两株不同硫氧化菌对砷黄铁矿中砷迁移转化的影响

张静 ,  寇祝 ,  卿纯 ,  李平

地球科学 ›› 2025, Vol. 50 ›› Issue (05) : 2023 -2031.

PDF (1910KB)
地球科学 ›› 2025, Vol. 50 ›› Issue (05) : 2023 -2031. DOI: 10.3799/dqkx.2023.219

两株不同硫氧化菌对砷黄铁矿中砷迁移转化的影响

作者信息 +

Effects of Two Different Strains of Sulfur Oxidizing Bacteria on Arsenic Migration and Transformation in Arsenopyrite

Author information +
文章历史 +
PDF (1955K)

摘要

生物硫氧化作用对热泉环境砷的迁移转化有显著影响.然而,不同类型的硫氧化微生物对砷转化的影响尚不完全清楚.本研究对比分析了硫代硫酸盐氧化型细菌Anoxybacillus flavithermus DB-1和单质硫氧化型古菌Sulfolobus tengchong RT8-4对热泉典型含硫砷矿物‒砷黄铁矿的作用.结果表明,在50 ℃、pH值为7.0~8.0的条件下,菌株A. flavithermus DB-1能在2天内将初始浓度为0.1 mmol/L的As(Ⅲ)氧化60%,但不能氧化单质硫.菌株S. tengchong RT8-4在pH值为3.0、温度为75 ℃的条件下,能在8天内将初始浓度为0.1 mmol/L的Fe(Ⅱ)氧化54.3%,但不能氧化硫离子和砷.A. flavithermus DB-1与砷黄铁矿共培养促进了砷和硫的释放,最终释放到溶液中的砷浓度为1.8 mmol/L,SO42-浓度为10.4 mmol/L,且无次级矿物生成.而S. tengchong RT8-4与砷黄铁矿共培养时释放出12.8 mmol/L的砷、87.7 mmol/L的SO42-以及8.5 mmol/L的Fe(Ⅲ),同时生成黄铁矾(Jarosite)、斜黄铁矾(Yavapaiite)、砷酸铁(Scorodite)等次级矿物.这些结果表明不同类型的硫氧化菌能促进含硫砷矿物的转化并促进砷的迁移/释放,但机理不同.本研究促进了我们对热泉中硫砷生物地球化学的认识.

Abstract

The transformation of arsenic in hot springs is significantly affected by biotic sulfur oxidization. However, the effects of different types of sulfur-oxidizing microorganisms on arsenic transformation are still not well understood. In this study, it compared the effects of anthiosulfate-oxidized bacterium Anoxybacillus flavithermus DB-1 and anelemental sulfur-oxidized archaea Sulfolobus tengchong RT8-4 on arsenopyrite, a typical sulfur-arsenic-bearing mineral from hot springs. The results show that strain A. flavithermus DB-1 could oxidize 60% of As(Ⅲ) at an initial concentration of 0.1 mmol/L in two days, but not elemental sulfur at 50℃, pH 7.0-8.0. Strain S. tengchong RT8-4 was able to oxidize 54.3% of Fe(Ⅱ) at an initial concentration of 0.1 mmol/L within 8 days, but could not oxidize sulfur ions and arsenic under the conditions of pH 3.0 and 75 ℃. Co-culture of A. flavithermus DB-1 with arsenopyrite promoted the release of arsenic and sulfur, and the final concentration of arsenic released into the solution was 1.8 mmol/L, SO42- concentration was 10.4 mmol/L, and no secondary mineral was produced. With S. tengchong RT8-4, 12.8 mmol/L of arsenic, SO42- 87.7 mmol/L and 8.5 mmol/L Fe(Ⅲ) were released, and the secondary minerals such as jarosite, yavapaiite and scorodite were generated. These findings suggest that different sulfur-oxidizing microorganisms can affect arsenic migration and transformation in different ways in hot springs, which improves our understanding of arsenic and sulfur biogeochemistry in hot springs.

Graphical abstract

关键词

热泉 / 硫氧化微生物 / 砷迁移转化 / 生物地质 / 地球化学.

Key words

hot spring / sulfur⁃oxidizing microorganisms / arsenic migration and transformation / biogeology / geochemistry

引用本文

引用格式 ▾
张静,寇祝,卿纯,李平. 两株不同硫氧化菌对砷黄铁矿中砷迁移转化的影响[J]. 地球科学, 2025, 50(05): 2023-2031 DOI:10.3799/dqkx.2023.219

登录浏览全文

4963

注册一个新账户 忘记密码

0 引言

砷(As)是一种致癌物质(Abbas et al., 2015),广泛分布于温泉中(Reis andDuarte, 2019Baba et al., 2021).从储层岩石中沥滤是地热流体中As的主要来源(Bundschuh and Maity, 2015).地热流体中的As随着热泉源源不断地排放到地表水和土壤环境中,对人类健康造成威胁(Wang et al., 2018).As的生物利用度和理化性质与As的化学形式密切相关(Kumarathilaka et al., 2018).As有4种价态:砷化物[As(⁃III)]、砷单质[As(0)]、亚砷酸盐[As(III)]和砷酸盐[As(V)].其中,As(III)和As(V)是自然水生环境中的主要形式,As(III)比As(V)毒性更大,流动性更强(Oremland and Stolz, 2003).地热环境中的As常与硫(S)共存,这极大程度地增加了地热流体中As循环的复杂性.As的形态除了取决于pH值和氧化还原电位,还很大程度上受S元素生物地球化学的影响(Qing et al., 2023).

S作为六大生命元素之一,是陆地热泉地球化学循环的重要元素(Kessler, 2006Guo et al., 2021Nagar et al., 2022),多以硫化物(S2-)、单质硫(S0)、硫酸盐(SO42-)、硫代硫酸盐(S2O32-)和硫化物矿物的形式存在,可供微生物利用(Pascua et al., 2010Li et al.,2016Amenabar and Boyd, 2018Furukawa and Ueda, 2021).硫氧化微生物(SOMs)可通过不同途径氧化硫,其中可分为硫化物氧化(Dou et al., 2022)、元素硫的氧化(Dahl, 2015)、亚硫酸盐的氧化(Boughanemi et al., 2020)和硫代硫酸盐的氧化(Wang et al., 2019).到目前为止,在热泉中已发现了大量的SOMs,主要分布在Aquificae、 Proteobacteria、 CrenarchaeotaActinomycetia等菌门(Chen et al., 2022,2023), 以及Alpha⁃Gamma⁃Beta⁃Epsilon⁃ProteobacteriaChlorobia AquificaeActinobacteria等菌纲,包含的微生物种属有SulfurovumSulfurihydrogenibiumSulfolobusRhodococcusChlorobium 等(Brock et al., 1972Merkel et al., 2017;Castelán⁃Sánchez et al., 2020).

热泉中S和As的生物地球化学过程密切相关(Guo et al., 2017Wang et al., 2022Yin et al., 2022).以往研究表明,除砷氧化还原菌外,SOMs对As的迁移转化也有显著影响(Ullrich et al., 2013Keller et al., 2014).目前,关于SOMs对As的迁移转化的影响研究主要集中在含砷矿物的浸矿(Shi et al., 2021Wang et al., 2021).某些SOMs能氧化矿物溶解产生的S0或S2O32-使得矿物进一步溶解,促进As的释放,并可能伴随次级矿物的产生(Edwards et al., 2001Yang et al., 2005Zhu et al., 2014).不同种属的SOMs与含砷矿物反应可能产生不同的结果,如在Acidithiobacillus ferrooxidansSulfobacillus sibiricus浸出As2S3的实验中,通过SEM观察及EDS分析发现,A. ferrooxidans浸出组的矿物表面被S0覆盖,而S. sibiricus浸出组的矿物分析中并未发现S0Zhang et al., 2015).不同pH条件,微生物/非生物作用下含砷矿物的溶解释放的产物也不尽相同,如Zhang et al.(2019)研究发现,砷黄铁矿在有微生物作用的酸性条件下氧化溶解,可能会浸出S0、S2O32-或雌黄等物质,而在无菌的碱性条件下,砷黄铁矿中的Fe、As及S元素会被氧化析出,分别形成氢氧化铁、As(III)少量SO42-Tao et al., 2015).尽管前人对热泉环境中的微生物对含砷矿物的砷迁移释放过程进行了初步探讨,但在不同pH及温度条件下不同类型的SOMs对含砷矿物的研究还有待进一步研究.开展在不同条件下不同类型硫氧化菌与砷黄铁矿相互作用对砷迁移转化的影响的研究对了解 As和 S的地球化学元素循环具有重要意义.

因此,本研究以分离自西藏达巴热泉的硫代硫酸盐氧化型细菌 A. flavithermus DB⁃1和分离自云南腾冲热泉的单质硫氧化型古菌S. tengchong RT8⁃4为实验材料,分析了两株SOMs对As和S以及Fe的氧化功能,并探究了它们对砷黄铁矿中As迁移释放的影响,揭示了不同SOMs能以不同的方式对温泉中砷的迁移和转化产生影响,提高了我们对温泉中砷生物地球化学的认识.

1 材料与方法

1.1 菌种及矿物来源

本研究所用菌株为两株不同类型的硫氧化菌,一株为西藏达巴热泉分离的菌株A. flavithermus DB⁃1(已上传至NCBI数据库,编号为SAMN26642938);另一株来自于实验室保种菌株S. tengchong RT8⁃4(Genbank号为AY135637),该菌株分离自腾冲酸性热泉(Xiang et al., 2003),由中科院微生物研究所黄力研究员课题组提供.

砷黄铁矿购自广州鸣发矿物标本制造有限公司,成分为铁砷的硫化物(FeAsS)矿物.实验前,对砷黄铁矿进行破碎、筛选,过 200 目筛,使矿物粒度≤74 μm,采用 X 射线衍射仪技术(X⁃ray diffraction,XRD)(Bruker AXS D8 Advance,Germany)确定反应前后培养基中的矿物种类.

1.2 化学分析

SO42-采用离子色谱法(ICS1100,Dionex,USA)测定.As(III)、As(V)和As(T)(即总砷)采用液相色谱‒氢化物发生‒原子荧光光谱仪(LC⁃HG⁃AFS,海光AFS⁃9780,北京)测定(Jiang et al., 2014).Fe(III)、Fe(II)和Fe(T)(即总铁)用菲咯嗪(Ferrozine)紫外分光光度法测定(Viollier et al., 2000).pH用雷磁 PHS⁃3E pH计测定.利用光学显微镜进行游离细菌计数(Mshot ML31, Mingmei, Guangzhou, China).用扫描电子显微镜(Scanning Electron Microscope,SEM)(HITACHI U8010,USA)观察砷黄铁矿的表面形态特征.采用XRD比较反应前后的矿物种类.其中XRD扫描模式为2⁃theta,起止角度为5°~90°,10°/分.

1.3 两株硫氧化菌的硫/砷/铁氧化功能分析

细菌A. flavithermus DB⁃1使用ACM培养基(L-1)(Luo et al.,2013):NaH2PO4, 1.22 g;Na2HPO4, 1.39 g;NH4Cl, 1.00 g;MgCl2, 0.10 g;FeCl3, 0.03 g;CaCl2, 0.03 g;MnCl2, 0.03 g;KNO3, 0.50 g;CH3COONa, 1.00 g;NaHCO3, 2.00 g,pH调至7.0~8.0.古菌S. tengchong RT8⁃4使用RSM培养基(L-1):(NH42SO4 1.30 g;KH2PO4 0.28 g;MgSO4•7H2O 0.25 g;CaCl2•2H2O 0.07 g;Na2CO3 0.50 g;1 mL微量元素(FeCl2•4H2O 2.00 g;ZnCl2 0.07 g;NiCl2•6H2O 0.024 g;MnCl2•4H2O 0.10 g;CuCl2•2H2O 0.002 g;H3BO3 0.06 g;CoCl2•6H2O 0.19 g;Na2MoO4 0.036 g),pH调至3.0.在ACM培养基中加入10 mmol/L硫代硫酸盐和0.1 mmol/L As(Ⅲ),验证A. flavithermus DB⁃1的S和As的氧化作用.添加5 mmol/L S0验证该细菌能否氧化S0.RSM培养基中添加5 mmol/L S0、7 mmol/L Fe(Ⅱ)和0.1 mmol/L As(Ⅲ),以验证S. tengchong RT8⁃4对S、Fe和As的氧化作用.添加0.5 mmol/L的硫化钠验证该细菌能否氧化S2-.

然后将培养基分配到酸洗过的锥形烧瓶中,在121 ℃下蒸压20 min.按1%(v/v)接种量,将细胞悬液加入到100 mL培养液中,以不含菌液的培养基作为对照,以上每组实验均设3组平行样.A. flavithermus DB⁃1和S. tengchong RT8⁃4分别在50 ℃和75 ℃恒温振荡下孵育.在0天、1天、2天、4天、6天和8天时取样,测定SO42-、As(Ⅲ)、As(V)和Fe(Ⅱ)的浓度.

1.4 硫氧化菌对砷迁移转化的影响

细菌A. flavithermus DB⁃1使用ACM培养基,pH调至7.0~8.0.古菌S. tengchong RT8⁃4使用MI培养基(L-1):KCl 0.10 g; (NH42SO4 1.80 g; KH2PO4 0.28 g; MgCl2•6H2O 0.25 g; Ca(NO32 •4H2O 0.07 g; 酵母粉 0.20 g;1 mL微量元素,用 5 mol/L硫酸调节培养基pH至3.0,加入0.50 g处理后的砷黄铁矿,分别接种不同的硫氧化微生物.接种后的细菌初始浓度为4.0×106 cells/mL,不同条件下设置空白对照组.以上每组实验均设3组平行样.A. flavithermus DB⁃1和S. tengchong RT8⁃4分别在50 ℃和75 ℃恒温振荡下培养.分别在0天、4天、8天、12天和24天实验组和对照组进行取样,测定pH,As(Ⅲ)、As(V)、As(T)、Fe(Ⅱ)、Fe(Ⅲ)、Fe(T)、SO42-浓度和游离菌数.通过测定砷浓度判断菌株对砷黄铁矿中砷迁移转化的影响.培养结束后,将样品5 000 rpm离心,收集固相样品,使用真空冷冻干燥机将其干燥后保存,用于XRD和SEM,从而观察砷黄铁矿的表面形态特征并比较反应前后的矿物种类.

2 结果与讨论

2.1 硫氧化菌硫/砷/铁氧化功能分析

菌株A. flavithermus DB⁃1能氧化S2O32-图1a)和As(Ⅲ)(图1b),不能氧化S0图1a).在50 ℃、pH值为7.0~8.0的条件下,菌株A. flavithermus DB⁃1的S2O32-氧化率为69%,且能在2天内将初始浓度为0.1 mmol/L的As(Ⅲ)氧化60%(图1b).而菌株S. tengchong RT8⁃4能氧化S0图1c)和Fe(图1d),不能氧化S2-图1c)和As(Ⅲ)(图1e).在pH值为3.0、75 ℃条件下,菌株S. tengchong RT8⁃4的S0氧化率为34%能在8天内将初始浓度为0.1 mmol/L的Fe(Ⅱ)氧化54.3%(图1d),在实验过程中,也观察到空白组中有18.5%的Fe(Ⅱ)发生了氧化,原因可能是在好氧条件下空白组发生了非生物氧化.

2.2 硫氧化菌对砷迁移释放的影响

添加A. flavithermus DB⁃1菌的实验组培养体系随反应进行As(V)和As(T)浓度较空白组均明显升高(图2a),表明A. flavithermus DB⁃1菌株的添加显著促进了As在热泉中的释放.通过溶液中砷形态变化可以看出,在细菌作用于砷黄铁矿过程中,As主要以As(V)形态释放,且在第24天达到释放最大值,推测可能是菌株A. flavithermus DB⁃1吸附在砷黄铁矿表面,并且将砷黄铁矿中的As(Ⅲ)氧化成了As(V).游离菌量在第24天达到最大值,且各离子浓度也在第24天趋于稳定,微生物生长达到稳定期(图2a).实验组的pH先上升后趋于平稳(图2b),分析原因可能是Fe(Ⅱ)的氧化过程会消耗H+,而随后氧化硫代硫酸盐产生的H+与Fe(Ⅱ)氧化消耗的H+相抵消(Kawano and Tomita, 2001Regenspurg et al., 2004Klauber, 2008).在实验组中的SO42-浓度逐渐增加(图2b),在第24天达到11.3 mmol/L,表明菌株能将矿物中的S氧化成SO42-Yu et al.,2004).在该实验体系液相中未检测到Fe(Ⅱ)与Fe(Ⅲ),这可能是碱性条件下,Fe一般以沉淀形式存在(Seo et al.,2017).

与空白对照组相比,添加S. tengchong RT8⁃4菌的实验组As(V)和As(T)和SO42-浓度均明显升高(图3a,3b),在第24天释放矿物相砷12.8 mmol/L,比空白组高82%,SO42-生成量是空白组的3倍,表明该菌株在介导硫氧化的同时也显著促进了As的释放.菌株的微生物量在第12天时达到最大,且各离子浓度也在第12天趋于稳定,微生物生长达到稳定期.实验组pH在8~12天呈上升趋势(图3b),可能是由于Fe(Ⅱ)的氧化,H+消耗所致.在实验中空白组也检测到了一定浓度的SO42-图3b),说明在酸性高温条件下矿物中的S发生了非生物溶解并被氧化为SO42-Nordstrom et al., 2005).在第24天溶液中Fe(Ⅲ)浓度达到8.5 mmol/L(图3c),远高于空白组.推测Fe(Ⅲ)的产生是由于S. tengchong RT8⁃4对砷黄铁矿中Fe(Ⅱ)的氧化,使其转化为Fe(Ⅲ)释放到液体中.Fe(Ⅲ)浓度升高不仅促进矿物溶解,还有利于升高体系中的ORP值,促使亚砷酸盐氧化为砷酸盐(Wiertz et al., 2006).

2.3 硫氧化菌与矿物反应前后的矿物学分析

扫描电镜SEM(图4a~4c)显示,随着时间的推移,在菌株A. flavithermus DB⁃1作用下砷黄铁矿逐渐溶解,而空白对照组矿物未发生明显溶解(图4d),利用XRD分析矿物成分(图4e)发现,实验组与空白组其图谱和原始砷黄铁矿在相同位置处均有强度显示,说明反应后实验组与空白组矿物组分仍为砷黄铁矿,未发现次级矿物生成(图4e).虽然实验组中产生大量Fe(Ⅲ)并以沉淀形式存在,但在XRD中并未检测到相关矿物,推测可能是由于产生的氢氧化铁结构较为疏松(Tao et al.,2015)且与原矿物相比浓度较低.

扫描电镜SEM图(图5a~5d)显示,在菌株S. tengchong RT8⁃4作用下,随时间延长砷黄铁矿逐渐被腐蚀(图5a,5b,5c,5d).在第8天明显看出砷黄铁矿表面及周围有新的颗粒状浸出产物生成;XRD结果显示(图5e),实验组物相类型与原始矿物相差较大,说明反应后生成多种次级矿物,这些次级矿物为黄钾铁矾、斜钾铁矾、砷酸铁等,均为As与Fe的氧化态矿物以及硫酸盐矿物,这与图3中S、Fe及As元素析出相吻合;黄钾铁矾和砷酸铁等次级矿物的形成均为产酸反应,这也是后期pH降低的主要原因.而未添加菌的空白组仅观察到砷黄铁矿有轻微溶解,矿物组成与初始条件相似,并伴有单质硫生成,表明在酸性高温条件下,砷黄铁矿在一定程度上发生非生物溶解(Descostes et al.,2004).

3 结论

通过本研究,我们发现两株不同类型的热泉SOMs对S、As和Fe的转化能力不同,A. flavithermus DB⁃1可氧化S2O32-和As,其中S2O32-氧化率为69%,As(Ⅲ)氧化率为60%;不能氧化S0;而菌株S. tengchong RT8⁃4可氧化S0和Fe,其中S0氧化率为34%,Fe(Ⅱ)氧化率为54.3%;不能氧化As.与非生物浸出体系相比,两菌株作用下砷黄铁矿的溶解速率均明显更高,但两株菌对砷黄铁矿的作用不同,菌株A. flavithermus DB⁃1能氧化砷黄铁矿中的As(Ⅲ)形成As(V),使液相中As形态以As(V)形式存在;而菌株S. tengchong RT8⁃4能氧化砷黄铁矿中的Fe(Ⅱ)使其形成Fe(Ⅲ),从而间接促进矿物溶解及As(Ⅲ)到As(V)的转变,在溶解砷黄铁矿之后生成单质硫、黄铁矾、砷酸铁等As、S和Fe氧化态次级矿物.研究结果进一步证实了SOMs对As的迁移转化具有重要影响,且作用机理不同.研究对我们深刻理解热泉环境中As的地球化学以及As的污染防治具有重要意义.

参考文献

[1]

Abbas, S. Z., Riaz, M., Ramzan, N., et al., 2015. Isolation and Characterization of Arsenic Resistant Bacteria from Wastewater. Brazilian Journal of Microbiology, 45(4): 1309-1315. https://doi.org/10.1590/s1517⁃83822014000400022

[2]

Amenabar, M. J., Boyd, E. S., 2018. Mechanisms of Mineral Substrate Acquisition in a Thermoacidophile. Applied and Environmental Microbiology, 84(12): e00334-18. https://doi.org/10.1128/AEM.00334⁃18

[3]

Baba, A., Uzelli, T., Sozbilir, H., 2021. Distribution of Geothermal Arsenic in Relation to Geothermal Play Types: A Global Review and Case Study from the Anatolian Plate (Turkey). Journal of Hazardous Materials, 414: 125510. https://doi.org/10.1016/j.jhazmat.2021.125510

[4]

Boughanemi, S., Infossi, P., Giudici⁃Orticoni, M. T., et al., 2020. Sulfite Oxidation by the Quinone⁃Reducing Molybdenum Sulfite Dehydrogenase SoeABC from the Bacterium Aquifex Aeolicus. Biochimica et Biophysica Acta (BBA)⁃Bioenergetics, 1861(11): 148279. https://doi.org/10.1016/j.bbabio.2020.148279

[5]

Brock, T. D., Brock, K. M., Belly, R. T., et al., 1972. Sulfolobus: A New Genus of Sulfur⁃Oxidizing Bacteria Living at Low pH and High Temperature. Archiv fur Mikrobiologie, 84(1): 54-68. https://doi.org/10.1007/BF00408082

[6]

Bundschuh, J., Maity, J. P., 2015. Geothermal Arsenic: Occurrence, Mobility and Environmental Implications. Renewable and Sustainable Energy Reviews, 42: 1214-1222. https://doi.org/10.1016/j.rser.2014.10.092

[7]

Castelán⁃Sánchez, H. G., Meza⁃Rodríguez, P. M., Carrillo, E., et al., 2020. The Microbial Composition in Circumneutral Thermal Springs from Chignahuapan, Puebla, Mexico Reveals the Presence of Particular Sulfur⁃Oxidizing Bacterial and Viral Communities. Microorganisms, 8(11): 1677. https://doi.org/10.3390/microorganisms8111677

[8]

Chen, J. S., Hussain, B., Tsai, H. C., et al., 2023. Analysis and Interpretation of Hot Springs Water, Biofilms, and Sediment Bacterial Community Profiling and Their Metabolic Potential in the Area of Taiwan Geothermal Ecosystem. Science of the Total Environment,856(1) : 159115. https://doi.org/10.1016/j.scitotenv.2022.159115

[9]

Chen, M. J., Zhang, Z. F., Hu, X. J., et al., 2022. Oxidation Mechanism of Arsenopyrite under Alkaline Conditions: Experimental and Theoretical Analyses. Journal of Cleaner Production, 358: 131987. https://doi.org/10.1016/j.jclepro.2022.131987

[10]

Dahl, C., 2015. Cytoplasmic Sulfur Trafficking in Sulfur⁃ Oxidizing Prokaryotes. IUBMB Life, 67(4): 268-274. https://doi.org/10.1002/iub.1371

[11]

Descostes, M., Vitorge, P., Beaucaire, C., 2004. Pyrite Dissolution in Acidic Media. Geochimica et Cosmochimica Acta, 68(22): 4559-4569. https://doi.org/10.1016/j.gca.2004.04.012

[12]

Dou, L., Zhang, M. Y., Pan, L. Q., et al., 2022. Sulfide Removal Characteristics, Pathways and Potential Application of a Novel Chemolithotrophic Sulfide⁃Oxidizing Strain, Marinobacter sp. SDSWS8. Environmental Research, 212: 113176. https://doi.org/10.1016/j.envres.2022.113176

[13]

Edwards, K. J., Hu, B., Hamers, R. J., et al., 2001. A New Look at Microbial Leaching Patterns on Sulfide Minerals. FEMS Microbiology Ecology, 34(3): 197-206. https://doi.org/10.1016/S0168⁃6496(00)00094⁃5

[14]

Furukawa, T., Ueda, A., 2021. Tamagawa Hyper⁃Acidic Hot Spring and Phreatic Eruptions at Mt. Akita⁃Yakeyama: Part 1. The Isotopic and Chemical Characteristics of the Hot Spring Water. Journal of Volcanology and Geothermal Research, 412: 107179. https://doi.org/10.1016/j.jvolgeores.2021.107179

[15]

Guo, L., Wang, G. C., Sheng, Y. Z., et al., 2021. Hydrogeochemical Constraints Shape Hot Spring Microbial Community Compositions: Evidence from Acidic, Moderate Temperature Springs and Alkaline, High Temperature Springs, Southwestern Yunnan Geothermal Areas, China. Journal of Geophysical Research (Biogeosciences), 126(3): e2020JG005868. https://doi.org/10.1029/2020JG005868

[16]

Guo, Q. H., Planer⁃Friedrich, B., Liu, M. L., et al., 2017. Arsenic and Thioarsenic Species in the Hot Springs of the Rehai Magmatic Geothermal System, Tengchong Volcanic Region, China. Chemical Geology, 453: 12-20. https://doi.org/10.1016/j.chemgeo.2017.02.010

[17]

Jiang, Z., Li, P., Wang, Y. H., et al., 2014. Vertical Distribution of Bacterial Populations Associated with Arsenic Mobilization in Aquifer Sediments from the Hetao Plain, Inner Mongolia. Environmental Earth Sciences, 71(1): 311-318. https://doi.org/10.1007/s12665⁃013⁃2435⁃7

[18]

Kawano, M., Tomita, K., 2001. Geochemical Modeling of Bacterially Induced Mineralization of Schwertmannite and Jarosite in Sulfuric Acid Spring Water. American Mineralogist, 86(10): 1156-1165. https://doi.org/10.2138/am⁃2001⁃1005

[19]

Keller, N. S., Stefánsson, A., Sigfússon, B., 2014. Arsenic Speciation in Natural Sulfidic Geothermal Waters. Geochimica et Cosmochimica Acta, 142: 15-26. https://doi.org/10.1016/j.gca.2014.08.007

[20]

Kessler, D., 2006. Enzymatic Activation of Sulfur for Incorporation into Biomolecules in Prokaryotes. FEMS Microbiology Reviews, 30(6): 825-840. https://doi.org/10.1111/j.1574⁃6976.2006.00036.x

[21]

Klauber, C., 2008. A Critical Review of the Surface Chemistry of Acidic Ferric Sulphate Dissolution of Chalcopyrite with Regards to Hindered Dissolution. International Journal of Mineral Processing, 86(1-4): 1-17. https://doi.org/10.1016/j.minpro.2007.09.003

[22]

Kumarathilaka, P., Seneweera, S., Meharg, A., et al., 2018. Arsenic Speciation Dynamics in Paddy Rice Soil⁃Water Environment: Sources, Physico⁃Chemical, and Biological Factors: A Review. Water Research, 140: 403-414. https://doi.org/10.1016/j.watres.2018.04.034

[23]

Li, J. W., Peng, X. T., Zhang, L. X., et al., 2016. Linking Microbial Community Structure to S, N and Fe Biogeochemical Cycling in the Hot Springs at the Tengchong Geothermal Fields, Southwest China. Geomicrobiology Journal, 33(2): 135-150. https://doi.org/10.1080/01490451.2015.1043165

[24]

Luo, J. F., Tian, G. L., Lin, W. T., 2013. Enrichment, Isolation and Identification of Sulfur⁃Oxidizing Bacteria from Sulfide Removing Bioreactor. Journal of Environmental Sciences, 25(7): 1393-1399. https://doi.org/10.1016/S1001⁃0742(12)60179⁃X

[25]

Merkel, A. Y., Pimenov, N. V., Rusanov, I. I., et al., 2017. Microbial Diversity and Autotrophic Activity in Kamchatka Hot Springs. Extremophiles, 21(2): 307-317. https://doi.org/10.1007/s00792⁃016⁃0903⁃1

[26]

Nagar, S., Talwar, C., Motelica⁃Heino, M., et al., 2022. Microbial Ecology of Sulfur Biogeochemical Cycling at a Mesothermal Hot Spring Atop Northern Himalayas, India. Frontiers in Microbiology, 13: 848010. https://doi.org/10.3389/fmicb.2022.848010

[27]

Nordstrom, D. K., Ball, J. W., McCleskey, R. B., 2005. Ground Water to Surface Water: Chemistry of Thermal Outflows in Yellowstone National Park. In: Inskeep, W.P., McDermott, T.R., eds., Geothermal Biology and Geochemistry in Yellowstone National Park. Montana State University Publications, Bozeman, 73- 94.

[28]

Oremland, R. S., Stolz, J. F., 2003. The Ecology of Arsenic. Science, 300(5621): 939-944. https://doi.org/10.1126/science.1081903

[29]

Pascua, C., Sato, T., Golla, G., 2010. Mineralogical and Geochemical Constraints on Arsenic Mobility in a Philippine Geothermal Field. Acta Geologica Sinica, 80(2): 330-335. https://doi.org/10.1111/j.1755⁃6724.2006.tb00250.x

[30]

Qing, C., Nicol, A., Li, P., et al., 2023. Different Sulfide to Arsenic Ratios Driving Arsenic Speciation and Microbial Community Interactions in Two Alkaline Hot Springs. Environmental Research, 218: 115033. https://doi.org/10.1016/j.envres.2022.115033

[31]

Regenspurg, S., Brand, A., Peiffer, S., 2004. Formation and Stability of Schwertmannite in Acidic Mining Lakes. Geochimica et Cosmochimica Acta, 68(6): 1185-1197. https://doi.org/10.1016/j.gca.2003.07.015

[32]

Reis, V., Duarte, A. C., 2019. Occurrence, Distribution, and Significance of Arsenic Speciation. Arsenic Speciation in Algae. Elsevier, Amsterdam, 1-14. https://doi.org/10.1016/bs.coac.2019.03.006

[33]

Seo, E. Y., Cheong, Y. W., Yim, G. J., et al., 2017. Recovery of Fe, Al and Mn in Acid Coal Mine Drainage by Sequential Selective Precipitation with Control of pH. CATENA, 148: 11-16. https://doi.org/10.1016/j.catena.2016.07.022

[34]

Shi, W. J., Song, W. J., Zheng, J. L., et al., 2021. Factors and Pathways Regulating the Release and Transformation of Arsenic Mediated by Reduction Processes of Dissimilated Iron and Sulfate. Science of the Total Environment, 768: 144697. https://doi.org/10.1016/j.scitotenv.2020.144697

[35]

Tao, X. U., Liao, M. T., Yin, Z. G., 2015. A Study of Surface Mechanism of Arsenopyrite in Alkaline Solution. Acta Petrologica et Mineralogica, 34(6):821-826. https://doi.org/10.1016/j.jclepro.2022.131987

[36]

Ullrich, M. K., Pope, J. G., Seward, T. M., et al., 2013. Sulfur Redox Chemistry Governs Diurnal Antimony and Arsenic Cycles at Champagne Pool, Waiotapu, New Zealand. Journal of Volcanology and Geothermal Research, 262: 164-177. https://doi.org/10.1016/j.jvolgeores.2013.07.007

[37]

Viollier, E., Inglett, P. W., Hunter, K., et al., 2000. The Ferrozine Method Revisited: Fe(II)/Fe(III) Determination in Natural Waters. Applied Geochemistry, 15(6): 785-790. https://doi.org/10.1016/S0883⁃2927(99)00097⁃9

[38]

Wang, H. Y., Göttlicher, J., Byrne, J. M., et al., 2021. Vertical Redox Zones of Fe⁃S⁃As Coupled Mineralogy in the Sediments of Hetao Basin- Constraints for Groundwater as Contamination. Journal of Hazardous Materials, 408: 124924. https://doi.org/10.1016/j.jhazmat.2020.124924

[39]

Wang, R., Lin, J. Q., Liu, X. M., et al., 2019. Sulfur Oxidation in the Acidophilic Autotrophic Acidithiobacillus Spp. Frontiers in Microbiology, 9: 3290. https://doi.org/10.3389/fmicb.2018.03290

[40]

Wang, Y., Zhang, P. W., Wang, S. F., et al., 2022. Chemical Behaviors of Different Arsenic⁃Bearing Sulphides Bio⁃Oxidated by Thermophilic Bacteria. Transactions of Nonferrous Metals Society of China, 15(3): 648-652.

[41]

Wang, Y. X., Li, P., Guo, Q. H., et al., 2018. Environmental Biogeochemistry of High Arsenic Geothermal Fluids. Applied Geochemistry, 97: 81-92. https://doi.org/10.1016/j.apgeochem.2018.07.015

[42]

Wiertz, J. V., Mateo, M., Escobar, B., 2006. Mechanism of Pyrite Catalysis of As(III) Oxidation in Bioleaching Solutions at 30 ℃ and 70 ℃. Hydrometallurgy, 83(1-4): 35-39. https://doi.org/10.1016/j.hydromet.2006.03.035

[43]

Xiang, X., Dong, X., Huang, L., 2003. Sulfolobus Tengchongensis Sp. Nov., a Novel Thermoacidophilic Archaeon Isolated from a Hot Spring in Tengchong, China. Extremophiles, 7(6): 493-498. https://doi.org/10.1007/s00792⁃003⁃0355⁃2

[44]

Yang, H. Y., Gong, Y. P., et al., 2005. Chemical Behaviors of Different Arsenic⁃Bearing Sulphides Bio⁃ Oxidated by Thermophilic Bacteria. Transactions of Nonferrous Metals Society of China, 15(3):5.

[45]

Yin, Z. P., Ye, L., Jing, C. Y., 2022. Genome⁃Resolved Metagenomics and Metatranscriptomics Reveal That Aquificae Dominates Arsenate Reduction in Tengchong Geothermal Springs. Environmental Science & Technology, 56(22): 16473-16482. https://doi.org/10.1021/acs.est.2c05764

[46]

Yu, Y. M., Zhu, Y. X., Williams⁃Jones, A. E., et al., 2004. A Kinetic Study of the Oxidation of Arsenopyrite in Acidic Solutions: Implications for the Environment. Applied Geochemistry, 19(3): 435-444. https://doi.org/10.1016/S0883⁃2927(03)00133⁃1

[47]

Zhang, D. R., Xia, J. L., Nie, Z. Y., et al., 2019. Mechanism by Which Ferric Iron Promotes the Bioleaching of Arsenopyrite by the Moderate Thermophile Sulfobacillus Thermosulfidooxidans. Process Biochemistry, 81: 11-21. https://doi.org/10.1016/j.procbio.2019.03.004

[48]

Zhang, G. J., Chao, X. W., Guo, P., et al., 2015. Catalytic Effect of Ag+ on Arsenic Bioleaching from Orpiment (As2S3) in Batch Tests with Acidithiobacillus Ferrooxidans and Sulfobacillus Sibiricus. Journal of Hazardous Materials, 283: 117-122. https://doi.org/10.1016/j.jhazmat.2014.09.022

[49]

Zhu, T., Lu, X., Liu, H., et al., 2014. Quantitative X⁃Ray Photoelectron Spectroscopy⁃Based Depth Profiling of Bioleached Arsenopyrite Surface by Acidithiobacillus ferrooxidans. Geochimica et Cosmochimica Acta, 127: 120-139. https://doi.org/10.1016/j.gca.2013.11.025

基金资助

国家自然科学基金项目(41772260)

AI Summary AI Mindmap
PDF (1910KB)

220

访问

0

被引

详细

导航
相关文章

AI思维导图

/