阿尔卑斯古近纪火山活动的沉积记录及其地质意义
芦刚 , 高亮 , 王长城 , 陈兴聪 , 卢喜和 , Winkler Wilfried
地球科学 ›› 2025, Vol. 50 ›› Issue (01) : 77 -87.
阿尔卑斯古近纪火山活动的沉积记录及其地质意义
Sedimentary Records of Volcanic Activity in Paleogene of Alps and Geological Significance
,
在始新世中期至渐新世早期,欧洲板块和亚得里亚板块发生碰撞,导致了阿尔卑斯造山带的大规模岩浆活动,由于后期隆升剥蚀无法保存,而弧后盆地中同时期的沉积火山碎屑岩记录了这一构造事件.针对该套沉积火山碎屑岩,开展了地质年代学与地球化学等方面的研究,揭示了阿尔卑斯造山带的火山活动和构造演化特征.研究表明火山碎屑岩中的锆石年龄峰值主要集中在~47 Ma、40 Ma和37 Ma,并且锆石的Hf同位素呈现负值,说明其主要形成于板块俯冲过程中部分地壳熔融的岩浆中.此外,通过对岩浆锆石同位素计算地壳厚度的变化,说明了阿尔卑斯造山带不仅存在由于板块俯冲碰撞引起的地壳垂直挤压增厚,还存在俯冲板片拉伸引起的地壳伸展变薄.
During the Middle Eocene to Early Oligocene, the collision between the European and Adriatic plates led to large-scale magmatic activity in the Alpine orogenic belt, and pyroclastic rocks were recorded in the back arc basin. This study focuses on the geochronology and geochemistry of pyroclastic rocks, and reveals the volcanic activity and structural evolution characteristics of the Alpine orogenic belt. The results indicate that the peak ages of zircons in pyroclastic rocks are mainly concentrated at ~47 Ma, 40 Ma, and 37 Ma. The Hf isotopes of zircons show negative values. It indicates that they were mainly formed in magma with partially melted crust during plate subduction. In addition, the crustal thickness was calculated by using magmatic zircon isotopes. It is demonstrated that the Alpine orogenic belt experienced not only vertical crustal compression thickening caused by plate subduction and collision, but also crustal extension thinning caused by plate stretching.
火山碎屑岩 / 岩浆锆石 / U⁃Pb年龄 / Eu值 / 地壳厚度 / 地质年代学 / 地球化学.
volcanic clastic rock / magmatic zircon / U⁃Pb age / Eu value / crustal thickness / geochronology / geochemistry
| [1] |
Beltrando, M., Lister, G. S., Rosenbaum, G., et al., 2010. Recognizing Episodic Lithospheric Thinning along a Convergent Plate Margin: The Example of the Early Oligocene Alps. Earth⁃Science Reviews, 103(3-4): 81-98. https://doi.org/10.1016/j.earscirev.2010.09.001 |
| [2] |
Bergomi, M. A., Zanchetta, S., Tunesi, A., 2015. The Tertiary Dike Magmatism in the Southern Alps: Geochronological Data and Geodynamic Significance. International Journal of Earth Sciences, 104(2): 449-473. https://doi.org/10.1007/s00531⁃014⁃1087⁃5 |
| [3] |
Bütler, E., Winkler, W., Guillong, M., 2011. Laser Ablation U/Pb Age Patterns of Detrital Zircons in the Schlieren Flysch (Central Switzerland): New Evidence on the Detrital Sources. Swiss Journal of Geosciences, 104(2): 225-236. https://doi.org/10.1007/s00015⁃011⁃0065⁃1 |
| [4] |
Chen, D.Q., Chen G., 1990. Practical Rare Earth Element Geochemistry. Metallurgical Industry Press, Beijing (in Chinese). |
| [5] |
Ford, M., Lickorish, W. H., 2004. Foreland Basin Evolution around the Western Alpine Arc. Geological Society, London, Special Publications, 221(1): 39-63. https://doi.org/10.1144/gsl.sp.2004.221.01.04 |
| [6] |
Guillong, M., von Quadt, A., Sakata, S., et al., 2014. LA⁃ICP⁃MS Pb⁃U Dating of Young Zircons from the Kos⁃Nisyros Volcanic Centre, SE Aegean Arc. Journal of Analytical Atomic Spectrometry, 29(6): 963-970. https://doi.org/10.1039/c4ja00009a |
| [7] |
Handy, M. R., Schmid, S. M., Bousquet, R., et al., 2010. Reconciling Plate⁃Tectonic Reconstructions of Alpine Tethys with the Geological⁃Geophysical Record of Spreading and Subduction in the Alps. Earth⁃Science Reviews, 102(3-4): 121-158. https://doi.org/10.1016/j.earscirev.2010.06.002 |
| [8] |
Hawkesworth, C. J., Kemp, A. I. S., 2006. Using Hafnium and Oxygen Isotopes in Zircons to Unravel the Record of Crustal Evolution. Chemical Geology, 226(3-4): 144-162. https://doi.org/10.1016/j.chemgeo.2005.09.018 |
| [9] |
Lei, H., Zhang, G.B., Xu, B., 2021. The Late Paleozoic Extending and Thinning Processes of the Xing’an⁃Mongolia Orogenic Belt: Geochemical Evidence from the Plutons in Linxi Area, Inner Mongolia. Acta Petrologica Sinica, 37(7): 2029-2050 (in Chinese with English abstract). |
| [10] |
Li, J.H., Yang, J.Y., Cheng, Y.L., et al., 2013. Global Sedimentary Basin Structure and Tectonic Evolution Background—Comparison of Intercontinental Meridional Ultra⁃Long Structural Profiles. Geological Journal of China Universities, 19(4): 561-573 (in Chinese with English abstract). |
| [11] |
Lin, X.W., Zhang, Y.F., Chen, G.C., et al., 2023. Magmatic Mixing at the Southern Edge of the Altai Orogenic Belt: Evidence from the Petrology, Geochemistry, and Chronology of the Akbulak Pluton. Earth Science, 48(10): 3597-3612 (in Chinese with English abstract). |
| [12] |
Liu, P.W., Zhang, J.B., Ding, X.Z., et al., 2023. Geochronology and Tectonic Significance of Neoproterozoic Volcanic Rocks from Yanbian Group in Western Yangtze Block. Earth Science, 48(12): 4508-4526 (in Chinese with English abstract). |
| [13] |
Lu, G., Winkler, W., Rahn, M., et al., 2018. Evaluating Igneous Sources of the Taveyannaz Formation in the Central Alps by Detrital Zircon U⁃Pb Age Dating and Geochemistry. Swiss Journal of Geosciences, 111(3): 399-416. https://doi.org/10.1007/s00015⁃018⁃0302⁃y |
| [14] |
Martin, S., Macera, P., 2014. Tertiary Volcanism in the Italian Alps (Giudicarie Fault Zone, NE Italy): Insight for Double Alpine Magmatic Arc. Italian Journal of Geosciences, 133(1): 63-84. https://doi.org/10.3301/ijg.2013.14 |
| [15] |
Mi, J.H., Liu, M.Q., 1996. Identification of Unconformity in the Early Development of Foreland Basins: An Example of the North Alpine Foreland Basin. Sichuan Petroleum Census, (1): 111-128 (in Chinese). |
| [16] |
Neubauer,F., Von Raumer, J.F., Wang, Y.Q., 1993. The Base of the Alps is a Chain of the Hualixi Tectonic Belt and the Alps Mediterranean Mountain Range. Global Geology, 12(1): 92 (in Chinese). |
| [17] |
Peng, X.L., Liang, D.G., Wang, C.G., et al., 2006. Discussion on the Theory of Foreland Basin and Its Application in China. Acta Petrolei Sinica, 27(1): 132-144 (in Chinese with English abstract). |
| [18] |
Pfeifer, H. R., Biino, G., Ménot, R. P., et al., 1993. Ultramafic Rocks in the Pre⁃Mesozoic Basement of the Central and External Western Alps. In: Raumer, J. F., Neubauer. F., eds.,Pre⁃Mesozoic Geology in the Alps. Springer, Heidelberg, 119-143.https://doi.org/10.1007/978⁃3⁃642⁃84640⁃3_8 |
| [19] |
Pfiffner, O. A., 2014. Geology of the Alps. John Wiley & Sons, Chichester, 392. |
| [20] |
Profeta, L., Ducea, M. N., Chapman, J. B., et al., 2015. Quantifying Crustal Thickness over Time in Magmatic Arcs. Scientific Reports, 5: 17786. https://doi.org/10.1038/srep17786 |
| [21] |
Rubatto, D., Gebauer, D., 2000. Use of Cathodoluminescence for U⁃Pb Zircon Dating by Ion Microprobe: Some Examples from the Western Alps. In: Pagel, M., Barbin, V., Blanc, P., et al., eds.,Cathodoluminescence in Geosciences. Springer, Heidelberg, 373-400. https://doi.org/10.1007/978⁃3⁃662⁃04086⁃7_15 |
| [22] |
Schaltegger, U., 1993. The Evolution of the Polymetamorphic Basement in the Central Alps Unravelled by Precise U⁃Pb Zircon Dating. Contributions to Mineralogy and Petrology, 113(4): 466-478. https://doi.org/10.1007/BF00698316 |
| [23] |
Schaltegger, U., Nowak, A., Ulianov, A., et al., 2019. Zircon Petrochronology and 40Ar/39Ar Thermochronology of the Adamello Intrusive Suite, N. Italy: Monitoring the Growth and Decay of an Incrementally Assembled Magmatic System. Journal of Petrology, 60(4): 701-722. https://doi.org/10.1093/petrology/egz010 |
| [24] |
Sinclair, H.D., Hou, G.Q., Zhou, L.J., 1998. Transformation from Flysch to Molasse in Peripheral Foreland Basin: The Role of Passive Continental Margin in Plate Fracture. Journal of Geoscience Translations, (2): 32-34 (in Chinese). |
| [25] |
Tang, M., Chu, X., Hao, J., et al., 2021a. Orogenic Quiescence in Earth’s Middle Age. Science, 371(6530): 728-731. https://doi.org/10.1126/science.abf1876 |
| [26] |
Tang, M., Ji, W. Q., Chu, X., et al., 2021b. Reconstructing Crustal Thickness Evolution from Europium Anomalies in Detrital Zircons. Geology, 49(1): 76-80. https://doi.org/10.1130/G47745.1 |
| [27] |
Von Blanckenburg,F., Wang, Q., 1996. Plate Detachment-Alpine Collisional Magmatism and Tectonic Patterns. Journal of Geoscience Translations, (1): 31-34 (in Chinese). |
| [28] |
Winkler, W., 1993. Control Factors on Turbidite Sedimentation in a Deep⁃Sea Trench Setting⁃The Example of the Schlieren Flysch (Upper Maastrichtian⁃Lower Eocene, Central Switzerland). Geodinamica Acta, 6(2): 81-102. https://doi.org/10.1080/09853111.1993.11105240 |
| [29] |
Xu, J.H., He, Q.X., 1980. Structural Model of Thin⁃Shell Plate and Collision Orogeny. Science in China (Series D), 10(11): 1081-1089 (in Chinese). |
| [30] |
Yong, Z.Q., Deng, B., 2018. Plate Tectonic and Oil and Gas Basins. Geological Publishing House, Beijing, 59 (in Chinese). |
| [31] |
Zhu, Z. Y., Campbell, I. H., Allen, C. M., et al., 2020. S⁃Type Granites: Their Origin and Distribution through Time as Determined from Detrital Zircons. Earth and Planetary Science Letters, 536: 116140. https://doi.org/10.1016/j.epsl.2020.116140 |
山东省自然科学基金项目(ZR2022MD117)
留学基金委项目(201406400047)
/
| 〈 |
|
〉 |