高能溃决洪水侵蚀机理与地貌效应研究进展
杨泽文 , 吴兵兵 , 刘维明 , 杨安娜 , 李雪梅 , 王昊 , 阮合春 , 周燕莲
地球科学 ›› 2025, Vol. 50 ›› Issue (02) : 718 -736.
高能溃决洪水侵蚀机理与地貌效应研究进展
Progress in Erosion Mechanism and Geomorphological Effects of High⁃Energy Outburst Floods
,
,
高能溃决洪水作为一种高量级、低频率的极端地表事件,其所具有的强烈侵蚀和重塑能力极大影响着地表形貌的演化. 近年来,有关高能溃决洪水的研究逐渐增多,然而相关的侵蚀机制与地貌效应仍缺乏系统性认识.通过系统梳理国内外高能溃决洪水侵蚀研究中的相关进展,总结了高能溃决洪水形成的大、中、小3种侵蚀地貌及相关特征,分析了包括拔蚀、空蚀、涡蚀和磨蚀四种高能溃决洪水侵蚀模式与发生条件,进一步归纳了高能溃决洪水典型侵蚀效应.最后结合国内外研究热点,从多方法揭示高能溃决洪水侵蚀机理与驱动因素、侵蚀运移作用下的“工具效应”与“覆盖效应”、高能溃决洪水与颗粒破碎的功能关系及侵蚀和构造抬升的耦合作用等方面对未来高能溃决洪水侵蚀研究进行了展望. 旨在深入理解高能溃决洪水的发生规律及其侵蚀过程,加深对此类灾难性极端地表事件与地貌演化之间关系的认识.
As an extreme surface event of high magnitude and low frequency, high⁃energy outburst flood has strong erosion and remodeling ability, which greatly affects the evolution of surface topography. In recent years, studies on high⁃energy outburst floods have gradually increased, however, the related erosion mechanisms and geomorphic effects still lack systematic understanding. We sorted out systematically of the relevant progresses of high⁃energy outburst floods at domestic and abroad, summarized three forms of erosion landforms and their features formed by high⁃energy outburst floods: large, medium and small, analyzed the erosion patterns and occurrence conditions of four types of high⁃energy outburst floods, including plucking, cavitation, eddy erosion and abrasion, and further integrated the typical erosion effects of outburst floods. Lastly,the study is combined with domestic and international research interests to reveal the mechanism and driving factors of flood erosion in terms of multi⁃methods, the “tool effect” and “cover effect” under the erosion and transport, the power and energy relationship between high⁃energy outburst flood and particle comminution, and the coupling effect of erosion and tectonic uplift.The aim is to provide an in⁃depth understanding of the occurrence patterns of high⁃energy outburst floods and their erosion processes, and to deepen the understanding of the links between such catastrophic extreme surface events and the evolution of the landscape.
溃决洪水地貌 / 侵蚀机制 / 侵蚀模式与类型 / 侧向侵蚀 / 地貌演化 / 地貌学.
outburst flood landscape / erosion river mechanisms / erosion patterns and types / lateral erosion / geomorphic evolution / geomorphology
| [1] |
Ahmed, J., Peakall, J., Balme, M., et al., 2022. Rapid Megaflood⁃Triggered Base⁃Level Rise on Mars. Geology, 51: 28-32.https://doi.org/10.1130/g50277.1 |
| [2] |
Amidon, W. H., Clark, A. C., 2015. Interaction of Outburst Floods with Basaltic Aquifers on the Snake River Plain: Implications for Martian Canyons. Geological Society of America Bulletin, 127(5/6): 688-701. https://doi.org/10.1130/b31141.1 |
| [3] |
Baker, V. R., 1996. Discovering Earth’s Future in Its Past: Palaeohydrology and Global Environmental Change. Geological Society, London, Special Publications, 115(1): 73-83. https://doi.org/10.1144/GSL.SP.1996.115.01.07 |
| [4] |
Baker, V. R., 2001. Water and the Martian Landscape. Nature, 412(6843): 228-236. https://doi.org/10.1038/35084172. |
| [5] |
Baker, V. R., 2002. The Study of Superfloods. Science. 295: 2379-2380. https://doi.org/10.1126/science.1068448 |
| [6] |
Baker, V. R., 2009. Channeled Scabland Morphology.Megaflooding on Earth and Mars, 65-77. |
| [7] |
Baker, V. R., 2013. Global Late Quaternary Fluvial Paleohydrology: With Special Emphasis on Paleofloods and Megafloods. Treatise on Geomorphology, 1: 511-527. https://doi.org/10.1016/B978⁃0⁃12⁃374739⁃6.00252⁃9 |
| [8] |
Baker, V. R., 2020. Global Megaflood Paleohydrology. J. HERGET. A. FONTANA. Palaeohydrology: Traces. Tracks and Trails of Extreme Events. Springer International Publishing. Cham, 3-28. |
| [9] |
Baker, V. R., Benito, G., Brown, A. G., et al., 2021. Fluvial Palaeohydrology in the 21st Century and Beyond. Earth Surface Processes and Landforms, 47(1): 58-81. https://doi.org/10.1002/esp.5275 |
| [10] |
Baker, V. R., Costa, J. E., 2020. Flood Power. Catastrophic Flooding. Routledge,1-21. |
| [11] |
Baker, V. R., Milton, D. J., 1974. Erosion by Catastrophic Floods on Mars and Earth. Icarus, 23(1): 27-41. https://doi.org/10.1016/0019⁃1035(74)90101⁃8 |
| [12] |
Baker, V., 1978a. Large⁃Scale Erosional and Depositional Features of the Channeled Scabland. National Aeroanutics and Space Administration. City. 81-115. |
| [13] |
Baker, V., 2002a. High⁃Energy Megafloods: Planetary Settings and Sedimentary Dynamics. Flood and Megaflood Processes and Deposits, John Wiley & Sons, Hoboken, 1-15. |
| [14] |
Baker, V., Kale, V., 1998. The Role of Extreme Floods in Shaping Bedrock Channels. Geophysical Monograph, 107: 153-165. https://doi.org/10.1029/GM107P0153 |
| [15] |
Barnes, H. L., 1956. Cavitation as a Geological Agent. American Journal of Science, 254(8): 493-505. https://doi.org/10.2475/ajs.254.8.493 |
| [16] |
Baynes, E. R. C., Attal, M., Dugmore, A. J., et al., 2015b. Catastrophic Impact of Extreme Flood Events on the Morphology and Evolution of the Lower Jökulsá á Fjöllum (Northeast Iceland) during the Holocene. Geomorphology, 250: 422-436. https://doi.org/10.1016/j.geomorph. 2015.05.009 |
| [17] |
Baynes, E. R. C., Attal, M., Niedermann, S., et al., 2015a. Erosion during Extreme Flood Events Dominates Holocene Canyon Evolution in Northeast Iceland. Proceedings of the National Academy of Sciences of the United States of America, 112(8): 2355-2360. https://doi.org/10.1073/pnas.1415443112 |
| [18] |
Beer, A. R., Lamb, M. P., 2021. Abrasion Regimes in Fluvial Bedrock Incision. Geology. 49: 682-386.https://doi.org/10.1130/g48466.1 |
| [19] |
Benito, G., Thorndycraft, V. R., 2020. Catastrophic Glacial⁃Lake Outburst Flooding of the Patagonian Ice Sheet. Earth⁃Science Reviews, 200: 102996. https://doi.org/10.1016/j.earscirev.2019.102996 |
| [20] |
Borgohain, B., Mathew, G., Chauhan, N., et al., 2020. Evidence of Episodically Accelerated Denudation on the Namche Barwa Massif (Eastern Himalayan Syntaxis) by Megafloods. Quaternary Science Reviews, 245: 106410. https://doi.org/10.1016/j.quascirev.2020.106410 |
| [21] |
Bretz, J., 1923a. The Channeled Scablands of the Columbia Plateau. The Journal of Geology. 31: 617-649.https://doi.org/10.1086/623053 |
| [22] |
Burr, D., Wilson, L., Bargery, A., 2009. Floods from Fossae: a Review of Amazonian⁃Aged Extensional⁃Tectonic Megaflood Channels on Mars. In: Burr, D. M., Carling, P. A., Baker, V. R., eds., Megaflooding on Earth and Mars, Cambridge University Press. Cambridge,194-208. |
| [23] |
Carling, P. A., Fan, X. M., 2020. Particle Comminution Defines Megaflood and Superflood Energetics. Earth⁃Science Reviews, 204: 103087. https://doi.org/10.1016/j.earscirev.2020.103087 |
| [24] |
Carling, P. A., Herget, J., Lanz,J. K., et al., 2009b. Channel⁃Scale Erosional Bedforms in Bedrock and in Loose Granular Material: Character. Processes and Implications. In: Burr, D. M., Carling, P. A., Baker, V. R., eds., Megaflooding on Earth and Mars, Cambridge University Press. Cambridge, 13-32. |
| [25] |
Carling, P. A., Perillo, M., Best, J., et al., 2017. The Bubble Bursts for Cavitation in Natural Rivers: Laboratory Experiments Reveal Minor Role in Bedrock Erosion. Earth Surface Processes and Landforms, 42(9): 1308-1316. https://doi.org/10.1002/esp.4101 |
| [26] |
Carling, P., Burr, D., Johnsen, T., et al., 2009a. a Review of Open⁃Channel Megaflood Depositional Landforms on Earth and Mars. Megaflooding on Earth and Mars, 33-49. |
| [27] |
Carling, P., Hoffmann, M., Silke⁃Blatter, A., et al., 2002. Drag of Emergent and Submerged Rectangular Obstacles in Turbulent Flow above Bedrock Surface, Lisse, 83-94. |
| [28] |
Carrivick, J. L., 2007. Hydrodynamics and Geomorphic Work of Jökulhlaups (Glacial Outburst Floods) from Kverkfjöll Volcano, Iceland. Hydrological Processes, 21(6): 725-740. https://doi.org/10.1002/hyp.6248 |
| [29] |
Carrivick, J. L., Manville, V., Graettinger, A., et al., 2010. Coupled Fluid Dynamics⁃Sediment Transport Modelling of a Crater Lake Break⁃Out Lahar: Mt. Ruapehu, New Zealand. Journal of Hydrology, 388(3/4): 399-413. https://doi.org/10.1016/j.jhydrol.2010.05.023 |
| [30] |
Carrivick, J. L., Rushmer, E. L., 2006. Understanding High⁃Magnitude Outburst Floods. Geology Today, 22(2): 60-65. https://doi.org/10.1111/j.1365⁃2451.2006.00554.x |
| [31] |
Chatanantavet, P., Parker, G., 2009. Physically Based Modeling of Bedrock Incision by Abrasion, Plucking, and Macroabrasion. Journal of Geophysical Research: Earth Surface, 114(F4): F04018. https://doi.org/10.1029/2008JF001044 |
| [32] |
Christensen, P. R., Bandfield, J. L., Bell, J. F. 3rd, et al., 2003. Morphology and Composition of the Surface of Mars: Mars Odyssey THEMIS Results. Science, 300(5628): 2056-2061. https://doi.org/10.1126/science.1080885 |
| [33] |
Coleman, N. M., Baker, V. R., 2009. Surface Morphology and Origin of Outflow Channels in the Valles Marineris Region. In: Burr, D. M., Carling, P. A., Baker, V. R., eds., Megaflooding on Earth and Mars, Cambridge University Press. New York, 172-193. |
| [34] |
Cook, K. L., Andermann, C., Gimbert, F., et al., 2018. Glacial Lake Outburst Floods as Drivers of Fluvial Erosion in the Himalaya. Science, 362(6410): 53-57. https://doi.org/10.1126/science.aat4981 |
| [35] |
Costa,J.E., 1985. Floods from Dam Failures. Open⁃File Report, 85-560. |
| [36] |
David, S. R., Larsen, I. J., Lamb, M. P., 2022. Narrower Paleo⁃Canyons Downsize Megafloods. Geophysical Research Letters, 49(11): e2022GL097861. https://doi.org/10.1029/2022GL097861 |
| [37] |
DeConto, R. M., Nuterman, R., Hvidberg, C. S., et al., 2020. Pliocene⁃Pleistocene Megafloods as a Mechanism for Greenlandic Megacanyon Formation. Geology, 48: 737-741.https://doi.org/10.1130/g47253.1 |
| [38] |
Denlinger, R. P., O’Connell, D. R. H., 2010. Simulations of Cataclysmic Outburst Floods from Pleistocene Glacial Lake Missoula. Geological Society of America Bulletin, 122(5/6): 678-689. https://doi.org/10.1130/B26454.1 |
| [39] |
Dubinski, I. M., Wohl, E., 2013. Relationships between Block Quarrying, Bed Shear Stress, and Stream Power: a Physical Model of Block Quarrying of a Jointed Bedrock Channel. Geomorphology, 180: 66-81. https://doi.org/10.1016/j.geomorph.2012.09.007 |
| [40] |
Emmer, A., 2017. Geomorphologically Effective Floods from Moraine⁃Dammed Lakes in the Cordillera Blanca, Peru. Quaternary Science Reviews, 177: 220-234. https://doi.org/10.1016/j.quascirev.2017.10.028 |
| [41] |
Garcia⁃Castellanos, D., Estrada, F., Jiménez⁃Munt, I., et al., 2009. Catastrophic Flood of the Mediterranean after the Messinian Salinity Crisis. Nature, 462(7274): 778-781. https://doi.org/10.1038/nature08555 |
| [42] |
George, M., Sitar, N., 2012. Evaluation of Rock Scour Using Block Theory(Dissertation). University of California, California. |
| [43] |
Goudge, T. A., Morgan, A. M., Stucky de Quay, G., et al., 2021. The Importance of Lake Breach Floods for Valley Incision on Early Mars. Nature, 597(7878): 645-649. https://doi.org/10.1038/s41586⁃021⁃03860⁃1 |
| [44] |
Guan, M. F., Wright, N. G., Sleigh, P. A., et al., 2015. Assessment of Hydro⁃Morphodynamic Modelling and Geomorphological Impacts of a Sediment⁃Charged Jökulhlaup, at Sólheimajökull, Iceland. Journal of Hydrology, 530: 336-349. https://doi.org/10.1016/j.jhydrol. 2015. 09.062 |
| [45] |
Guo, Y. Q., Ge, Y. G., Mao, P. N., et al., 2023. A Comprehensive Analysis of Holocene Extraordinary Flood Events in the Langxian Gorge of the Yarlung Tsangpo River Valley. Science of the Total Environment, 863: 160942. https://doi.org/10.1016/j.scitotenv.2022.160942 |
| [46] |
Guo,Y.Q.,Ge,Y.G,Chen,X.Q.,et al.,2021.Progress in the Reconstruction of Palaeoflood Events in the Mountain Canyon Valleys around the Tibetan Plateau. Earth Science Frontiers, 28(2): 168-180 (in Chinese with English abstract). |
| [47] |
Gupta, S., Collier, J. S., Palmer⁃Felgate, A., et al., 2007. Catastrophic Flooding Origin of Shelf Valley Systems in the English Channel. Nature, 448(7151): 342-345. https://doi.org/10.1038/nature06018 |
| [48] |
Hancock, G. S., Anderson, R. S., Whipple, K. X., et al., 1998. Beyond Power: Bedrock River Incision Process and form. Geophysical Monograph⁃American Geophysical Union. 107: 35-60.https://doi.org/10.1029/GM107p0035 |
| [49] |
Hu, K. H., Wei, L., Yang, A., et al., 2022. Broad Valleys and Barrier Dams in Upstream Brahmaputra Efficiently Retain Tibetan-Sourced Sediments: Evidence from Palaeoflood Records. Quaternary Science Reviews. 285: 107538.https://doi.org/10.1016/j.quascirev.2022.107538 |
| [50] |
Hu, K. H., Wu, C. H., Wei, L., et al., 2021. Geomorphic Effects of Recurrent Outburst Superfloods in the Yigong River on the Southeastern Margin of Tibet. Scientific Reports, 11(1): 15577. https://doi.org/10.1038/s41598⁃021⁃95194⁃1 |
| [51] |
Hurst, A. A., Anderson, R. S., Crimaldi, J. P., 2021. Toward Entrainment Thresholds in Fluvial Plucking. Journal of Geophysical Research: Earth Surface, 126(5): e2020JF005944. https://doi.org/10.1029/2020JF005944 |
| [52] |
Jarrett, R. D., Tomlinson, E. M., 2000. Regional Interdisciplinary Paleoflood Approach to Assess Extreme Flood Potential. Water Resources Research, 36(10): 2957-2984. https://doi.org/10.1029/2000WR900098 |
| [53] |
Jia, K.C.,Zhuang,J.Q,Zhan, J.W.,et al.,2023.Reconstruction of the Dynamic Process of the Holocene Gelongbu Landslide⁃Blocking⁃Flood Geological Disaster Chain Based on Numerical Simulation. Earth Science,48(9):3402-3419 (in Chinese with English abstract). |
| [54] |
Jiang, X.G.,Liu,W.M.,Wen,S.S.,et al.,2022.Simulation of Ancient High⁃Energy Flood in the Middle Reaches of the Yarlung Zangbo River Based on HEC⁃RAS Model. Mountain Research, 40(2):276-288 (in Chinese with English abstract). |
| [55] |
Kadivar, M., Tormey, D., McGranaghan, G., 2021. A Review on Turbulent Flow over Rough Surfaces: Fundamentals and Theories. International Journal of Thermofluids, 10: 100077. https://doi.org/10.1016/j.ijft.2021.100077 |
| [56] |
Karlstrom, K., Crow, R., Crossey, L., et al., 2008. Model for Tectonically Driven Incision of the Younger than 6 Ma Grand Canyon. Geology. 36: 835-838.https://doi.org/10.1130/g25032a.1 |
| [57] |
Keszthelyi, L., Burr, D., McEwen, A., 2004. Geomorphologic/Thermophysical Mapping of the Athabasca Region, Mars, Using THEMIS Infrared Imaging. City. 1657 |
| [58] |
King, G. E., Herman, F., Guralnik, B., 2016. Northward Migration of the Eastern Himalayan Syntaxis Revealed by OSL Thermochronometry. Science, 353(6301): 800-804. https://doi.org/10.1126/science.aaf2637 |
| [59] |
Komar, P. D., 1979. Comparisons of the Hydraulics of Water Flows in Martian Outflow Channels with Flows of Similar Scale on Earth. Icarus, 37(1): 156-181. https://doi.org/10.1016/0019⁃1035(79)90123⁃4 |
| [60] |
Komatsu, G., Baker, V. R., 1997. Paleohydrology and Flood Geomorphology of Ares Vallis. Journal of Geophysical Research: Planets, 102(E2): 4151-4160. https://doi.org/10.1029/96JE02564 |
| [61] |
Korup, O., 2006. Rock⁃Slope Failure and the River Long Profile. Geology. 34: 45-48.https://doi.org/10.1130/g21959.1 |
| [62] |
Korup, O., 2012. Earth’s Portfolio of Extreme Sediment Transport Events. Earth⁃Science Reviews, 112(3/4): 115-125. https://doi.org/10.1016/j.earscirev.2012.02.006 |
| [63] |
Korup, O., Montgomery, D.R., 2008. Tibetan Plateau River Incision Inhibited by Glacial Stabilization of the Tsangpo Gorge. Nature. 455: 786-789.https://doi.org/10.1038/nature07322 |
| [64] |
Lamb, M. P., Finnegan, N. J., Scheingross, J. S., et al., 2015. New Insights into the Mechanics of Fluvial Bedrock Erosion through Flume Experiments and Theory. Geomorphology, 244: 33-55. https://doi.org/10.1016/j.geomorph.2015.03.003 |
| [65] |
Lamb, M. P., Fonstad, M. A., 2010. Rapid Formation of a Modern Bedrock Canyon by a Single Flood Event. Nature Geoscience, 3: 477-481. https://doi.org/10.1038/ngeo894 |
| [66] |
Lamb, M. P., MacKey, B. H., Farley, K. A., 2014. Amphitheater⁃Headed Canyons Formed by Megaflooding at Malad Gorge, Idaho. Proceedings of the National Academy of Sciences of the United States of America, 111(1): 57-62. https://doi.org/10.1073/pnas.1312251111 |
| [67] |
Lamb, M., Dietrich, W., 2009. The Persistence of Waterfalls in Fractured Rock. Geological Society of America Bulletin, 121: 1123-1134. https://doi.org/10.1130/B26482.1 |
| [68] |
Lamb, M., Dietrich, W., Aciego, S., et al., 2008. Formation of Box Canyon, Idaho, by Megaflood: Implications for Seepage Erosion on Earth and Mars. Science. 320: 1067-1070.https://doi.org/doi:10.1126/science.1156630 |
| [69] |
Lang, K. A., Huntington, K. W., Montgomery, D. R., 2013. Erosion of the Tsangpo Gorge by Megafloods, Eastern Himalaya. Geology, 41(9): 1003-1006. |
| [70] |
Lapotre, M. G. A., Lamb, M. P., Williams, R. M. E., 2016. Canyon Formation Constraints on the Discharge of Catastrophic Outburst Floods of Earth and Mars. Journal of Geophysical Research: Planets, 121(7): 1232-1263. https://doi.org/10.1002/2016JE005061 |
| [71] |
Larsen, I. J., Lamb, M. P., 2016. Progressive Incision of the Channeled Scablands by Outburst Floods. Nature, 538(7624): 229-232. https://doi.org/10.1038/nature19817 |
| [72] |
Larsen, I. J., Montgomery, D. R., 2012. Landslide Erosion Coupled to Tectonics and Riverincision. Nature Geoscience, 5: 468-473. https://doi.org/10.1038/ngeo1479 |
| [73] |
Larsen, I. J., Montgomery, D. R., Korup, O., 2010. Landslide Erosion Controlled by Hillslope Material. Nature Geoscience, 3: 247-251. https://doi.org/10.1038/ngeo776 |
| [74] |
Lehnigk, K. E., Larsen, I. J., 2022. Pleistocene Megaflood Discharge in Grand Coulee, Channeled Scabland, USA. Journal of Geophysical Research: Earth Surface, 127(1): e2021JF006135. https://doi.org/10.1029/2021JF006135. |
| [75] |
Li, D. F., Lu, X. X., Walling, D. E., et al., 2022. High Mountain Asia Hydropower Systems Threatened by Climate⁃Driven Landscape Instability. Nature Geoscience, 15: 520-530. https://doi.org/10.1038/s41561⁃022⁃00953⁃y |
| [76] |
Li, S. C., 2006. Cavitation Enhancement of Silt Erosion: An Envisaged Micro Model. Wear, 260(9/10): 1145-1150. https://doi.org/10.1016/j.wear.2005.07.002 |
| [77] |
Lin, Y. P., An, C. G., Parker, G., et al., 2022. Morphodynamics of Bedrock⁃Alluvial Rivers Subsequent to Landslide Dam Outburst Floods. Journal of Geophysical Research: Earth Surface, 127(9): e2022JF006605. https://doi.org/10.1029/2022JF006605 |
| [78] |
Liu, W., Carling, P. A., Hu, K., et al., 2019. Outburst Floods in China: A Review. Earth⁃Science Reviews. 197: 102895. https://doi.org/10.1016/j.earscirev.2019.102895 |
| [79] |
Liu, Y.,Wu,X., Liu,Z.H.,et al.2021.Geological Evolution and Habitable Environment of Mars: Progress and Prospects. Reviews of Geophysics and Planetary Physics, 52(4): 416-436 (in Chinese with English abstract). |
| [80] |
Lützow, N., Veh, G., 2022. Glacier Lake Outburst Flood Database V3.0. ZENODO. V3.0 edn. |
| [81] |
Lützow,N., Veh,G., Korup, O., 2023. A Global Database of Historic Glacier Lake Outburst Floods. Earth System Science Data, 15(7), 2983-3000. https://doi.org/10.5194/essd⁃15⁃2983⁃2023 |
| [82] |
Maizels J, 1997. Jökulhlaup Deposits in Proglacial Areas.Quaternary Science Reviews. 16: 793-819.https://doi.org/10.1016/S0277⁃3791(97)00023⁃1 |
| [83] |
Miyamoto, H., Komatsu, G., Baker, V. R., et al., 2007. Cataclysmic Scabland Flooding: Insights from a Simple Depth⁃Averaged Numerical Model. Environmental Modelling & Software, 22(10): 1400-1408. https://doi.org/10.1016/j.envsoft.2006.07.006 |
| [84] |
Montgomery, D. R., Hallet, B., Liu, Y. P., et al., 2004. Evidence for Holocene Megafloods down the Tsangpo River Gorge, Southeastern Tibet. Quaternary Research, 62(2): 201-207. https://doi.org/10.1016/j.yqres. 2004. 06.008 |
| [85] |
O’Connor, J. E., Clague, J. J., Walder, J. S., et al., 2013. 9.25 Outburst Floods. S. J. Treatise on Geomorphology. John Wiley & Sons. Ltd. Academic Press,Hoboken, 475-510. |
| [86] |
O’Connor, J., 1993. Hydrology, Hydraulics, and Geomorphology of the Bonneville Flood. Geological Society of America,USA. |
| [87] |
O’Connor, J., Baker, V., Waitt, R., et al., 2020. The Missoula and Bonneville Floods: A Review of Ice⁃Age Megafloods in the Columbia River Basin. Earth⁃Science Reviews, 210: 103401. https://doi.org/10.1016/j.earscirev.2020.103401 |
| [88] |
Ouimet, W., Whipple, K., Royden, L., et al., 2007. The Influence of Large Landslides on River Incision in a Transient Landscape: Eastern Margin of the Tibetan Plateau (Sichuan, China). Geological Society of America Bulletin. 119(11-12), 1462-1476. https://doi.org/10.1130/b26136.1 |
| [89] |
Pasternack, G., Ellis, C., Leier, K. A., et al.,2006. Convergent Hydraulics at Horseshoe Steps in Bedrock Rivers. Geomorphology. 82: 126-145.https://doi.org/10.1016/j.geomorph.2005.08.022 |
| [90] |
Perron, J. T., Venditti, J. G., 2016. Megafloods Downsized. Nature. 538: 174-175.https://doi.org/10.1038/538174a |
| [91] |
Pico, T., David, S. R., Larsen, I. J., et al., 2022. Glacial Isostatic Adjustment Directed Incision of the Channeled Scabland by Ice Age Megafloods. Proceedings of the National Academy of Sciences of the United States of America, 119(8): e2109502119. https://doi.org/10.1073/pnas.2109502119 |
| [92] |
Richardson, K., Carling, P. A., Richardson, K., et al., 2005. A Typology of Sculpted Forms in Open Bedrock Channels.Geological Society of America Special Papers. 392: 1-108.https://doi.org/10.1130/0⁃8137⁃2392⁃2.1 |
| [93] |
Robinson, M., Tanaka, K. L., 1990. Magnitude of a Catastrophic Flood Event at Kasei Valles, Mars. Geology. 18: 902-905. https://doi.org/10.1130/0091⁃7613(1990)018<0902:MOACFE>2.3.CO.2 |
| [94] |
Roep, T. B., Holst, H., Vissers, R. L. M., et al., 1975. Deposits of Southward⁃Flowing, Pleistocene Rivers in the Channel Region, near Wissant, NW France. Palaeogeography Palaeoclimatology Palaeoecology, 17(4): 289-308. https://doi.org/10.1016/0031⁃0182(75)90003⁃6 |
| [95] |
Shen,Y.C.,Gong,G.Y.,1986.Introduction to River Geomorphology. Science Press, Beijing,47-48(in Chinesewith English abstract). |
| [96] |
Sincavage, R., Liang, M., Pickering, J., et al., 2022. Antecedent Topography and Sediment Dispersal: The Influence of Geologically Instantaneous Events on Basin Fill Patterns. Journal of Geophysical Research: Earth Surface, 127(6): e2021JF006539. https://doi.org/10.1029/2021JF006539 |
| [97] |
Sklar, L., Dietrich, W., 1998. River Longitudinal Profiles and Bedrock Incision Models: Stream Power and the Influence of Sediment Supply. Geophysical Monograph, 107: 237-260. https://doi.org/10.1029/GM107P0237 |
| [98] |
Smith, A. J., 1985. A Catastrophic Origin for the Palaeovalley System of the Eastern English Channel. Marine Geology, 64(1/2): 65-75. https://doi.org/10.1016/0025⁃3227(85)90160⁃4 |
| [99] |
Stefanelli, C. T., Segoni, S., Casagli, N., et al., 2016. Geomorphic Indexing of Landslide Dams Evolution. Engineering Geology. 208: 1-10.https://doi.org/10.1016/j.enggeo.2016.04.024 |
| [100] |
Su,H.,Shi,Z.T.,Dong,M., et al.,2021.The Geomorphic Process and Sedimentary Characteristics of the“11⁃3”BaigeDammed Lake Outburst Flood Event in the Upper Reaches of the Jinsha River from Benzilan to Shigu. Earth Science Frontiers,28(2):202-210 (in Chinese with English abstract). |
| [101] |
Turzewski, M. D., Huntington, K. W., LeVeque, R. J., 2019. The Geomorphic Impact of Outburst Floods: Integrating Observations and Numerical Simulations of the 2000 Yigong Flood, Eastern Himalaya. Journal of Geophysical Research: Earth Surface, 124(5): 1056-1079. https://doi.org/10.1029/2018JF004778 |
| [102] |
Turzewski, M. D., Huntington, K. W., Licht, A., et al., 2020. Provenance and Erosional Impact of Quaternary Megafloods through the Yarlung⁃Tsangpo Gorge from Zircon U⁃Pb Geochronology of Flood Deposits, Eastern Himalaya. Earth and Planetary Science Letters, 535: 116113. https://doi.org/10.1016/j.epsl.2020.116113 |
| [103] |
Wang, H., Cui, P., Liu, D. Z., et al.,2019. Evolution of a Landslide⁃Dammed Lake on the Southeastern Tibetan Plateau and Its Influence on River Longitudinal Profiles. Geomorphology. 343: 15-32.https://doi.org/10.1016/j.geomorph.2019.06.023 |
| [104] |
Wang, P., Scherler, D., Jing, L. Z., et al., 2014. Tectonic Control of Yarlung Tsangpo Gorge Revealed by a Buried Canyon in Southern Tibet. Science, 346(6212): 978-981. https://doi.org/10.1126/science.1259041 |
| [105] |
Wang,H.,Cui,P.,Carling,P.A.,2021.The Sedimentology of High⁃Energy Outburst Flood Deposits an Overview.Earth Science Frontiers,2021,28(2):140-167 (in Chinese with English abstract). |
| [106] |
Wang,H.Y.,Wang,P.,Hu,G., et al.,2020.Landform, Sedimentary Features and Hydraulic Models of High⁃Magnitude Outburst Flood. Quaternary Sciences, 40(5):1334-1349 (in Chinese with English abstract). |
| [107] |
Warner, Sowe, Gupta, et al., 2013. Fill and Spill of Giant Lakes in the Eastern Valles Marineris Region of Mars. Geology, 41(6): 675-678. https://doi.org/10.1130/g34172.1 |
| [108] |
Weckwerth, P., Wysota, W., Piotrowski, J. A., et al., 2019. Late Weichselian Glacier Outburst Floods in North⁃Eastern Poland: Landform Evidence and Palaeohydraulic Significance. Earth⁃Science Reviews, 194: 216-233. https://doi.org/10.1016/j.earscirev.2019.05.006 |
| [109] |
Whipple, K., Hancock, G., Anderson, R., 2000. River Incision into Bedrock: Mechanics and Relative Efficacy of Plucking, Abrasion and Cavitation. Geological Society of America Bulletin. 112: 490-503.https://doi.org/10.1130/0016⁃7606(2000)112<490:Riibma>2.0.Co.2 |
| [110] |
Wilkinson, C., Harbor, D., Helgans, E., et al., 2018. Plucking Phenomena in Nonuniform Flow. Geosphere. 14: 2157-2170.https://doi.org/10.1130/ges01623.1 |
| [111] |
Williams, R. M., Phillips, R. J., Malin, M. C., 2000. Flow Rates and Duration within Kasei Valles, Mars: Implications for the Formation of a Martian Ocean. Geophysical Research Letters, 27(7): 1073-1076. https://doi.org/10.1029/1999GL010957 |
| [112] |
Yang, A. N., Wang, H., Liu, W. M., et al., 2022a. Two Megafloods in the Middle Reach of Yarlung Tsangpo River since Last⁃Glacial Period: Evidence from Giant Bars. Global and Planetary Change, 208: 103726. https://doi.org/10.1016/j.gloplacha.2021.103726 |
| [113] |
Yang, J.S.,Wang,Y.,Yin J.H.,et al.,2022.Progress and Prospects in Recon⁃Struction of Flood Events in Chinese Alluvial Plains.Earth Science,47(11):3944-3959 (in Chinese with English abstract). |
| [114] |
Yang, W. T., Fang, J., Jing, L. Z., 2021. Landslide⁃Lake Outburst Floods Accelerate Downstream Slope Slippage. Earth Surface Dynamics. 9: 1251-1262.https://doi.org/10.5194/esurf⁃9⁃1251⁃2021 |
| [115] |
Yang, Z. W., Liu, W. M., Garcia⁃Castellanos, D., et al., 2022b. Geomorphic Response of Outburst Floods: Insight from Numerical Simulations and Observations: The 2018 Baige Outburst Flood in the Upper Yangtze River. Science of the Total Environment, 851: 158378. https://doi.org/10.1016/j.scitotenv.2022.158378 |
| [116] |
Yu,G.A.,Huang,H.Q.,Wang,Z.Y.,et al.,2011.Research Progress and Application of Step⁃Pool Systems in Mountain Streams.Progress in Geography, 30(1): 42-48 (in Chinese). |
| [117] |
Zhang, Q. Y., Hu, K. H., Wei, L., et al., 2022a. Rapid Changes in Fluvial Morphology in Response to the High⁃Energy Yigong Outburst Flood in 2000: Integrating Channel Dynamics and Flood Hydraulics. Journal of Hydrology, 612: 128199. https://doi.org/10.1016/j.jhydrol.2022.128199 |
| [118] |
Zhang, T., Li, D. F., East, A. E., et al., 2022b. Warming⁃Driven Erosion and Sediment Transport in Cold Regions. Nature Reviews Earth & Environment, 3: 832-851. https://doi.org/10.1038/s43017⁃022⁃00362⁃0 |
| [119] |
Zhao,J.N.,Shi,Y.T,Zhang, M.J., et al., 2021. Advancesin Martian Water⁃Related Landforms.Acta Geologica Sinica,95(9):2755-2768 (in Chinese with English abstract). |
| [120] |
Zhou, L.Q., Liu, W.M., Lai, Z.P., et al., 2019. Ceomorphologic Response of River Damming. Quaternary Sciences,39(2):366-380 (in Chinese with English abstract). |
第二次青藏高原综合科学考察研究项目(2019QZKK0903)
国家自然科学基金川藏铁路重大基础科学问题专项(41941017)
国家自然科学基金面上项目(42071017)
中国科学院海外评审专家项目(E1R2140140)
/
| 〈 |
|
〉 |