高能溃决洪水侵蚀机理与地貌效应研究进展

杨泽文 ,  吴兵兵 ,  刘维明 ,  杨安娜 ,  李雪梅 ,  王昊 ,  阮合春 ,  周燕莲

地球科学 ›› 2025, Vol. 50 ›› Issue (02) : 718 -736.

PDF (5802KB)
地球科学 ›› 2025, Vol. 50 ›› Issue (02) : 718 -736. DOI: 10.3799/dqkx.2024.009

高能溃决洪水侵蚀机理与地貌效应研究进展

作者信息 +

Progress in Erosion Mechanism and Geomorphological Effects of High⁃Energy Outburst Floods

Author information +
文章历史 +
PDF (5940K)

摘要

高能溃决洪水作为一种高量级、低频率的极端地表事件,其所具有的强烈侵蚀和重塑能力极大影响着地表形貌的演化. 近年来,有关高能溃决洪水的研究逐渐增多,然而相关的侵蚀机制与地貌效应仍缺乏系统性认识.通过系统梳理国内外高能溃决洪水侵蚀研究中的相关进展,总结了高能溃决洪水形成的大、中、小3种侵蚀地貌及相关特征,分析了包括拔蚀、空蚀、涡蚀和磨蚀四种高能溃决洪水侵蚀模式与发生条件,进一步归纳了高能溃决洪水典型侵蚀效应.最后结合国内外研究热点,从多方法揭示高能溃决洪水侵蚀机理与驱动因素、侵蚀运移作用下的“工具效应”与“覆盖效应”、高能溃决洪水与颗粒破碎的功能关系及侵蚀和构造抬升的耦合作用等方面对未来高能溃决洪水侵蚀研究进行了展望. 旨在深入理解高能溃决洪水的发生规律及其侵蚀过程,加深对此类灾难性极端地表事件与地貌演化之间关系的认识.

Abstract

As an extreme surface event of high magnitude and low frequency, high⁃energy outburst flood has strong erosion and remodeling ability, which greatly affects the evolution of surface topography. In recent years, studies on high⁃energy outburst floods have gradually increased, however, the related erosion mechanisms and geomorphic effects still lack systematic understanding. We sorted out systematically of the relevant progresses of high⁃energy outburst floods at domestic and abroad, summarized three forms of erosion landforms and their features formed by high⁃energy outburst floods: large, medium and small, analyzed the erosion patterns and occurrence conditions of four types of high⁃energy outburst floods, including plucking, cavitation, eddy erosion and abrasion, and further integrated the typical erosion effects of outburst floods. Lastly,the study is combined with domestic and international research interests to reveal the mechanism and driving factors of flood erosion in terms of multi⁃methods, the “tool effect” and “cover effect” under the erosion and transport, the power and energy relationship between high⁃energy outburst flood and particle comminution, and the coupling effect of erosion and tectonic uplift.The aim is to provide an in⁃depth understanding of the occurrence patterns of high⁃energy outburst floods and their erosion processes, and to deepen the understanding of the links between such catastrophic extreme surface events and the evolution of the landscape.

Graphical abstract

关键词

溃决洪水地貌 / 侵蚀机制 / 侵蚀模式与类型 / 侧向侵蚀 / 地貌演化 / 地貌学.

Key words

outburst flood landscape / erosion river mechanisms / erosion patterns and types / lateral erosion / geomorphic evolution / geomorphology

引用本文

引用格式 ▾
杨泽文,吴兵兵,刘维明,杨安娜,李雪梅,王昊,阮合春,周燕莲. 高能溃决洪水侵蚀机理与地貌效应研究进展[J]. 地球科学, 2025, 50(02): 718-736 DOI:10.3799/dqkx.2024.009

登录浏览全文

4963

注册一个新账户 忘记密码

0 引言

溃决洪水是指大体积水体突然下泄形成的高量级、低频率的洪水(Costa, 1985Baker, 2013O’Connor et al., 2013Liu et al., 2019),其类型包括由滑坡、泥石流、冰岩崩、火山、人工坝等堵塞河道后形成“峡谷型”溃决洪水、由构造作用形成的洼地、陨石坑、冰湖等溃决形成的“盆地型”溃决洪水和存在于冰盖或地下水溃决形成的“承压型”溃决洪水3类(O’Connor et al., 2013). 1996年Baker (1996)首次建议将洪峰流量大于或等于1×106 m3/s的第四纪大规模冰坝溃决洪水称之为巨型洪水(megaflood). 然而,多数溃决洪水事件的洪峰流量未达到百万级规模,但其由于高流速、大水深和其极强的湍流特性,形成的侵蚀与沉积效应与巨型洪水相似(Lamb and Fonstad, 2010),而仅用洪峰流量这一单一指标则无法较好体现溃决洪水的特征. 为此,Carling and Fan(2020)基于能量耗散理论,进一步对巨型洪水进行了区分,将砾石在被洪水运移过程中的夹带和撞击破碎所消耗的能量超过20 kJ/s/m2时的洪水定义为超级洪水(superflood). 实际研究中,无论从洪峰流量或能量耗散角度,均需经过洪水规模重建过程,很难直接到地貌特征相关联,而高能量的溃决洪水往往在短时间内形成明显区别于周围的特殊地貌类型,且在野外极易进行辨识. 因此,为直观简易的对溃决洪水进行区分,本文将形成高大河滩、流线岛、砾石破碎、大型壶穴、河道冲决及其他侵蚀作用,等使地表发生显著变化特征甚至引发气候突变的溃决洪水称为高能溃决洪水.

自19世纪30年代开始,“均变论”一直主导着河流地貌的形态变化,即河流地貌的变化是水流在百万年时间尺度上缓慢侵蚀的结果(Karlstrom et al., 2008). 之后有学者认为该理论无法解释哥伦比亚高原广布的“沟槽疤地(Channeled Scabland)”地貌,且认为此类显著的地表变化是由极具破坏性的高能溃决洪水侵蚀形成(Bretz, 1923;Baker,2002b,2009b). 同时,大量堰塞-溃决事件短时间内极大的改变着河流地貌形态(Korup and Montgomery, 2008Lamb and Fonstad, 2010;苏怀等, 2021; 贾珂程等, 2023),因而溃决洪水侵蚀逐渐成为了支撑“灾变论”的有力证据. 20世纪70年代以来,随着地球和火星表面越来越多的由溃决洪水侵蚀形成的大尺度地貌被发现,其相关研究也受到国内外学者的关注(Baker et al., 2021). 传统的溃决洪水规模重建认为洪水填满峡谷河道(Miyamoto et al., 2007;Denlinger and O'Connell, 2010)或将重建的水位与洪水滞留沉积物进行比对(溢满模型),进而确定洪水的最高水位( Komar, 1979Baker, 2020Jarrett and Tomlinson, 2000),最终确定其量级. 然而,Larsen and Lamb (2016)提出的临界剪切力模型认为,由于溃决洪水的高侵蚀性,单个溃决洪水事件向下游演进时会对河床造成快速下切侵蚀,而当同一区域发生多期大规模洪水时,河床基岩会不断下切加深. 此时若仍采用溢满模型进行洪水规模重建,则其规模可能比真实的洪水规模小5~10倍,极大的挑战了高能溃决洪水规模重建的传统方法(Perron and Venditti, 2016)(图 1). David et al. (2022)利用机器学习的方法,通过重建高能洪水侵蚀前的哥伦比亚峡谷地形后与洪水高水位标记比较发现,计算得到的洪峰流量比不考虑侵蚀时低30%~40%,进一步突出了侵蚀对于高能溃决洪水规模重建的意义.

位于青藏高原东南缘的雅鲁藏布大峡谷是世界上最深、最长的峡谷,其地表高侵蚀速率(5~10 mm/a)产生的原因广受争议. 目前较多的研究表明,高能溃决洪水作为该地区地貌演化的主要驱动力(Cook et al., 2018Hu et al., 2022),极大的促进了地表侵蚀(Montgomery et al., 2004Lang et al., 2013Borgohain et al., 2020Turzewski et al., 2020). 多次堰塞-溃决事件对基岩河道的下切侵蚀,也被认为可能是大峡谷形成重要原因(Montgomery et al., 2004Wang et al., 2014). 随着全球气候变暖,各类溃决洪水事件爆发的可能性不断增加(Li et al., 2022),侵蚀运移的沉积物含量随之增大,极大的促进了陆地沉积物向海洋运移(Korup, 2012),使得水、粮食能源安全问题日益凸显(Zhang et al., 2022b). 可见,溃决洪水的侵蚀不仅主导了地表形貌的演化,也对人类长期生存发展产生了极大影响. 然而,目前全球可确定具体坐标的不同类型的溃决洪水事件高达3 550余次(其中冰湖/坝溃决洪水2 908次,滑坡坝溃决洪水587次,人工坝溃决洪水55次,图 2),其中,通过水动力学模拟重建得到的最大规模第四纪冰川坝的溃决洪水洪峰流量达108 m3/s(Burr et al., 2009Baker et al., 2021),而规模较小的冰湖溃决洪水流量也远高于发生区域的常遇季风洪水(Cook et al., 2018Lützow et al., 2023)其侵蚀作用对地表产生的影响不可估量.

近年来,国内对于溃决洪水的研究日渐增多,但多聚焦于坝体溃决过程和洪水沉积特征展开的洪水规模、频率重建及其水动力学分析(王昊等,2020; 郭永强等,2021; Hu et al., 2021,2022; 蒋先刚等, 2022; Yang et al., 2022a;杨劲松等, 2022;Guo et al., 2023),一定程度上忽略了溃决洪水在高能水动力条件下侵蚀导致的地貌效应. 对极端溃决洪水事件短时间内塑造的侵蚀地貌特征和及其形成机制的理解认识不足一定程度上阻碍了对河流系统地貌景观演化规律的深入理解. 因此,开展有关高能溃决洪水侵蚀响应机制、准确评估其演化趋势具有重要的科学意义. 基于此,本文结合目前国际高能溃决洪水侵蚀的研究前沿,系统的梳理了高能溃决洪水侵蚀地貌与特征、侵蚀过程的力学机理及其形成的侵蚀效应三方面的相关研究进展,总结了当前在高能溃决洪水侵蚀研究中的不足及相关展望,以期为河流地貌的演化和溃决洪水灾害重建研究提供新思路.

1 高能溃决洪水侵蚀地貌及特征

高能溃决洪水侵蚀地貌是溃决高能水体与泥沙运动、河道或地表相互作用的结果,其形成与固-液-气三相之间的强耦合有关. 不同的洪水规模、频次,加之特定区域的地质条件的差异,形成了不同类型的侵蚀地貌,尺度在几毫米至数千公里(火星). 根据地貌呈现的主导因素(Baker, 1978a)和尺度范围(Carrivick and Rushmer, 2006;王慧颖等, 2020),宏观上可将溃决洪水侵蚀地貌可分为大(由侵蚀通道宽度占主导)、中(由侵蚀通道深度占主导)、小(由侵蚀通道内的湍流边界层主导)3种尺度地貌,其中大尺度地貌和中尺度地貌包含了部分组合型地貌(侵蚀地貌类型特征及汇总见表1).

1.1 大尺度地貌

大尺度侵蚀地貌以大型深谷通道(Baker and Milton 1974;Garcia⁃Castellanos et al., 2009)和组合型的丘盆状疤地(Baker, 2009)、流线岛(Gupta et al., 2007)等为主(图3). 大型深谷宽度范围数十上百公里不等,深度也多在百米及以上尺度,其形成与多次高能溃决洪水不断侵蚀有关,其中拔蚀占主导(Baker and Milton, 1974);当不同方向的多次高能溃决洪水流经且侵蚀同一区域时,极易形成由多条纵横交错的深谷组合形成的网状系统(Ahmed et al., 2022). 丘盆状疤地的地貌特征则较为奇特,整体上由小型盆地和周围的基岩小丘相间分布,呈凹凸不平的“结痂”状(Baker, 2009). 流线岛(丘)则为高能溃决洪水的残余地貌,多为细长的叶片状,长轴方向与水流方向一致,且其长度与面积多呈成比例(Gupta et al., 2007; 王慧颖等, 2020). 大尺度侵蚀地貌的形成一方面受洪水前区域地形影响,另一方面由于洪水本身的水动力也远超过各类基岩的临界侵蚀条件上限,因而多认为其侵蚀机制以拔蚀和垂向涡流侵蚀主导(Baker, 2009).

1.2 中尺度地貌

中尺度侵蚀地貌在现存溃决洪水地貌中较为常见,尺寸一般在几米至几十米范围. 由于侵蚀模式的差异,中尺度地貌类型呈现多种类型(图4). 如溃决洪水的深切侵蚀,使其在陡崖处发育直角“┐”型跌水瀑布(Cataracts)或倒“U”型的圆头峡谷(Lamb et al., 2008Baynes et al., 2015a),其上下表面高差一般为几十米,而连续多次的洪水溯源侵蚀则导致其前缘逐渐后退,一系列的干瀑布相接组合即为阶梯-深潭系统(Carling et al., 2009a). 比降较大河段,洪水演进时形成的横向和纵向上的螺旋涡流还会对基岩河道两侧和底部分别侵蚀形成近圆形壶穴和纵向深槽(Baker, 2009Benito and Thorndycraft, 2020).

1.3 小尺度地貌

相比于大、中尺度侵蚀地貌,溃决洪水形成的小尺度侵蚀地貌类型相对较少,多由挟沙水流对收缩的基岩河道磨蚀或空蚀形成. 小尺度侵蚀地貌总体可分为基岩表面的微小型坑洞和冲刷痕两类(Richardson et al., 2005图5),其长轴方向多与洪水流向一致. 其中微小型坑洞多分布较为密集,呈蜂窝麻面状,直径一般在几毫米至几厘米(Lamb et al., 2014);冲刷痕则多呈条带状,尺寸多为几厘米至几十厘米(Maizels, 1997);当洪水冲刷过于剧烈时,基岩河道还会形成沿水流方向的长度在数米至数百米不等的大型冲槽(Lamb et al., 2014).侵蚀地貌作为溃决洪水残留物,无论侵蚀形成的地貌类型尺度如何,都是细观尺度上溃决洪水与地表相互作用的持续累计结果,只有从侵蚀物理过程和机制角度出发,才能准确的了解和认识溃决洪水事件在地表景观演化中的作用.

2 高能溃决洪水的侵蚀机制

高能溃决洪水对地表的侵蚀过程是造成地貌短期剧烈变化的关键,不同的侵蚀机制与方式,往往形成不同的地貌形态. 从动力学角度分析,高能溃决洪水侵蚀方式通常涉及拔蚀、空蚀、涡蚀和磨蚀等多个快速侵蚀过程(Richardson et al., 2005),同一场洪水中通常多个侵蚀过程同时发生且相互联系(图6). 深入理解高能溃决洪水各类侵蚀过程及其形成机制是认识此类高能极端地表事件对地表驱动演化的重要前提.

较其他3种侵蚀方式而言,高能溃决洪水期间发生拔蚀过程更为快速高效,所形成的侵蚀效应也更为显著(Lang et al., 2013Lamb et al., 2014). 近年来,有关溃决洪水空蚀和涡蚀过程也逐渐被重视,其相关的侵蚀研究成果也取得了一定进展;而对于磨蚀而言,其相关研究多集中于长时间尺度下的基流侵蚀理论,但由于其在溃决洪水中的常见性,磨蚀过程不可忽略. 基于此,本节在兼顾磨蚀机制的同时,以拔蚀、空蚀和涡蚀为重点,总结分析了4种侵蚀方式的侵蚀过程和发生条件.

2.1 拔蚀

广义而言,拔蚀(plucking或quarrying)是岩块受水流作用力而将其从边界移除的过程,可分为拔蚀前洪水对基岩裂隙的扰动和岩块夹带运移两个阶段. 拔蚀的发生一方面受溃决的规模和频率的影响,另一方面取决于基岩裂隙的初期发育程度和湍流影响下的分布特征与发育过程(Bollaert, 2004). Chatanantavet and Parker (2009)在其开发的河流侵蚀理论模型中将受拔蚀的基岩体分为3层,其中最顶端为风化较为严重、呈“面糊”状的破碎层,中间为节理发育的“老化层”,最下部为完好的基岩. 在拔蚀初期,洪水及其夹带的大颗粒沉积物先与破碎层表面发生冲击和磨蚀,使得老化层裂隙进一步扩展,岩块尺寸不断减小,直到达到水动力能够拔蚀的临界体积. Whipple et al. (2000)认为,拔蚀发生前期,岩块上表面不仅受到泥沙的冲击和磨蚀,强湍流条件下裂缝周围紊动水流和裂缝中进入的碎屑也加剧了岩块底部裂隙的扩张. Wilkinson et al. (2018)通过模型试验利用PIV(粒子图形测速)对岩块裂缝处水动力进行细化观测,发现拔蚀初期水流进入到岩块底部的裂缝后,岩块所受的上举力先呈线性分布;随着水流紊动的加剧,岩块底部和侧部受到脉动水压力作用且波动幅度逐渐增大,最后上下表面同时形成脉动压差(Sklar and Dietrich, 1998). 而岩块的凸起高度(η)进一步扩大了脉动压差,促进了岩块的断裂(Hurst et al., 2021).

由于基岩节理裂隙分布的随机性,所形成岩块的几何形态存在差异,不同形态的岩块所受力的形式不同进而使得被移除方式不一致. 根据六面体岩块被起动移除的方式,拔蚀可分为倾倒式(岩块下游存着临空面)、滑动式(岩块下游存着临空面)、垂向拔除3种类型(George and Sitar, 2012图7).

2.1.1 垂向拔除

垂向拔除指岩体块从裂隙发育形成的原有空洞中沿垂直方向移除的过程. Hancock et al. (1998)首次通过液压举升器和被淹没岩块的重量来考虑垂向拔除的临界应力,并认为岩块高度(H)是影响岩块垂向拔蚀的唯一因素. 而Whipple et al. (2000)认为,岩块两侧的摩擦力也是影响拔蚀的主要因素,且相比于岩块的高度,其长度(L)和横向宽度(W)越小,越不容易被垂向拔除. Coleman et al.(2003)对柱状岩块开展的的垂向拔除试验发现,垂向拔除的临界应力与岩块单位宽度的淹没质量成正比,与长度归一化后的块体凸起高度成反比. 在考虑岩块几何形态、凸起高度及所受侧向摩擦影响的基础上,Lamb et al. (2015)利用泥沙临界起动公式,进一步得到垂直拔除的临界条件,并认为拔蚀的发生取决于凸起高度与长度之比(η/L),极端洪水条件下岩块发生垂向拔蚀时,η/L接近于0.

2.1.2 倾倒式

当岩块高长比值较大时,作用在岩块上的力系会产生使其发生转动趋势,往往使得岩块发生倾倒式破坏(Carling and Bollaert, 2002;Lamb and Dietrich, 2009). 会使枢轴点P处的直角被磨圆后向下游移动(图7),进而加剧岩块的倾倒(Hurst et al., 2021). Lamb and Dietrich (2009)、Lamb et al., (2015)根据试验结果认为,当岩块高长比(H/L)大于0.5时,岩块更容易发生倾倒,且与H/L=0.5相比,H/L=1时倾倒发生的频率更高. Lamb et al. (2015)通过扭矩平衡理论,推导出了单位宽度下的岩块发生倾倒式拔蚀时的临界条件,并进一步认为,相比于岩块的长度变化,高度变化对向下游方向的扭矩敏感性更强,倾倒式岩块的稳定性受高度变化的影响更大. Lamb and Dietrich (2009)基于所推导的拔蚀倾倒公式,解释了Bonneville 高能洪水作用下玄武岩柱倒塌的机制,认为岩块倾倒破坏开始于圆形峡谷的头部正下方与基岩面接触位置,而头部边缘两侧则处于倾倒的临界状态. Lapotre et al. (2016)在考虑圆头峡谷头部的宽度和剪切应力分布的基础上,进一步得到岩块发生倾倒式拔蚀时的临界洪水流量与圆形峡谷形态、洪水最小持续时间的半经验公式.

2.1.3 滑动式

滑动式拔蚀是指基岩块体与河床底部的摩擦力无法克服洪水对块体冲击力时而发生沿床面滑动的过程(Wilkinson et al., 2018). Hancock et al. (1998)认为,除底部受摩擦力外,淹没状态下的岩块顶部水流剪切应力为其滑动的主要驱动力,且临界滑动力与岩块高度呈正相关关系. Whipple et al.(2000)认为,高速流动的水体中滑动的岩块两侧受水流剪切形成摩擦推力对其稳定影响较大,不应将其忽略. Dubinski and Wohl (2013)在考虑岩块两侧的摩擦推力的条件下开展水槽试验,并得到了岩块的临界滑动条件. 此公式(表2)表明,岩块的宽度(W)越大,岩块越易被滑动,而长度(L)则相反. 由于不同性质的岩块底部与基岩层的接触面粗糙程度不同,因而岩块开始滑动时滑动摩擦角往往不一致. Lamb et al. (2015)结合垂向拔除公式的基础上,进一步推导出了滑动摩擦角在25°~40°范围内的岩块临界滑动公式.

综上所述,六面体岩块拔蚀3种形式发生的临界条件主要取决于岩块几何尺寸和凸起高度两大因素. 单位宽度的岩块高长比(H/L)相同时,滑动式和倾倒式的临界值均小于垂直拔除;当高长比>0.2时,倾倒式临界值则小于滑动式(Lamb et al., 2015图8).

目前有关拔蚀发生的影响因素及不同形式的临界起动条件(表 2)取得了较大进展,但受拔蚀的岩块启动时所受力的状态过于理想化. 事实上,除岩块之间的相互作用力外,拔蚀前期岩块底部可能仍与底部基岩层相连接,岩块与基岩体断裂前仍存在相互作用力(Carrivick and Rushmer, 2006). 其次,在拔蚀临界起动的相关研究中,岩块均被视为刚体. 而当水流溢流过岩块表面时,水流可能会渗入岩块内部引起岩块中的孔隙水压力增加,进而使得岩块所受的向下游方向的扭矩增加,导致对其稳定性造成影响(Lamb et al., 2015). 另外,在倾倒式拔蚀中,溃决洪水在高速溢流过岩体时,会在其头部下缘形成低压空腔区(图7),使得岩块受到向下游的大气压力作用的同时,还受到向下游方向的力,进而会使得岩体拔蚀的计算临界值高于实际值(Lamb and Dietrich, 2009Lehnigk and Larsen, 2022).

2.2 空蚀

空蚀是水体高速流动时,由于局部低压导致部分液体气化溢出形成微小气泡,当气泡群随水流进入高压区域时快速炸裂,由此产生的冲击波对周围边界形成频繁剧烈冲击侵蚀(Carling et al., 2009b). 空蚀多出现于水库溢洪道、水轮机叶片等水工建筑物中,基流下的天然河道中通常不会发生空蚀现象. Barnes (1956)认为,天然河道内当流速超过7.6 m/s时,可发生空蚀,而Baker and Costa (2020)则指出,空蚀发生时的流速至少需达到10 m/s. 实际上,除溃决洪水外天然河道内极难到达如此高的流速范围,因而空蚀也被认为多发生于高能洪水中(Baker and Kale 1998). Carling et al., (2017)认为,对于流量高、水深大且持续时间较长(数十小时甚至数十天)的极端溃决洪水事件产生的超临界流(Fr>1)有利于空蚀的形成. 高能洪水中的空蚀多发生于比降较大、曝气较少(Pasternack et al., 2006)且空化数(σ)小于3.0的河段(O'Connor, 1993Benito and Thorndycraft, 2020),而在内流河道中发生空蚀时,空化数σ一般小于4.0. Carrivick(2007)Carling et al.(2017)结合溃决洪水不同侵蚀地貌类型,根据空化数的分布特征,将不同水深和流速的所属区域划分为空蚀易发区(σ<1)、空蚀局部发生区(1<σ<3)和空蚀弱发生区(σ>3),如图 6所示. 空化数作为描述衡量空蚀强度的无量纲参数,表达式如下:

σ=Pv-P00.5ρwv2,

式中:Pv为空蚀处的水体压力;P0为水体饱和蒸气压;ρw为水的密度;v为流速.

然而,溃决洪水在以急湍流形式演进过程中夹带大量的沉积物,可能将已形成的空蚀地貌进一步拔蚀和磨蚀,形成峡谷、跌水瀑布等大尺度的侵蚀地貌而将原有空蚀地貌冲刷、掩盖(Li, 2006; O’Connor et al., 2013Carling et al., 2017),亦或由于溃决洪水流中夹带的高浓度悬移质泥沙,抑制了空蚀的发生(Carrivick et al., 2010Guan et al., 2015),使其不易在野外被观测到. 通过总结多次溃决洪水事件的水深和流速分布范围及侵蚀形成的相关地貌发现,理论上天然河道中溃决洪水侵蚀形成的各类地貌类型极有可能发生过空蚀(σ<3),多数溃决洪水事件也具备空蚀发生的条件(图9). 综上,空蚀形成过程复杂,涉及固、液、气三相相互作用,但目前有关溃决洪水空蚀的研究多集中于洪水水动力条件与侵蚀地貌单元之间的潜在关联,且由于天然河道中空蚀现象的难见性,溃决洪水空蚀发生机理的认识还存在较多的不足.

2.3 涡蚀

涡蚀(Evorsion)是指在水流在压差和偏向力作用下形成的涡流对基岩进行的侵蚀(Carling et al., 2009b),其明显特征为形成的大尺度螺旋结构. 涡流顶部具有极高的流速,底部则呈低压状态,致使形成强烈的向上吸力(图6),而由于顶部与底部速度差的存在,使得涡流对边界的局部侵蚀效率增加(Baker, 1978),加之水流中夹带的泥沙与基岩相互磨损,进一步扩大了涡蚀效应(Baker, 1978Whipple et al., 2000). 涡蚀发生的必要条件包括:(1)能量梯度大;(2)水流实际输沙量与潜在输沙量之比较低;(3)具有不规则、粗糙的边界导致水流能够产生流动分离(图6). 涡蚀拓展的方向与溃决洪水演进所处的边界有关,在峡谷河道中,涡蚀分为向两岸和向下游拓展两种类型(Benito and Thorndycraft, 2020),通常在河岸处形成直径为数米的壶穴;而溃决洪水在拓宽型河道或在宽敞区域演进时,涡流的分布和拓展则呈现较大的随机性.

2.4 磨蚀

磨蚀主要是由洪水中夹带的碎屑频繁对基岩冲击、碎屑颗粒表面的剪切和洪水运移的巨石与河床或岸坡接触时相互摩擦形成的侵蚀类型(Carling et al., 2017Beer and Lamb 2021). 磨蚀在溃决洪水常表现为长条或线状的冲刷痕和厘米至百米的冲槽(Maizels 1997)(表1),其发生多集中于峡谷基岩河道边缘、障碍物背水处及背水跌落处(Lamb et al., 2014Baynes et al., 2015a). 由于现有的磨蚀研究多集中于基流对河道的长时间尺度的相互作用,在溃决洪水中未展开深入的研究,因此其相关侵蚀行为与机制未进行详细综述.

3 高能溃决洪水的侵蚀效应

溃决洪水的侵蚀效应涉及高能水体与泥沙运动、河道侵蚀和演变的过程,且三者之间存在极强的互馈关系链,具体表现为溃决水流在基岩或冲积型河道(地表)演进时,固-液-气三相之间的剧烈相互作用进而引发的一系列自然过程,宏观上能够引发地貌格局的迅速变化. 与溃决洪水相比,河流侵蚀地貌的形成通常经历缓慢而持续的过程,侵蚀机制以水流剪应力主导的磨蚀为主,在短时间尺度上的侵蚀效应极为微弱(沈玉昌和龚国元, 1986),但从长时间尺度来看,其累积侵蚀效应可与溃决洪水侵蚀相当(如峡谷的形成和河道冲决等). 由于溃决洪水具有大流量、高河流功率和高雷诺数的紊流特性,使其具有超强的泥沙夹带和侵蚀能力(O’Connor et al., 2013Carling and Fan, 2020),进一步放大了其在天然河道中的侵蚀效应.

3.1 侵蚀成河效应

侵蚀成河是指洪水溃决后在原有地形上侵蚀形成新的流动通道,成河过程通常经历多次溃决洪水逐渐侵蚀(图10),每次侵蚀往往有残余阶地形成(图1),多见于发生在地球第四纪时期和火星形成早期的“盆地型”高能溃决事件中. Gupta et al. (2007)利用声呐探测发现,吉利海峡的形成可能由一场发生于间冰期北海南部冰缘湖溃决引发的洪峰流量达0.2~1.0百万m3/s的高能洪水侵蚀地表导致,进而导致了英国与欧洲大陆的分离(Roep et al., 1975Smith 1985). 钻孔和地震数据显示,约533万年前来自大西洋的赞克林(Zanclean)高能洪水侵蚀出的长200余km、深超过250 m的通道流向地中海,彻底结束了地中海的盐度危机(Garcia⁃Castellanos et al., 2009). 冰湖溃决洪水曾多次对格陵兰冰盖下的地形侵蚀,侵蚀速率高达0.5~5 m/a,形成的峡谷深约800 m(DeConto et al., 2020). 发生于末次冰期的密苏拉高能洪水反复溃决了近百次,侵蚀形成了大量基岩峡谷和沟槽疤地(Baker 1978aBaker 2020),面积达3万km2,其中的Grand Coulee最大侵蚀宽度达8 km(O’Connor et al., 2020),向下游运移直径18 m的砾石长达10 km(Baker 2002b).

火星作为太阳系内与地球最为相似的行星,其表面分布有大量类地地貌. 相比于地球,火星早期曾发生的溃决事件规模更大,侵蚀成河效应更剧烈. 其中,深度和宽度通常在数十至上百余公里范围、分布于克律塞(Chryse)平原、海拉斯(Hellas)盆地、萨希斯(Tharsis)和埃律西姆(Elysium)火山周边区域的外流河道(赵健楠等, 2021),被认为是由一系列早期湖泊溃决侵蚀形成(Amidon and Clark, 2015Warner et al., 2013Baker, 2001). 此外,阿瑞斯峡谷局部宽度超过100 km,其流量重建结果表明,此前侵蚀峡谷的溃决洪水洪峰流量范围达108~109 m3/s(Komatsu and Baker 1997). 在侵蚀地貌中,由数条平行相间的沟槽组成的长约4 000 km水手峡谷属规模最大. 较多的证据表明,水手峡谷由早期火星表面的湖泊溃决侵蚀形成(Coleman and Baker 2009). 最近有研究对火星峡谷网提取分析发现,溃决洪水在早期火星表面形成的侵蚀量达4.8×1012 m3/s,占峡谷网体积的约24%,其长度占总长的约3%(Goudge et al., 2021). 此外,越来越多的研究表明火星表面的凯瑟(Kasei)峡谷(Robinson and Tanaka, 1990Williams et al., 2000)、玛加(Maja)峡谷(Christensen et al., 2003)和阿萨巴斯卡(Athabasca)峡谷(Keszthelyi et al., 2004)等十余条峡谷受溃决洪水侵蚀,并在侵蚀地貌形态尺寸、洪水规模及流向等方面进行了详细的分析(Burr et al., 2009).

3.2 横向突变效应

河道拓宽作为高能溃决洪水在平面上侧向侵蚀的典型侵蚀响应,短时间内极大的加速了河道形态的演化. 河道拓宽程度取决于高能溃决洪水水流功率、挟沙量和河道弯曲度等因素,其中侧向侵蚀作用在河道凹岸和收缩河段最为明显(Lamb et al., 2015).

2000年易贡溃决洪水爆发后,在距溃决下游的18 km范围内发生了大幅摆动,其中四段河道迁移超过100 m(Yang et al., 2021Zhang et al., 2022a)(图11c);白格溃决洪水和Zhangzangbo冰湖溃决洪水发生后,也导致了不同程度的河道拓宽(图11a、11b). 然而,由于河谷两岸的坡体岩性及结构的复杂性,河道迁移时间与洪水剪切应力峰值往往存在一定的“滞后”效应(Zhang et al., 2022a). 在溃决洪水洪峰极大、泄流时间极短的情况下,甚至还可能引发河段冲决改道(Weckwerth et al., 2019Sincavage et al., 2022).

此外,在窄谷、高起伏度和弯曲地形的约束下,高能溃决洪水往往成为河道斜坡坡脚受侧向侵蚀的直接驱动因素,短时间内间接加大了河道的横向侵蚀. 受侵蚀的斜坡稳定性大大降低,极易形成次生滑坡,进一步引发二次溃决洪水. Larsen and Montgomery (2012)发现,喜马拉雅东部高滑坡侵蚀速率主要是由于频发的高能溃决洪水侵蚀形成的大量滑坡发生导致. 其中,Cook et al. (2018)在西藏境内观测到一场洪峰流量仅约为3 000 m3/s的冰湖溃决造成了多处边坡失稳和次生滑坡发生,而部分河段坡脚侧向侵蚀则超过10 m. 易贡溃决洪水和2018年白格溃决洪水过后,至少分别导致了37处和9处坡体失稳(Turzewski et al., 2019Yang et al., 2021). 溃决洪水诱发滑坡的侵蚀过程复杂,且涉及因素较多,除其本身的坡度(临界坡度)和受地震、构造活动等使其表面发育拉张裂隙及分化层外(Larsen et al., 2010),溃决主流与河道的偏转角度、洪水峰值剪切力值及其持续时间也是导致斜坡失稳的重要因素(Turzewski et al., 2019Yang et al., 2022b).

总体而言,斜坡受高能溃决洪水侵蚀可分为3个阶段(Yang et al., 2022):阶段Ⅰ,高能溃决洪水发生前斜坡表面可能已存在少量影响坡体稳定的不确定性因素,如由于构造活动或其他因素引起拉张裂隙等(图12a). 在阶段Ⅱ,高能溃决洪水发生时,持续性(数小时至数天)的高紊动溃决水流的主流在与河道形成较大偏差角的河段引发快速侵蚀. 高能溃决洪水可能持续性的侵蚀坡脚,并逐渐去移除坡脚下部沉积层,使得坡体底部支撑骨架缺失,进而引发滑坡或使斜坡保持临界或接近稳定的状态(图12b). 在阶段Ⅲ,洪水过后,原本不稳定的山坡在外部因素的影响下开始加速运动(图12c).

3.3 纵向突变效应

河道形态的纵向突变集中表现为堰塞-溃决对河流纵剖面的形态变化的影响(Wang et al., 2019). 堰塞坝形成后,堰塞湖内泥沙沉积物向下游输移受限,淤积于湖内,使得坝体上游河道坡度降低(图13a);在坝体失稳溃决后,溃决洪水对下游河道形成剧烈下切侵蚀(图13b). 在上游淤积,下游剧烈侵蚀的双重过程叠加下,原有堰塞坝位置极易发育河流裂点(Korup 2006Ouimet et al., 2007图13b). 裂点会沿着河道溯源侵蚀,直至河流纵剖面自身调整至平衡状态(周丽琴等,2019). 从长期来看,这一过程将会促进河流的侵蚀,而其影响程度则主要取决于溃决洪水量级、频率和发生年代. 对于同一位置的溃决事件,峡谷河道在不同时间尺度上呈现出不同特征的演化模式. Lin et al.(2022)通过河流形貌动力学模型模拟发现,在单次溃决事件尺度下(2018年加拉堰塞-溃决事件),坝体下游60 km范围内基岩侵蚀厚度在毫米级,而在随后的几十年或几个世纪里,滑坡沉积物会一直覆盖河道,从而阻碍基岩向下切割,使得基岩逐渐隆起并向上游迁移最终达到平衡. 而当发生多次溃坝事件时,基岩-冲积型河道将会在数万年后才能达到动态平衡. Korup and Montgomery (2008)在雅鲁藏布大峡谷附近区域解译数出百个堰塞坝,认为反复的堰塞事件形成的裂点阻止了侵蚀向青藏高原内部延伸,保持青藏高原边缘的完整性. 而随后的溃决洪水对下游河道的强烈下切,极大的促进了雅鲁藏布大峡谷的形成和演化(王慧颖等,2020). 然而,洪水下切侵蚀与地壳隆升往往呈强相互耦合关系(King et al., 2016),内动力驱动的隆升变形也极大影响了洪水对地表河道的侵蚀路径与形态. 有研究表明,在冰川均衡调整作用下,密苏拉溃决洪水在不同地形形成了不同的演进路线和淹没范围,进而对导致了对覆盖地表的黄土和玄武岩侵蚀造成较大的差异(Pico et al., 2022). 由此可见,无论从长短期时间尺度或地壳内部响应方面,溃决洪水的下切侵蚀对河道纵剖面的发育与演化都发挥着关键作用.

4 总结与展望

高能溃决洪水侵蚀涉及流体力学、地貌学、泥石运动力学、土力学以及年代学等多学科交叉和水流、泥沙、基岩与构造活动多因素的复杂相互作用. 虽然基于不同尺度的高能溃决洪水侵蚀机制和侵蚀效应取得一定进展,但由于洪水量级、流态的不可复制性和地表形态及岩性的多样性,目前高能溃决洪水侵蚀的相关研究结论仍局限于从宏观角度于洪水事件及频次形成的侵蚀地貌效应,现有研究在各类典型溃决洪水事件侵蚀过程和不同时间尺度的侵蚀效应的机理方面仍存在诸多不足. 总体而言,后续研究应着重考虑以下几个方面:

(1)多方法揭示高能溃决洪水侵蚀驱动机制. 虽然高能溃决洪水侵蚀机制方面的研究已取得一定进展,但大多边界条件过于简化或基于宏观角度从侵蚀残余地貌推断其侵蚀过程. 建议结合多种手段(水槽试验、野外观测和数值模拟),进一步揭示不同地形地貌与水流之间的相互侵蚀作用机制,厘清不同类型侵蚀方式与多种侵蚀类型共同作用下微观方面的侵蚀机理,以期加深对高能溃决洪水侵蚀驱动规律.

(2)考虑高能溃决洪水的悬移质和推移质的“工具效应”和“覆盖效应”. 高能溃决洪水演进挟带大量来自坝体和河道岸坡的沉积物和巨石,在洪水期间,悬移质产生工具效应加速对河道的侵蚀;洪水过后,泥沙和巨石沉积,形成覆盖效应保护河床. 河道中泥沙和巨石的分布会增加水流阻力和影响沉积物的运移效率,在反复发生溃决的河道或溃决事件发生后的长时间尺度内使得河道侵蚀速率发生变化,进而影响河道比降. 理解溃决事件所形成的泥沙和巨石的粒径和位置分布在不同时间尺度对河道形状的影响,可为认识河流演化提供新的思路.

(3)明确高能溃决洪水与颗粒破碎的能量学. 由于高能溃决洪水历史较短,其动能往往集中出现于洪峰期间,由于洪水悬浮、夹带的大砾石在在湍流条件下发生相互碰撞后破碎,悬浮碰撞过程使得水体能量得以耗散(图6). 随后,碎屑在微弱水动力条件下沉积,形成独特的沉积相层. 深入了解高能溃决洪水与颗粒破碎之间的功能转化特性和颗粒破碎形态之间的关系,能够极大的促进对历史溃决事件的认识.

(4)量化高能溃决洪水侵蚀和构造抬升的耦合作用. 高能溃决洪水侵蚀方式和侵蚀效率远超基流和常遇洪水,短时间内能够移除大量沉积物,进而迅速改变地表物质分布和重力应力分布,使得侵蚀基准面和河道坡度在均衡抬升、断层活动等作用下,反向影响河流侵蚀速率和沉积物搬运效率. 量化高能溃决洪水侵蚀诱发的内外动力耦合作用机制,对探究地表各圈层的演化规律具有重要意义.

参考文献

[1]

Ahmed, J., Peakall, J., Balme, M., et al., 2022. Rapid Megaflood⁃Triggered Base⁃Level Rise on Mars. Geology, 51: 28-32.https://doi.org/10.1130/g50277.1

[2]

Amidon, W. H., Clark, A. C., 2015. Interaction of Outburst Floods with Basaltic Aquifers on the Snake River Plain: Implications for Martian Canyons. Geological Society of America Bulletin, 127(5/6): 688-701. https://doi.org/10.1130/b31141.1

[3]

Baker, V. R., 1996. Discovering Earth’s Future in Its Past: Palaeohydrology and Global Environmental Change. Geological Society, London, Special Publications, 115(1): 73-83. https://doi.org/10.1144/GSL.SP.1996.115.01.07

[4]

Baker, V. R., 2001. Water and the Martian Landscape. Nature, 412(6843): 228-236. https://doi.org/10.1038/35084172.

[5]

Baker, V. R., 2002. The Study of Superfloods. Science. 295: 2379-2380. https://doi.org/10.1126/science.1068448

[6]

Baker, V. R., 2009. Channeled Scabland Morphology.Megaflooding on Earth and Mars, 65-77.

[7]

Baker, V. R., 2013. Global Late Quaternary Fluvial Paleohydrology: With Special Emphasis on Paleofloods and Megafloods. Treatise on Geomorphology, 1: 511-527. https://doi.org/10.1016/B978⁃0⁃12⁃374739⁃6.00252⁃9

[8]

Baker, V. R., 2020. Global Megaflood Paleohydrology. J. HERGET. A. FONTANA. Palaeohydrology: Traces. Tracks and Trails of Extreme Events. Springer International Publishing. Cham, 3-28.

[9]

Baker, V. R., Benito, G., Brown, A. G., et al., 2021. Fluvial Palaeohydrology in the 21st Century and Beyond. Earth Surface Processes and Landforms, 47(1): 58-81. https://doi.org/10.1002/esp.5275

[10]

Baker, V. R., Costa, J. E., 2020. Flood Power. Catastrophic Flooding. Routledge,1-21.

[11]

Baker, V. R., Milton, D. J., 1974. Erosion by Catastrophic Floods on Mars and Earth. Icarus, 23(1): 27-41. https://doi.org/10.1016/0019⁃1035(74)90101⁃8

[12]

Baker, V., 1978a. Large⁃Scale Erosional and Depositional Features of the Channeled Scabland. National Aeroanutics and Space Administration. City. 81-115.

[13]

Baker, V., 2002a. High⁃Energy Megafloods: Planetary Settings and Sedimentary Dynamics. Flood and Megaflood Processes and Deposits, John Wiley & Sons, Hoboken, 1-15.

[14]

Baker, V., Kale, V., 1998. The Role of Extreme Floods in Shaping Bedrock Channels. Geophysical Monograph, 107: 153-165. https://doi.org/10.1029/GM107P0153

[15]

Barnes, H. L., 1956. Cavitation as a Geological Agent. American Journal of Science, 254(8): 493-505. https://doi.org/10.2475/ajs.254.8.493

[16]

Baynes, E. R. C., Attal, M., Dugmore, A. J., et al., 2015b. Catastrophic Impact of Extreme Flood Events on the Morphology and Evolution of the Lower Jökulsá á Fjöllum (Northeast Iceland) during the Holocene. Geomorphology, 250: 422-436. https://doi.org/10.1016/j.geomorph. 2015.05.009

[17]

Baynes, E. R. C., Attal, M., Niedermann, S., et al., 2015a. Erosion during Extreme Flood Events Dominates Holocene Canyon Evolution in Northeast Iceland. Proceedings of the National Academy of Sciences of the United States of America, 112(8): 2355-2360. https://doi.org/10.1073/pnas.1415443112

[18]

Beer, A. R., Lamb, M. P., 2021. Abrasion Regimes in Fluvial Bedrock Incision. Geology. 49: 682-386.https://doi.org/10.1130/g48466.1

[19]

Benito, G., Thorndycraft, V. R., 2020. Catastrophic Glacial⁃Lake Outburst Flooding of the Patagonian Ice Sheet. EarthScience Reviews, 200: 102996. https://doi.org/10.1016/j.earscirev.2019.102996

[20]

Borgohain, B., Mathew, G., Chauhan, N., et al., 2020. Evidence of Episodically Accelerated Denudation on the Namche Barwa Massif (Eastern Himalayan Syntaxis) by Megafloods. Quaternary Science Reviews, 245: 106410. https://doi.org/10.1016/j.quascirev.2020.106410

[21]

Bretz, J., 1923a. The Channeled Scablands of the Columbia Plateau. The Journal of Geology. 31: 617-649.https://doi.org/10.1086/623053

[22]

Burr, D., Wilson, L., Bargery, A., 2009. Floods from Fossae: a Review of Amazonian⁃Aged Extensional⁃Tectonic Megaflood Channels on Mars. In: Burr, D. M., Carling, P. A., Baker, V. R., eds., Megaflooding on Earth and Mars, Cambridge University Press. Cambridge,194-208.

[23]

Carling, P. A., Fan, X. M., 2020. Particle Comminution Defines Megaflood and Superflood Energetics. EarthScience Reviews, 204: 103087. https://doi.org/10.1016/j.earscirev.2020.103087

[24]

Carling, P. A., Herget, J., Lanz,J. K., et al., 2009b. Channel⁃Scale Erosional Bedforms in Bedrock and in Loose Granular Material: Character. Processes and Implications. In: Burr, D. M., Carling, P. A., Baker, V. R., eds., Megaflooding on Earth and Mars, Cambridge University Press. Cambridge, 13-32.

[25]

Carling, P. A., Perillo, M., Best, J., et al., 2017. The Bubble Bursts for Cavitation in Natural Rivers: Laboratory Experiments Reveal Minor Role in Bedrock Erosion. Earth Surface Processes and Landforms, 42(9): 1308-1316. https://doi.org/10.1002/esp.4101

[26]

Carling, P., Burr, D., Johnsen, T., et al., 2009a. a Review of Open⁃Channel Megaflood Depositional Landforms on Earth and Mars. Megaflooding on Earth and Mars, 33-49.

[27]

Carling, P., Hoffmann, M., Silke⁃Blatter, A., et al., 2002. Drag of Emergent and Submerged Rectangular Obstacles in Turbulent Flow above Bedrock Surface, Lisse, 83-94.

[28]

Carrivick, J. L., 2007. Hydrodynamics and Geomorphic Work of Jökulhlaups (Glacial Outburst Floods) from Kverkfjöll Volcano, Iceland. Hydrological Processes, 21(6): 725-740. https://doi.org/10.1002/hyp.6248

[29]

Carrivick, J. L., Manville, V., Graettinger, A., et al., 2010. Coupled Fluid Dynamics⁃Sediment Transport Modelling of a Crater Lake Break⁃Out Lahar: Mt. Ruapehu, New Zealand. Journal of Hydrology, 388(3/4): 399-413. https://doi.org/10.1016/j.jhydrol.2010.05.023

[30]

Carrivick, J. L., Rushmer, E. L., 2006. Understanding High⁃Magnitude Outburst Floods. Geology Today, 22(2): 60-65. https://doi.org/10.1111/j.1365⁃2451.2006.00554.x

[31]

Chatanantavet, P., Parker, G., 2009. Physically Based Modeling of Bedrock Incision by Abrasion, Plucking, and Macroabrasion. Journal of Geophysical Research: Earth Surface, 114(F4): F04018. https://doi.org/10.1029/2008JF001044

[32]

Christensen, P. R., Bandfield, J. L., Bell, J. F. 3rd, et al., 2003. Morphology and Composition of the Surface of Mars: Mars Odyssey THEMIS Results. Science, 300(5628): 2056-2061. https://doi.org/10.1126/science.1080885

[33]

Coleman, N. M., Baker, V. R., 2009. Surface Morphology and Origin of Outflow Channels in the Valles Marineris Region. In: Burr, D. M., Carling, P. A., Baker, V. R., eds., Megaflooding on Earth and Mars, Cambridge University Press. New York, 172-193.

[34]

Cook, K. L., Andermann, C., Gimbert, F., et al., 2018. Glacial Lake Outburst Floods as Drivers of Fluvial Erosion in the Himalaya. Science, 362(6410): 53-57. https://doi.org/10.1126/science.aat4981

[35]

Costa,J.E., 1985. Floods from Dam Failures. Open⁃File Report, 85-560.

[36]

David, S. R., Larsen, I. J., Lamb, M. P., 2022. Narrower Paleo⁃Canyons Downsize Megafloods. Geophysical Research Letters, 49(11): e2022GL097861. https://doi.org/10.1029/2022GL097861

[37]

DeConto, R. M., Nuterman, R., Hvidberg, C. S., et al., 2020. Pliocene⁃Pleistocene Megafloods as a Mechanism for Greenlandic Megacanyon Formation. Geology, 48: 737-741.https://doi.org/10.1130/g47253.1

[38]

Denlinger, R. P., O’Connell, D. R. H., 2010. Simulations of Cataclysmic Outburst Floods from Pleistocene Glacial Lake Missoula. Geological Society of America Bulletin, 122(5/6): 678-689. https://doi.org/10.1130/B26454.1

[39]

Dubinski, I. M., Wohl, E., 2013. Relationships between Block Quarrying, Bed Shear Stress, and Stream Power: a Physical Model of Block Quarrying of a Jointed Bedrock Channel. Geomorphology, 180: 66-81. https://doi.org/10.1016/j.geomorph.2012.09.007

[40]

Emmer, A., 2017. Geomorphologically Effective Floods from Moraine⁃Dammed Lakes in the Cordillera Blanca, Peru. Quaternary Science Reviews, 177: 220-234. https://doi.org/10.1016/j.quascirev.2017.10.028

[41]

Garcia⁃Castellanos, D., Estrada, F., Jiménez⁃Munt, I., et al., 2009. Catastrophic Flood of the Mediterranean after the Messinian Salinity Crisis. Nature, 462(7274): 778-781. https://doi.org/10.1038/nature08555

[42]

George, M., Sitar, N., 2012. Evaluation of Rock Scour Using Block Theory(Dissertation). University of California, California.

[43]

Goudge, T. A., Morgan, A. M., Stucky de Quay, G., et al., 2021. The Importance of Lake Breach Floods for Valley Incision on Early Mars. Nature, 597(7878): 645-649. https://doi.org/10.1038/s41586⁃021⁃03860⁃1

[44]

Guan, M. F., Wright, N. G., Sleigh, P. A., et al., 2015. Assessment of Hydro⁃Morphodynamic Modelling and Geomorphological Impacts of a Sediment⁃Charged Jökulhlaup, at Sólheimajökull, Iceland. Journal of Hydrology, 530: 336-349. https://doi.org/10.1016/j.jhydrol. 2015. 09.062

[45]

Guo, Y. Q., Ge, Y. G., Mao, P. N., et al., 2023. A Comprehensive Analysis of Holocene Extraordinary Flood Events in the Langxian Gorge of the Yarlung Tsangpo River Valley. Science of the Total Environment, 863: 160942. https://doi.org/10.1016/j.scitotenv.2022.160942

[46]

Guo,Y.Q.,Ge,Y.G,Chen,X.Q.,et al.,2021.Progress in the Reconstruction of Palaeoflood Events in the Mountain Canyon Valleys around the Tibetan Plateau. Earth Science Frontiers, 28(2): 168-180 (in Chinese with English abstract).

[47]

Gupta, S., Collier, J. S., Palmer⁃Felgate, A., et al., 2007. Catastrophic Flooding Origin of Shelf Valley Systems in the English Channel. Nature, 448(7151): 342-345. https://doi.org/10.1038/nature06018

[48]

Hancock, G. S., Anderson, R. S., Whipple, K. X., et al., 1998. Beyond Power: Bedrock River Incision Process and form. Geophysical MonographAmerican Geophysical Union. 107: 35-60.https://doi.org/10.1029/GM107p0035

[49]

Hu, K. H., Wei, L., Yang, A., et al., 2022. Broad Valleys and Barrier Dams in Upstream Brahmaputra Efficiently Retain Tibetan-Sourced Sediments: Evidence from Palaeoflood Records. Quaternary Science Reviews. 285: 107538.https://doi.org/10.1016/j.quascirev.2022.107538

[50]

Hu, K. H., Wu, C. H., Wei, L., et al., 2021. Geomorphic Effects of Recurrent Outburst Superfloods in the Yigong River on the Southeastern Margin of Tibet. Scientific Reports, 11(1): 15577. https://doi.org/10.1038/s41598⁃021⁃95194⁃1

[51]

Hurst, A. A., Anderson, R. S., Crimaldi, J. P., 2021. Toward Entrainment Thresholds in Fluvial Plucking. Journal of Geophysical Research: Earth Surface, 126(5): e2020JF005944. https://doi.org/10.1029/2020JF005944

[52]

Jarrett, R. D., Tomlinson, E. M., 2000. Regional Interdisciplinary Paleoflood Approach to Assess Extreme Flood Potential. Water Resources Research, 36(10): 2957-2984. https://doi.org/10.1029/2000WR900098

[53]

Jia, K.C.,Zhuang,J.Q,Zhan, J.W.,et al.,2023.Reconstruction of the Dynamic Process of the Holocene Gelongbu Landslide⁃Blocking⁃Flood Geological Disaster Chain Based on Numerical Simulation. Earth Science48(9):3402-3419 (in Chinese with English abstract).

[54]

Jiang, X.G.,Liu,W.M.,Wen,S.S.,et al.,2022.Simulation of Ancient High⁃Energy Flood in the Middle Reaches of the Yarlung Zangbo River Based on HEC⁃RAS Model. Mountain Research, 40(2):276-288 (in Chinese with English abstract).

[55]

Kadivar, M., Tormey, D., McGranaghan, G., 2021. A Review on Turbulent Flow over Rough Surfaces: Fundamentals and Theories. International Journal of Thermofluids, 10: 100077. https://doi.org/10.1016/j.ijft.2021.100077

[56]

Karlstrom, K., Crow, R., Crossey, L., et al., 2008. Model for Tectonically Driven Incision of the Younger than 6 Ma Grand Canyon. Geology. 36: 835-838.https://doi.org/10.1130/g25032a.1

[57]

Keszthelyi, L., Burr, D., McEwen, A., 2004. Geomorphologic/Thermophysical Mapping of the Athabasca Region, Mars, Using THEMIS Infrared Imaging. City. 1657

[58]

King, G. E., Herman, F., Guralnik, B., 2016. Northward Migration of the Eastern Himalayan Syntaxis Revealed by OSL Thermochronometry. Science, 353(6301): 800-804. https://doi.org/10.1126/science.aaf2637

[59]

Komar, P. D., 1979. Comparisons of the Hydraulics of Water Flows in Martian Outflow Channels with Flows of Similar Scale on Earth. Icarus, 37(1): 156-181. https://doi.org/10.1016/0019⁃1035(79)90123⁃4

[60]

Komatsu, G., Baker, V. R., 1997. Paleohydrology and Flood Geomorphology of Ares Vallis. Journal of Geophysical Research: Planets, 102(E2): 4151-4160. https://doi.org/10.1029/96JE02564

[61]

Korup, O., 2006. Rock⁃Slope Failure and the River Long Profile. Geology. 34: 45-48.https://doi.org/10.1130/g21959.1

[62]

Korup, O., 2012. Earth’s Portfolio of Extreme Sediment Transport Events. EarthScience Reviews, 112(3/4): 115-125. https://doi.org/10.1016/j.earscirev.2012.02.006

[63]

Korup, O., Montgomery, D.R., 2008. Tibetan Plateau River Incision Inhibited by Glacial Stabilization of the Tsangpo Gorge. Nature. 455: 786-789.https://doi.org/10.1038/nature07322

[64]

Lamb, M. P., Finnegan, N. J., Scheingross, J. S., et al., 2015. New Insights into the Mechanics of Fluvial Bedrock Erosion through Flume Experiments and Theory. Geomorphology, 244: 33-55. https://doi.org/10.1016/j.geomorph.2015.03.003

[65]

Lamb, M. P., Fonstad, M. A., 2010. Rapid Formation of a Modern Bedrock Canyon by a Single Flood Event. Nature Geoscience, 3: 477-481. https://doi.org/10.1038/ngeo894

[66]

Lamb, M. P., MacKey, B. H., Farley, K. A., 2014. Amphitheater⁃Headed Canyons Formed by Megaflooding at Malad Gorge, Idaho. Proceedings of the National Academy of Sciences of the United States of America, 111(1): 57-62. https://doi.org/10.1073/pnas.1312251111

[67]

Lamb, M., Dietrich, W., 2009. The Persistence of Waterfalls in Fractured Rock. Geological Society of America Bulletin, 121: 1123-1134. https://doi.org/10.1130/B26482.1

[68]

Lamb, M., Dietrich, W., Aciego, S., et al., 2008. Formation of Box Canyon, Idaho, by Megaflood: Implications for Seepage Erosion on Earth and Mars. Science. 320: 1067-1070.https://doi.org/doi:10.1126/science.1156630

[69]

Lang, K. A., Huntington, K. W., Montgomery, D. R., 2013. Erosion of the Tsangpo Gorge by Megafloods, Eastern Himalaya. Geology, 41(9): 1003-1006.

[70]

Lapotre, M. G. A., Lamb, M. P., Williams, R. M. E., 2016. Canyon Formation Constraints on the Discharge of Catastrophic Outburst Floods of Earth and Mars. Journal of Geophysical Research: Planets, 121(7): 1232-1263. https://doi.org/10.1002/2016JE005061

[71]

Larsen, I. J., Lamb, M. P., 2016. Progressive Incision of the Channeled Scablands by Outburst Floods. Nature, 538(7624): 229-232. https://doi.org/10.1038/nature19817

[72]

Larsen, I. J., Montgomery, D. R., 2012. Landslide Erosion Coupled to Tectonics and Riverincision. Nature Geoscience, 5: 468-473. https://doi.org/10.1038/ngeo1479

[73]

Larsen, I. J., Montgomery, D. R., Korup, O., 2010. Landslide Erosion Controlled by Hillslope Material. Nature Geoscience, 3: 247-251. https://doi.org/10.1038/ngeo776

[74]

Lehnigk, K. E., Larsen, I. J., 2022. Pleistocene Megaflood Discharge in Grand Coulee, Channeled Scabland, USA. Journal of Geophysical Research: Earth Surface, 127(1): e2021JF006135. https://doi.org/10.1029/2021JF006135.

[75]

Li, D. F., Lu, X. X., Walling, D. E., et al., 2022. High Mountain Asia Hydropower Systems Threatened by Climate⁃Driven Landscape Instability. Nature Geoscience, 15: 520-530. https://doi.org/10.1038/s41561⁃022⁃00953⁃y

[76]

Li, S. C., 2006. Cavitation Enhancement of Silt Erosion: An Envisaged Micro Model. Wear, 260(9/10): 1145-1150. https://doi.org/10.1016/j.wear.2005.07.002

[77]

Lin, Y. P., An, C. G., Parker, G., et al., 2022. Morphodynamics of Bedrock⁃Alluvial Rivers Subsequent to Landslide Dam Outburst Floods. Journal of Geophysical Research: Earth Surface, 127(9): e2022JF006605. https://doi.org/10.1029/2022JF006605

[78]

Liu, W., Carling, P. A., Hu, K., et al., 2019. Outburst Floods in China: A Review. EarthScience Reviews. 197: 102895. https://doi.org/10.1016/j.earscirev.2019.102895

[79]

Liu, Y.,Wu,X., Liu,Z.H.,et al.2021.Geological Evolution and Habitable Environment of Mars: Progress and Prospects. Reviews of Geophysics and Planetary Physics, 52(4): 416-436 (in Chinese with English abstract).

[80]

Lützow, N., Veh, G., 2022. Glacier Lake Outburst Flood Database V3.0. ZENODO. V3.0 edn.

[81]

Lützow,N., Veh,G., Korup, O., 2023. A Global Database of Historic Glacier Lake Outburst Floods. Earth System Science Data, 15(7), 2983-3000. https://doi.org/10.5194/essd⁃15⁃2983⁃2023

[82]

Maizels J, 1997. Jökulhlaup Deposits in Proglacial Areas.Quaternary Science Reviews. 16: 793-819.https://doi.org/10.1016/S0277⁃3791(97)00023⁃1

[83]

Miyamoto, H., Komatsu, G., Baker, V. R., et al., 2007. Cataclysmic Scabland Flooding: Insights from a Simple Depth⁃Averaged Numerical Model. Environmental Modelling & Software, 22(10): 1400-1408. https://doi.org/10.1016/j.envsoft.2006.07.006

[84]

Montgomery, D. R., Hallet, B., Liu, Y. P., et al., 2004. Evidence for Holocene Megafloods down the Tsangpo River Gorge, Southeastern Tibet. Quaternary Research, 62(2): 201-207. https://doi.org/10.1016/j.yqres. 2004. 06.008

[85]

O’Connor, J. E., Clague, J. J., Walder, J. S., et al., 2013. 9.25 Outburst Floods. S. J. Treatise on Geomorphology. John Wiley & Sons. Ltd. Academic Press,Hoboken, 475-510.

[86]

O’Connor, J., 1993. Hydrology, Hydraulics, and Geomorphology of the Bonneville Flood. Geological Society of America,USA.

[87]

O’Connor, J., Baker, V., Waitt, R., et al., 2020. The Missoula and Bonneville Floods: A Review of Ice⁃Age Megafloods in the Columbia River Basin. EarthScience Reviews, 210: 103401. https://doi.org/10.1016/j.earscirev.2020.103401

[88]

Ouimet, W., Whipple, K., Royden, L., et al., 2007. The Influence of Large Landslides on River Incision in a Transient Landscape: Eastern Margin of the Tibetan Plateau (Sichuan, China). Geological Society of America Bulletin. 119(11-12), 1462-1476. https://doi.org/10.1130/b26136.1

[89]

Pasternack, G., Ellis, C., Leier, K. A., et al.,2006. Convergent Hydraulics at Horseshoe Steps in Bedrock Rivers. Geomorphology. 82: 126-145.https://doi.org/10.1016/j.geomorph.2005.08.022

[90]

Perron, J. T., Venditti, J. G., 2016. Megafloods Downsized. Nature. 538: 174-175.https://doi.org/10.1038/538174a

[91]

Pico, T., David, S. R., Larsen, I. J., et al., 2022. Glacial Isostatic Adjustment Directed Incision of the Channeled Scabland by Ice Age Megafloods. Proceedings of the National Academy of Sciences of the United States of America, 119(8): e2109502119. https://doi.org/10.1073/pnas.2109502119

[92]

Richardson, K., Carling, P. A., Richardson, K., et al., 2005. A Typology of Sculpted Forms in Open Bedrock Channels.Geological Society of America Special Papers. 392: 1-108.https://doi.org/10.1130/0⁃8137⁃2392⁃2.1

[93]

Robinson, M., Tanaka, K. L., 1990. Magnitude of a Catastrophic Flood Event at Kasei Valles, Mars. Geology. 18: 902-905. https://doi.org/10.1130/0091⁃7613(1990)018<0902:MOACFE>2.3.CO.2

[94]

Roep, T. B., Holst, H., Vissers, R. L. M., et al., 1975. Deposits of Southward⁃Flowing, Pleistocene Rivers in the Channel Region, near Wissant, NW France. Palaeogeography Palaeoclimatology Palaeoecology, 17(4): 289-308. https://doi.org/10.1016/0031⁃0182(75)90003⁃6

[95]

Shen,Y.C.,Gong,G.Y.,1986.Introduction to River Geomorphology. Science Press, Beijing,47-48(in Chinesewith English abstract).

[96]

Sincavage, R., Liang, M., Pickering, J., et al., 2022. Antecedent Topography and Sediment Dispersal: The Influence of Geologically Instantaneous Events on Basin Fill Patterns. Journal of Geophysical Research: Earth Surface, 127(6): e2021JF006539. https://doi.org/10.1029/2021JF006539

[97]

Sklar, L., Dietrich, W., 1998. River Longitudinal Profiles and Bedrock Incision Models: Stream Power and the Influence of Sediment Supply. Geophysical Monograph, 107: 237-260. https://doi.org/10.1029/GM107P0237

[98]

Smith, A. J., 1985. A Catastrophic Origin for the Palaeovalley System of the Eastern English Channel. Marine Geology, 64(1/2): 65-75. https://doi.org/10.1016/0025⁃3227(85)90160⁃4

[99]

Stefanelli, C. T., Segoni, S., Casagli, N., et al., 2016. Geomorphic Indexing of Landslide Dams Evolution. Engineering Geology. 208: 1-10.https://doi.org/10.1016/j.enggeo.2016.04.024

[100]

Su,H.,Shi,Z.T.,Dong,M., et al.,2021.The Geomorphic Process and Sedimentary Characteristics of the“11⁃3”BaigeDammed Lake Outburst Flood Event in the Upper Reaches of the Jinsha River from Benzilan to Shigu. Earth Science Frontiers,28(2):202-210 (in Chinese with English abstract).

[101]

Turzewski, M. D., Huntington, K. W., LeVeque, R. J., 2019. The Geomorphic Impact of Outburst Floods: Integrating Observations and Numerical Simulations of the 2000 Yigong Flood, Eastern Himalaya. Journal of Geophysical Research: Earth Surface, 124(5): 1056-1079. https://doi.org/10.1029/2018JF004778

[102]

Turzewski, M. D., Huntington, K. W., Licht, A., et al., 2020. Provenance and Erosional Impact of Quaternary Megafloods through the Yarlung⁃Tsangpo Gorge from Zircon U⁃Pb Geochronology of Flood Deposits, Eastern Himalaya. Earth and Planetary Science Letters, 535: 116113. https://doi.org/10.1016/j.epsl.2020.116113

[103]

Wang, H., Cui, P., Liu, D. Z., et al.,2019. Evolution of a Landslide⁃Dammed Lake on the Southeastern Tibetan Plateau and Its Influence on River Longitudinal Profiles. Geomorphology. 343: 15-32.https://doi.org/10.1016/j.geomorph.2019.06.023

[104]

Wang, P., Scherler, D., Jing, L. Z., et al., 2014. Tectonic Control of Yarlung Tsangpo Gorge Revealed by a Buried Canyon in Southern Tibet. Science, 346(6212): 978-981. https://doi.org/10.1126/science.1259041

[105]

Wang,H.,Cui,P.,Carling,P.A.,2021.The Sedimentology of High⁃Energy Outburst Flood Deposits an Overview.Earth Science Frontiers,2021,28(2):140-167 (in Chinese with English abstract).

[106]

Wang,H.Y.,Wang,P.,Hu,G., et al.,2020.Landform, Sedimentary Features and Hydraulic Models of High⁃Magnitude Outburst Flood. Quaternary Sciences, 40(5):1334-1349 (in Chinese with English abstract).

[107]

Warner, Sowe, Gupta, et al., 2013. Fill and Spill of Giant Lakes in the Eastern Valles Marineris Region of Mars. Geology, 41(6): 675-678. https://doi.org/10.1130/g34172.1

[108]

Weckwerth, P., Wysota, W., Piotrowski, J. A., et al., 2019. Late Weichselian Glacier Outburst Floods in North⁃Eastern Poland: Landform Evidence and Palaeohydraulic Significance. EarthScience Reviews, 194: 216-233. https://doi.org/10.1016/j.earscirev.2019.05.006

[109]

Whipple, K., Hancock, G., Anderson, R., 2000. River Incision into Bedrock: Mechanics and Relative Efficacy of Plucking, Abrasion and Cavitation. Geological Society of America Bulletin. 112: 490-503.https://doi.org/10.1130/0016⁃7606(2000)112<490:Riibma>2.0.Co.2

[110]

Wilkinson, C., Harbor, D., Helgans, E., et al., 2018. Plucking Phenomena in Nonuniform Flow. Geosphere. 14: 2157-2170.https://doi.org/10.1130/ges01623.1

[111]

Williams, R. M., Phillips, R. J., Malin, M. C., 2000. Flow Rates and Duration within Kasei Valles, Mars: Implications for the Formation of a Martian Ocean. Geophysical Research Letters, 27(7): 1073-1076. https://doi.org/10.1029/1999GL010957

[112]

Yang, A. N., Wang, H., Liu, W. M., et al., 2022a. Two Megafloods in the Middle Reach of Yarlung Tsangpo River since Last⁃Glacial Period: Evidence from Giant Bars. Global and Planetary Change, 208: 103726. https://doi.org/10.1016/j.gloplacha.2021.103726

[113]

Yang, J.S.,Wang,Y.,Yin J.H.,et al.,2022.Progress and Prospects in Recon⁃Struction of Flood Events in Chinese Alluvial Plains.Earth Science,47(11):3944-3959 (in Chinese with English abstract).

[114]

Yang, W. T., Fang, J., Jing, L. Z., 2021. Landslide⁃Lake Outburst Floods Accelerate Downstream Slope Slippage. Earth Surface Dynamics. 9: 1251-1262.https://doi.org/10.5194/esurf⁃9⁃1251⁃2021

[115]

Yang, Z. W., Liu, W. M., Garcia⁃Castellanos, D., et al., 2022b. Geomorphic Response of Outburst Floods: Insight from Numerical Simulations and Observations: The 2018 Baige Outburst Flood in the Upper Yangtze River. Science of the Total Environment, 851: 158378. https://doi.org/10.1016/j.scitotenv.2022.158378

[116]

Yu,G.A.,Huang,H.Q.,Wang,Z.Y.,et al.,2011.Research Progress and Application of Step⁃Pool Systems in Mountain Streams.Progress in Geography, 30(1): 42-48 (in Chinese).

[117]

Zhang, Q. Y., Hu, K. H., Wei, L., et al., 2022a. Rapid Changes in Fluvial Morphology in Response to the High⁃Energy Yigong Outburst Flood in 2000: Integrating Channel Dynamics and Flood Hydraulics. Journal of Hydrology, 612: 128199. https://doi.org/10.1016/j.jhydrol.2022.128199

[118]

Zhang, T., Li, D. F., East, A. E., et al., 2022b. Warming⁃Driven Erosion and Sediment Transport in Cold Regions. Nature Reviews Earth & Environment, 3: 832-851. https://doi.org/10.1038/s43017⁃022⁃00362⁃0

[119]

Zhao,J.N.,Shi,Y.T,Zhang, M.J., et al., 2021. Advancesin Martian Water⁃Related Landforms.Acta Geologica Sinica,95(9):2755-2768 (in Chinese with English abstract).

[120]

Zhou, L.Q., Liu, W.M., Lai, Z.P., et al., 2019. Ceomorphologic Response of River Damming. Quaternary Sciences,39(2):366-380 (in Chinese with English abstract).

基金资助

第二次青藏高原综合科学考察研究项目(2019QZKK0903)

国家自然科学基金川藏铁路重大基础科学问题专项(41941017)

国家自然科学基金面上项目(42071017)

中国科学院海外评审专家项目(E1R2140140)

AI Summary AI Mindmap
PDF (5802KB)

92

访问

0

被引

详细

导航
相关文章

AI思维导图

/