河水-地下水交互带铁循环的微生物指示物-FMN还原酶基因
黄莹芸 , 沈俊豪 , 朱子超 , 毛胜军 , 刘慧
地球科学 ›› 2025, Vol. 50 ›› Issue (04) : 1575 -1584.
河水-地下水交互带铁循环的微生物指示物-FMN还原酶基因
Microbial Indicator of Iron Cycling in Riverwater-Groundwater Interaction Zone - FMN Reductase Gene
,
黄素类还原酶(FMN还原酶)是微生物分泌电子穿梭体引导铁氧化还原的重要酶.为探讨FMN还原酶基因作为铁循环微生物指示物的可行性,以汉江下游河水-地下水交互带为研究区,研究了3个不同特点的河水-地下水交互带剖面沉积物中不同价态Fe浓度、代表性铁循环微生物和FMN还原酶基因相对丰度的分布相关性.结果表明:(1)在离河较近的地下水位以下区域聚积Fe(II),而Fe(III)主要聚集在地下水位线上或离河较远的区域;(2)铁循环微生物和FMN还原酶主要分布在近河岸地下水位线下的区域或水位线的周围,不同的铁循环微生物聚集的区域不同;(3)铁循环微生物总丰度ICB与FMN还原酶基因呈现出极显著的正相关.该研究结果表明FMN还原酶基因可以作为交互带铁循环的微生物指示物.
Flavin mononucleotide (FMN) reductases are important enzymes secreted by microorganisms to facilitate iron oxidation and reduction through electron transfer. In order to explore the feasibility of using FMN reductase genes as indicators of iron cycling microbes, in this study it focused on the interaction zone at the lower reaches of Han River as the research area. In the study it investigated the distributional correlations of different forms Fe, representative iron-cycling microorganisms, and the relative abundance of FMN reductase genes in sediments from three differently characterized riverwater-groundwater interaction zone profiles. The results indicate that (1) Fe(II) accumulates in the area below the water table closer to the river, while Fe(III) mainly accumulates in the area at the water table line or farther away from the river; (2) iron cycling microbes and FMN reductases were mainly distributed in the areas below the groundwater level close to the river bank or around the water level, with different areas of aggregation for different iron cycling bacteria; (3) there was a significant positive correlation between the total abundance of iron cycling microbes and FMN reductase genes. These findings validate the feasibility of using FMN reductase genes as indicators of iron cycling microbes.
交互带 / 不同价态铁 / 铁循环微生物 / FMN还原酶 / 水文地质学 / 地球化学.
interactive zone / different forms of iron / iron cycling microorganism / FMN reductase / hydrogeology / geochemistry
| [1] |
Brutinel, E. D., Gralnick, J. A., 2012. Shuttling Happens: Soluble Flavin Mediators of Extracellular Electron Transfer in Shewanella. Applied Microbiology and Biotechnology, 93(1): 41-48. https://doi.org/10.1007/s00253-011-3653-0 |
| [2] |
Cao, Y.R., Li, M.J., Mao, S.J., et al., 2021. Distribution of Nitrogen and Water Chemistry in River-Groundwater Interaction Zone in the Lower Reaches of Han River. Earth and Environment, 49(5): 463-471 (in Chinese with English abstract). |
| [3] |
Eggerichs, T., Opel, O., Otte, T., et al., 2014. Interdependencies between Biotic and Abiotic Ferrous Iron Oxidation and Influence of pH, Oxygen and Ferric Iron Deposits. Geomicrobiology Journal, 31(6): 461-472. https://doi.org/10.1080/01490451.2013.870620 |
| [4] |
Engelhardt, I., Barth, J. A. C., Bol, R., et al., 2014. Quantification of Long-Term Wastewater Fluxes at the Surface Water/Groundwater-Interface: An Integrative Model Perspective Using Stable Isotopes and Acesulfame. Science of the Total Environment, 466: 16-25. https://doi.org/10.1016/j.scitotenv.2013.06.092 |
| [5] |
Gandy, C. J., Smith, J. W. N., Jarvis, A. P., 2007. Attenuation of Mining-Derived Pollutants in the Hyporheic Zone: A Review. Science of the Total Environment, 373(2/3): 435-446. https://doi.org/10.1016/j.scitotenv.2006.11.004 |
| [6] |
Guo, W.Q., Song, J.X., Liu, Q., et al., 2018. Influence of Hyporheic Water Exchange on Quality of Sediment Pore Water for the Juehe River in Winter. Acta Scientiae Circumstantiae, 38(5): 1957-1967 (in Chinese with English abstract). |
| [7] |
Harvey, J. W., Fuller, C. C., 1998. Effect of Enhanced Manganese Oxidation in the Hyporheic Zone on Basin-Scale Geochemical Mass Balance. Water Resources Research, 34(4): 623-636. https://doi.org/10.1029/97wr03606 |
| [8] |
Hlavica, P., 2015. Mechanistic Basis of Electron Transfer to Cytochromes P450 by Natural Redox Partners and Artificial Donor Constructs. Advances in Experimental Medicine and Biology, 851: 247-297. https://doi.org/10.1007/978-3-319-16009-2_10 |
| [9] |
Hou, Q. X., Zhang, Q., Huang, G. X., et al., 2020. Elevated Manganese Concentrations in Shallow Groundwater of Various Aquifers in a Rapidly Urbanized Delta, South China. Science of the Total Environment, 701: 134777. https://doi.org/10.1016/j.scitotenv.2019.134777 |
| [10] |
Kasahara, T., Hill, A. R., 2007. Lateral Hyporheic Zone Chemistry in an Artificially Constructed Gravel Bar and a Re-Meandered Stream Channel, Southern Ontario, Canada.JAWRA Journal of the American Water Resources Association, 43(5): 1257-1269. https://doi.org/10.1111/j.1752-1688.2007.00108.x |
| [11] |
Kato, S., Ohkuma, M., 2021. A Single Bacterium Capable of Oxidation and Reduction of Iron at Circumneutral pH. Microbiology Spectrum, 9(1): e0016121. https://doi.org/10.1128/Spectrum.00161-21 |
| [12] |
Krause, S., Hannah, D. M., Fleckenstein, J. H., et al., 2011. Inter-Disciplinary Perspectives on Processes in the Hyporheic Zone. Ecohydrology, 4(4): 481-499. https://doi.org/10.1002/eco.176 |
| [13] |
Lan, K., Liang, X., Li, J., 2020. Hydrochemical Characteristics of Groundwater of the Hanjiang Zone in the Jianghan Plain. Safety and Environmental Engineering, 27(5): 1-9, 16(in Chinese with English abstract). |
| [14] |
Lee, J. H., Fredrickson, J. K., Kukkadapu, R. K., et al., 2012. Microbial Reductive Transformation of Phyllosilicate Fe(III) and U(VI) in Fluvial Subsurface Sediments. Environmental Science & Technology, 46(7): 3721-3730. https://doi.org/10.1021/es204528m |
| [15] |
Li, Y. C., Yu, S., Strong, J., et al., 2012. Are the Biogeochemical Cycles of Carbon, Nitrogen, Sulfur, and Phosphorus Driven by the “FeIII-FeII Redox Wheel” in Dynamic Redox Environments? Journal of Soils and Sediments, 12(5): 683-693. https://doi.org/10.1007/s11368-012-0507-z |
| [16] |
Li, Y. M., Wen, Z., Schneidewind, U., et al., 2023. Effects of a Large-Scale Dam Structure on Upstream and Downstream Lateral Hyporheic Exchange and Residence Time Distributions: The Xinglong Water Conservancy Dam, China. Journal of Hydrology, 625: 130073. https://doi.org/10.1016/j.jhydrol.2023.130073 |
| [17] |
Liu, S. N., Chui, T. F. M., 2019. Numerical Modelling to Evaluate the Nitrogen Removal Rate in Hyporheic Zone and Its Implications for Stream Management. Hydrological Processes, 33(24): 3084-3097. https://doi.org/10.1002/hyp.13548 |
| [18] |
Lu, Y. X., Zhang, P., Liu, H., et al., 2022. Effect of Dam on Iron Species Distribution and Transformation in Riparian Zones. Journal of Hydrology, 610: 127869. https://doi.org/10.1016/j.jhydrol.2022.127869 |
| [19] |
Lueder, U., Maisch, M., Laufer, K., et al., 2020. Influence of Physical Perturbation on Fe(II) Supply in Coastal Marine Sediments. Environmental Science & Technology, 54(6): 3209-3218. https://doi.org/10.1021/acs.est.9b06278 |
| [20] |
Ma, A. L., Huang, Y., Mao, S. J., et al., 2023. “Mn(II) Curtain” in the Riparian Sediment at the Lower Reaches of the Hanjiang River, China. Journal of Hydrology, 625: 130047. https://doi.org/10.1016/j.jhydrol.2023.130047 |
| [21] |
Ma, A.L., Liu, H., Mao, S.J., et al., 2022. Distribution Characteristics of Dissolved Manganese in the Lateral Hyporheic Zone between River and Groundwater in the Lower Reaches of the Han River. Earth Science, 47(2): 729-741 (in Chinese with English abstract). |
| [22] |
Ma, T., Shen, S., Deng, Y.M., et al., 2020. Theoretical Approaches of Survey on Earth’s Critical Zone in Basin: An Example from Jianghan Plain, Central Yangtze River. Earth Science, 45(12): 4498-4511 (in Chinese with English abstract). |
| [23] |
Ma, Y.J., Ren, G.P., Qiu, Y.R., et al., 2022. Electricity Generation from Geobacter Sulfurreducens Biofilm and Its Sensing Application. Scientia Sinica (Technologica), 52(11): 1669-1678 (in Chinese). |
| [24] |
Maazouzi, C., Galassi, D., Claret, C., et al., 2017. Do Benthic Invertebrates Use Hyporheic Refuges during Streambed Drying? A Manipulative Field Experiment in Nested Hyporheic Flowpaths. Ecohydrology, 10(6): e1865. https://doi.org/10.1002/eco.1865 |
| [25] |
Marsili, E., Baron, D. B., Shikhare, I. D., et al., 2008. Shewanella Secretes Flavins That Mediate Extracellular Electron Transfer. Proceedings of the National Academy of Sciences of the United States of America, 105(10): 3968-3973. https://doi.org/10.1073/pnas.0710525105 |
| [26] |
Melton, E. D., Swanner, E. D., Behrens, S., et al., 2014. The Interplay of Microbially Mediated and Abiotic Reactions in the Biogeochemical Fe Cycle. Nature Reviews Microbiology, 12(12): 797-808. https://doi.org/10.1038/nrmicro3347 |
| [27] |
Mendoza-Sanchez, I., Phanikumar, M. S., Niu, J., et al., 2013. Quantifying Wetland-Aquifer Interactions in a Humid Subtropical Climate Region: An Integrated Approach. Journal of Hydrology, 498: 237-253. https://doi.org/10.1016/j.jhydrol.2013.06.022 |
| [28] |
Sackett, J. D., Shope, C. L., Bruckner, J. C., et al., 2019. Microbial Community Structure and Metabolic Potential of the Hyporheic Zone of a Large Mid-Stream Channel Bar. Geomicrobiology Journal, 36(9): 765-776. https://doi.org/10.1080/01490451.2019.1621964 |
| [29] |
Stegen, J. C., Johnson, T., Fredrickson, J. K., et al., 2018. Influences of Organic Carbon Speciation on Hyporheic Corridor Biogeochemistry and Microbial Ecology. Nature Communications, 9(1): 585. https://doi.org/10.1038/s41467-018-02922-9 |
| [30] |
Su, X.S., Shi, Y.K., Dong, W.H., et al., 2019. Review on Biogeochemical Characteristics of Hyporheic Zone. Journal of Earth Sciences and Environment, 41(3): 337-351 (in Chinese with English abstract). |
| [31] |
Wang, K., Jia, R., Li, L. N., et al., 2020. Community Structure of Anaeromyxobacter in Fe(III) Reducing Enriched Cultures of Paddy Soils. Journal of Soils and Sediments, 20(3): 1621-1631. https://doi.org/10.1007/s11368-019-02529-7 |
| [32] |
Wu, X.C., 2022. Iron-Phosphorus Interaction Mechanism in Groundwater-Lake Interaction Zone of East Dongting Lake (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract). |
| [33] |
Zhu, Z.C., Liu, H., Mao, S.J., et al., 2023. Distribution Characteristics of Microbial Communities in River-Groundwater Interaction Zone and Main Environmental Factors. Earth Science, 48(10): 3832-3843 (in Chinese with English abstract). |
国家自然科学基金重点项目(41830862)
/
| 〈 |
|
〉 |