11.035 |
| [81] |
Wu, L., Lu, S. G., Zhu, C., et al., 2021. Holocene Environmental Archaeology of the Yangtze River Valley in China: A Review. Land, 10(3): 302. https://doi.org/10.3390/land10030302 |
| [82] |
Xie, S. C., Evershed, R. P., Huang, X. Y., et al., 2013. Concordant Monsoon⁃Driven Postglacial Hydrological Changes in Peat and Stalagmite Records and Their Impacts on Prehistoric Cultures in Central China. Geology, 41(8):827-830. https://doi.org/10.1130/g34318.1 |
| [83] |
Xie, Z. Q., Du, Y., Yang, S., 2015. Zonal Extension and Retraction of the Subtropical Westerly Jet Stream and Evolution of Precipitation over East Asia and the Western Pacific. Journal of Climate, 28(17): 6783-6798. https://doi.org/10.1175/jcli⁃d⁃14⁃00649.1 |
| [84] |
Xu, D., Lu, H. Y., Chu, G. Q., et al., 2014. 5500⁃Year Climate Cycles Stacking of Recent Centennial Warming Documented in an East Asian Pollen Record. Scientific Reports. https://doi.org/10.1038/srep03611 |
| [85] |
Xu, G., Liu, J., Gugliotta, M., et al., 2020. Link between East Asian Summer Monsoon and Sedimentation in River⁃Mouth Sandbars since the Early Holocene Preserved in the Yangtze River Subaqueous Delta Front. Quaternary Research, 95: 84-96. https://doi.org/10.1017/qua.2020.1 |
| [86] |
Xu, C. C., 2021. Summer Westerly Jet in Northern Hemisphere in Typical Period during the Holocene: A Multi⁃Model Study. (Dissertation). Nanjing Normal University, Nanjing, 27-28 (in Chinese with English abstract). |
| [87] |
Yang, F., Lau, K. M., 2004. Trend and Variability of China Precipitation in Spring and Summer: Linkage to Sea Surface Temperatures. International Journal of Climatology, 24(13): 1625-1644. https://doi.org/10.1002/joc.1094 |
| [88] |
Yang, K., Wu, H., Qin, J., et al., 2014. Recent Climate Changes over the Tibetan Plateau and Their Impacts on Energy and Water Cycle: A Review. Global and Planetary Change, 112:79-91. https://doi.org/10.1016/j.gloplacha.2013.12.001 |
| [89] |
Yang, J. S., Wang, Y., Yin, J. H., et al., 2023. Progress and Prospects in Reconstruction of Flood Events in Chinese Alluvial Plains. Earth Science, 47(11): 3944-3959 (in Chinese with English abstract). |
| [90] |
Yao, F. L., Ma, C. M., Zhu, C., et al., 2017. Holocene Climate Change in the Western Part of Taihu Lake Region, East China. Palaeogeography, Palaeoclimatology, Palaeoecology, 485: 963-973. https://doi.org/10.1016/j.palaeo.2017.08.022 |
| [91] |
Ye, W., Chen, Q., Zhu, L. D., et al., 2018. Early Middle Holocene Climate Oscillations Recorded in the Beihuqiao Core, Yuhang, Zhejiang Province, China. Journal of Paleolimnology, 59(2): 263-278. https://doi.org/10.1007/s10933⁃017⁃9959⁃x |
| [92] |
Ye, L. T., Gao, L. Li, Y. F., et al., 2022. Palynology⁃Based Reconstruction of Holocene Environmental History in the Northern Yangtze Delta, China. Palaeogeography, Palaeoclimatology, Palaeoecology, 603: 111186. https://doi.org/10.1016/j.palaeo.2022.111186 |
| [93] |
Yi, S., Saito, Y., Yang, D.Y. 2006. Palynological Evidence for Holocene Environmental Change in the Changjiang (Yangtze River) Delta, China. Palaeogeography, Palaeoclimatology, Palaeoecology, 241(1): 103-117. https://doi.org/10.1016/j.palaeo.2006.06.016 |
| [94] |
Yin, Z. J., Liu, X. Y., Zhang, H. Y., 2014.Analysis of Storm Flood Occurred in Yangtze River Basin in July 2012. Journal of China Hydrology, 34(5): 81-87 (in Chinese with English abstract). |
| [95] |
Berger, A., Driesschaert, E., Goosse, H., et al., 2010. The Eurasian Ice Sheet Reinforces the East Asian Summer Monsoon during the Interglacial 500 000 Years Ago. Climate of the Past, 4(2): 79-90. https://doi.org/10.5194/cp⁃4⁃79⁃2008 |
| [96] |
Yu, J., Yu, Y. Y., Wu, H. B., et al., 2022. Spatiotemporal Changes in Early Human Land Use during the Holocene throughout the Yangtze River Basin, China..The Holocene, 32(4): 334-345. https://doi.org/10.1177/09596836211066605 |
| [97] |
Zhan, W., Yang, S. Y., Liu, X. L., et al., 2010. Reconstruction of Flood Events over the Last 150 Years in the Lower Reaches of the Changjiang River. Chinese Science Bulletin, 55(21): 2268-2274. https://doi.org/10.1007/s11434⁃010⁃3263⁃8 |
| [98] |
Zhan, Q., Wang, Z. H., Xie, Y., et al., 2012. Assessing C/N and δ13C as Indicators of Holocene Sea Level and Freshwater Discharge Changes in the Subaqueous Yangtze Delta, China. The Holocene, 22(6): 697-704. https://doi.org/10.1177/0959683611423685 |
| [99] |
Zhang, H. L., Yu, K. F., Zhao, J. X., et al., 2013. East Asian Summer Monsoon Variations in the Past 12.5 ka: High⁃Resolution Delta O⁃18 Record from a Precisely Dated Aragonite Stalagmite in Central China.Journal of Asian Earth Sciences, 73: 162-175. https://doi.org/10.1016/j.jseaes.2013.04.015 |
| [100] |
Zhang, H. B., Griffiths, M. L., Chiang, J. C. H., et al., 2018. East Asian Hydroclimate Modulated by the Position of the Westerlies during Termination I. Science, 362(6414):580-583. https://doi.org/10.1126/science.aat9393 |
| [101] |
Zhang, L. J., Li, Y. H., Ren Han., et al., 2020. Prediction of the Suitable Distribution of Cyclobalanopsis Glauca and Its Implications for the Northern Boundary of Subtropical Zone of China. Geographical Research, 39(4): 990-1001 (in Chinese with English abstract). |
| [102] |
Zhang, H. W., Cheng, H., Sinha, A., et al., 2021a. Collapse of the Liangzhu and Other Neolithic Cultures in the Lower Yangtze Region in Response to Climate Change. Science Advances, 7(48): Eabi9275. https://doi.org/10.1126/sciadv.abi9275 |
| [103] |
Zhang, Z. P., Liu, J. B., Chen, J. H., et al., 2021b. Holocene Climatic Optimum in the East Asian Monsoon Region of China Defined by Climatic Stability. Earth⁃Science Reviews, 212: 103450. https://doi.org/10.1016/j.earscirev.2020.103450 |
| [104] |
Zhang, H. W., Zhang, X., Cai, Y. J, et al., 2021c. A Data⁃Model Comparison Pinpoints Holocene Spatiotemporal Pattern of East Asian Summer Monsoon. Quaternary Science Reviews, 261:106911. https://doi.org/10.1016/j.quascirev.2021.106911 |
| [105] |
Zhao, C. S. P., Mo, D. W., et al., 2020. Holocene Hydro⁃Environmental Evolution and Its Impacts on Human Occupation in Jianghan⁃Dongting Basin, Middle Reaches of the Yangtze River, China. Journal of Geographical Sciences, 30(3): 423-438. https://doi.org/10.1007/s11442⁃020⁃1735⁃6 |
| [106] |
Zhou, T. J., Yu, R. C., 2005. Atmospheric Water Vapor Transport Associated with Typical Anomalous Summer Rainfall Patterns in China. Journal of Geophysical Research.110(D8). https://doi.org/10.1029/2004jd005413 |
| [107] |
Zhou, X., 2012. Asian Monsoon Precipitation Changes and the Holocene Methane Anomaly. The Holocene, 22(7): 731-738. https://doi.org/10.1177/0959683611430408 |
| [108] |
Zhou, H. Y.,Liu, S. H., Peng,X. T., et al., 2016. Paleoclimatic Interpretations of Speleothem δ18O Record In Monsoonal China: Controversies and Some Key Issues. Tropical Geography, 36(3): 448-456.(in Chinese with English abstract). |
| [109] |
Zhou, W. J., Chui, Y. D., Yang, L., et al., 2022.14C Geochronology and Radiocarbon Reservoir Effect of Reviewed Lakes Study in China. Radiocarbon, 64(4): 833-844. https://doi.org/10.1017/rdc.2021.92 |
| [110] |
Zhou, P. C., Yan, H., Han, T., et al., 2022. Mid to Late Holocene ENSO Variability Reconstructed by High⁃Resolution Tridacna Sr/Ca Records from the Northern Part of the South China Sea. Palaeogeography, Palaeoclimatology, Palaeoecology, 601: 111117. https://doi.org/10.1016/j.palaeo.2022.111117 |
| [111] |
Zhu, C., Wu, L., Li, L., et al., 2014. Research Progress on Holocene Environmental Archaeology in the Yangtze river Valley, China. Acta Geographica Sinica, 69(9): 1268-1283 (in Chinese with English abstract). |
| [112] |
Zhu, Z. M., Feinberg, J. M., Xie, S. C., et al., 2017. Holocene ENSO⁃Related Cyclic Storms Recorded by Magnetic Minerals in Speleothems of Central China. Proceedings of the National Academy of Sciences, 114(5):852-857. https://doi.org/10.1073/pnas.1610930114 |
| [113] |
Zuo, X. X., Lu, H. Y., Jiang, L. P., et al., 2017. Dating Rice Remains through Phytolith Carbon⁃14 Study Reveals Domestication at the Beginning of the Holocene. Proceedings of the National Academy of Sciences, 114(25): 6486-6491. https://doi.org/10.1073/pnas.1704304114 |
国家自然科学基金项目(42301173)
江苏省自然科学基金资助(BK20230386)
/
| 〈 |
|
〉 |