弧前盆地的沉积和构造特征
Sedimentary and Structural Characteristics of Forearc Basins
,
汇聚板块边缘的沉积盆地是造山带研究的重要对象,其中弧前盆地位于弧前区域靠近岛弧一侧,更易在造山过程中被保留下来,保存造山带结构和演化的信息.本文以研究较为充分的新生代弧前盆地为例,详述了弧前盆地的大地构造位置、形成机制、沉积、物源和构造特征,为古老造山带研究中弧前盆地的识别提供依据.弧前盆地位于岛弧和海沟外坡之间,可以形成于伸展或挤压环境中,前者由伸展正断层形成地堑式盆地,后者由增生楔逆冲构造形成挤压盆地.弧前盆地发育多种类型的沉积,其中洋内弧以半深海‒深海相沉积为主,大陆弧则涵盖陆相‒海陆交互相‒海相等多种沉积相,总体呈现粒度从边缘向中心变细、从下往上变粗的沉积序列.陆源碎屑主要来源于相邻岛弧和增生楔,通过河流、海底峡谷和海底滑坡等方式进入盆地.洋中脊、海山、洋底高原和大洋破碎带俯冲都能不同程度地影响俯冲带结构,造成弧前盆地的反转、抬升剥蚀、沉积间断、物源区变化以及沉积环境的改变.弧前盆地的沉积过程复杂,难以用单一模型简单概括,在应用弧前盆地对造山带进行分析时,应结合多学科资料对地质记录进行综合分析.
俯冲带 / 弧前盆地 / 沉积特征 / 构造特征 / 造山带 / 构造地质学.
subduction zone / forearc basin / sedimentary characteristics / structural characteristics / orogen / structural geology
| [1] |
Asada, M., Moore, G. F., Kawamura, K., et al., 2021. Mud Volcano Possibly Linked to Seismogenic Faults in the Kumano Basin, Nankai Trough, Japan. Marine Geophysical Research, 42(1): 4. https://doi.org/10.1007/s11001-020-09425-7 |
| [2] |
Bachman, S. B., Lewis, S. D., Schweller, W. J., 1983. Evolution of a Forearc Basin, Luzon Central Valley, Philippines. AAPG Bulletin, 67(7): 1143-1162. https://doi.org/10.1306/03B5B718-16D1-11D7-8645000102C1865D |
| [3] |
Bangs, N. L., Cande, S. C., 1997. Episodic Development of a Convergent Margin Inferred from Structures and Processes along the Southern Chile Margin. Tectonics, 16(3): 489-503. https://doi.org/10.1029/97TC00494 |
| [4] |
Berglar, K., Gaedicke, C., Lutz, R., et al., 2008. Neogene Subsidence and Stratigraphy of the Simeulue Forearc Basin, Northwest Sumatra. Marine Geology, 253(1-2): 1-13. https://doi.org/10.1016/j.margeo.2008.04.006 |
| [5] |
Clift, P., Vannucchi, P., 2004. Controls on Tectonic Accretion Versus Erosion in Subduction Zones: Implications for the Origin and Recycling of the Continental Crust. Reviews of Geophysics, 42(2): RG2001. https://doi.org/10.1029/2003RG000127 |
| [6] |
Clift, P. D., MacLeod, C. J., 1999. Slow Rates of Subduction Erosion Estimated from Subsidence and Tilting of the Tonga Forearc. Geology, 27(5): 411-414. https://doi.org/10.1130/0091-7613(1999)027<0411:SROSEE>2.3.CO;2 |
| [7] |
Cole, R. B., Stewart, B. W., 2009. Continental Margin Volcanism at Sites of Spreading Ridge Subduction: Examples from Southern Alaska and Western California. Tectonophysics, 464(1-4): 118-136. https://doi.org/10.1016/j.tecto.2007.12.005 |
| [8] |
Decou, A., Von Eynatten, H., Mamani, M., et al., 2011. Cenozoic Forearc Basin Sediments in Southern Peru (15-18°S): Stratigraphic and Heavy Mineral Constraints for Eocene to Miocene Evolution of the Central Andes. Sedimentary Geology, 237(1-2): 55-72. https://doi.org/10.1016/j.sedgeo.2011.02.004 |
| [9] |
Dickinson, W. R., 1995. Forearc Basins. In: Busby, C. J., Ingersoll, R., eds., Tectonics of Sedimentary Basins. Blackwell Science, Cambridge, 221-261. |
| [10] |
Dickinson, W. R., Seely, D. R., 1979. Structure and Stratigraphy of Forearc Regions. AAPG Bulletin, 63(1): 2-31. https://doi.org/10.1306/C1EA55AD-16C9-11D7-8645000102C1865D |
| [11] |
Finzel, E. S., Ridgway, K. D., Trop, J. M., 2015. Provenance Signature of Changing Plate Boundary Conditions along a Convergent Margin: Detrital Record of Spreading-Ridge and Flat-Slab Subduction Processes, Cenozoic Forearc Basins, Alaska. Geosphere, 11(3): 823-849. https://doi.org/10.1130/GES01029.1 |
| [12] |
Finzel, E. S., Trop, J. M., Ridgway, K. D., et al., 2011. Upper Plate Proxies for Flat-Slab Subduction Processes in Southern Alaska. Earth and Planetary Science Letters, 303(3-4): 348-360. https://doi.org/10.1016/j.epsl.2011.01.014 |
| [13] |
Fu, Y., Wang, Z., Obayashi, M., 2023. Global P-Wave and Joint S-Wave Tomography in the North Pacific: Implications for Slab Geometry and Evolution. Journal of Geophysical Research: Solid Earth, 128(11): e2023JB027406. https://doi.org/10.1029/2023JB027406 |
| [14] |
Geersen, J., Ranero, C. R., Barckhausen, U., et al., 2015. Subducting Seamounts Control Interplate Coupling and Seismic Rupture in the 2014 Iquique Earthquake Area. Nature Communications, 6(1): 8267. https://doi.org/10.1038/ncomms9267 |
| [15] |
González, F. A., Bello-González, J. P., Contreras-Reyes, E., et al., 2023. Shallow Structure of the Northern Chilean Marine Forearc between 19°S-21°S Using Multichannel Seismic Reflection and Refraction Data. Journal of South American Earth Sciences, 123: 104243. https://doi.org/10.1016/j.jsames.2023.104243 |
| [16] |
Guarnieri, P., 2006. Plio-Quaternary Segmentation of the South Tyrrhenian Forearc Basin. International Journal of Earth Sciences, 95(1): 107-118. https://doi.org/10.1007/s00531-005-0005-2 |
| [17] |
Hartley, A. J., May, G., Chong, G., et al., 2000. Development of a Continental Forearc: A Cenozoic Example from the Central Andes, Northern Chile. Geology, 28(4): 331-334. https://doi.org/10.1130/0091-7613(2000)28<331:DOACFA>2.0.CO;2 |
| [18] |
Hu, X.M., Wang, J.G., An, W., et al., 2017. Constraining the Timing of the India-Asia Continental Collision by the Sedimentary Record. Scientia Sinica Terrae, 47(3): 261-283 (in Chinese). |
| [19] |
Hu, X.M., Xue, W.W., Lai, W., et al., 2021. Sedimentary Basins in Orogenic Belt and Continental Geodynamics. Acta Geologica Sinica, 95(1): 139-158 (in Chinese with English abstract). |
| [20] |
Ingersoll, R. V., 1983. Petrofacies and Provenance of Late Mesozoic Forearc Basin, Northern and Central California. AAPG Bulletin, 67(7): 1125-1142. https://doi.org/10.1306/03B5B713-16D1-11D7-8645000102C1865D |
| [21] |
Ingersoll, R. V., 2011. Tectonics of Sedimentary Basins, with Revised Nomenclature. In: Busby, C. J., Azor, A., eds., Tectonics of Sedimentary Basins. Wiley-Blackwell, Cambridge, 1-43. https://doi.org/10.1002/9781444347166.ch1 |
| [22] |
Ingersoll, R.V., Graham, S. A., Dickinson, W. R., 1995. Remnant Ocean Basin. In: Busby, C. J., Ingersoll, R., eds., Tectonics of Sedimentary Basins. Blackwell Science, Cambridge, 363-391. |
| [23] |
Kelemen, P. B., Yogodzinski, G. M., Scholl, D. W., 2004. Along-Strike Variation in the Aleutian Island Arc: Genesis of High Mg# Andesite and Implications for Continental Crust. In: Eiler, J., ed., Inside the Subduction Factory. American Geophysical Union, Washington, D.C., 223-276. https://doi.org/10.1029/138GM11 |
| [24] |
Kimura, G., Nakamura, Y., Shiraishi, K., et al., 2022. Nankai Forearc Structural and Seismogenic Segmentation Caused by a Magmatic Intrusion off the Kii Peninsula. Geochemistry, Geophysics, Geosystems, 23(8): e2022GC010331. https://doi.org/10.1029/2022GC010331 |
| [25] |
Kurtz, W., Micheuz, P., Christeson, G. L., et al., 2019. Postmagmatic Tectonic Evolution of the Outer Izu- Bonin Forearc Revealed by Sediment Basin Structure and Vein Microstructure Analysis: Implications for a 15 Ma Hiatus between Pacific Plate Subduction Initiation and Forearc Extension. Geochemistry, Geophysics, Geosystems, 20(12): 5867-5895. https://doi.org/10.1029/2019GC008329 |
| [26] |
Kusky, T., Wang, J.P., Wang, L., et al., 2020. Mélanges through Time: Life Cycle of the World's Largest Archean Mélange Compared with Mesozoic and Paleozoic Subduction-Accretion-Collision Mélanges. Earth-Science Reviews, 209: 103303. https://doi.org/10.1016/j.earscirev.2020.103303 |
| [27] |
Kutterolf, S., Schindlbeck, J. C., Robertson, A. H. F., et al., 2018. Tephrostratigraphy and Provenance from IODP Expedition 352, Izu-Bonin Arc: Tracing Tephra Sources and Volumes from the Oligocene to Recent. Geochemistry, Geophysics, Geosystems, 19(1): 150-174. https://doi.org/10.1002/2017GC007100 |
| [28] |
Li, J.L., Chen, J.L., Bai, J.K., et al., 2013. Orogenic Sedimentology Series I—Sedimentions in the Forearc of Orogenic Belts. Northwestern Geology, 46(1): 11-21 (in Chinese with English abstract). |
| [29] |
Li, M., Huang, S., Hao, T. Y., et al., 2023. Neogene Subduction Initiation Models in the Western Pacific and Analysis of Subduction Zone Parameters. Scientia Sinica Terrae, 53(3): 461-480 (in Chinese). |
| [30] |
Lizarralde, D., Holbrook, W. S., McGeary, S., et al., 2002. Crustal Construction of a Volcanic Arc, Wide- Angle Seismic Results from the Western Alaska Peninsula. Journal of Geophysical Research: Solid Earth, 107(B8): EPM 4-1-EPM 4-21. https://doi.org/10.1029/2001JB000230 |
| [31] |
Melnick, D., Echtler, H. P., 2006. Inversion of Forearc Basins in South-Central Chile Caused by Rapid Glacial Age Trench Fill. Geology, 34(9): 709-712. https://doi.org/10.1130/G22440.1 |
| [32] |
Mitchell, C., Graham, S. A., Suek, D. H., 2010. Subduction Complex Uplift and Exhumation and Its Influence on Maastrichtian Forearc Stratigraphy in the Great Valley Basin, Northern San Joaquin Valley, California. GSA Bulletin, 122(11-12): 2063-2078. https://doi.org/10.1130/B30180.1 |
| [33] |
Moore, G. F., Boston, B. B., Strasser, M., et al., 2015. Evolution of Tectono-Sedimentary Systems in the Kumano Basin, Nankai Trough Forearc. Marine and Petroleum Geology, 67: 604-616. https://doi.org/10.1016/j.marpetgeo.2015.05.032 |
| [34] |
Moore, G. F., Strasser, M., 2016. Large Mass Transport Deposits in Kumano Basin, Nankai Trough, Japan. In: Lamarche, G., Mountjoy, J., Bull, S., et al., eds., Submarine Mass Movements and Their Consequences: 7th International Symposium. Springer International Publishing, Cham, 371-379. https://doi.org/10.1007/978-3-319-20979-1_37 |
| [35] |
Nester, P., Jordan, T., 2011. The Pampa Del Tamarugal Forearc Basin in Northern Chile: The Interaction of Tectonics and Climate. In: Busby, C. J., Azor, A., eds., Tectonics of Sedimentary Basins. Wiley-Blackwell, Cambridge, 369-381. https://doi.org/10.1002/9781444347166.ch18 |
| [36] |
Noda, A., 2016. Forearc Basins: Types, Geometries, and Relationships to Subduction Zone Dynamics. GSA Bulletin, 128(5-6): 879-895. https://doi.org/10.1130/B31345.1 |
| [37] |
Noda, A., TuZino, T., 2010. Shelf-Slope Sedimentation during the Late Quaternary on the Southwestern Kuril Forearc Margin, Northern Japan. Sedimentary Geology, 232(1): 35-51. https://doi.org/10.1016/j.sedgeo.2010.09.008 |
| [38] |
Omura, A., Ikehara, K., Sugai, T., et al., 2012. Determination of the Origin and Processes of Deposition of Deep-Sea Sediments from the Composition of Contained Organic Matter: An Example from Two Forearc Basins on the Landward Flank of the Nankai Trough, Japan. Sedimentary Geology, 249-250: 10-25. https://doi.org/10.1016/j.sedgeo.2012.01.005 |
| [39] |
Orme, D. A., Surpless, K. D., 2019. The Birth of a Forearc: The Basal Great Valley Group, California, USA. Geology, 47(8): 757-761. https://doi.org/10.1130/G46283.1 |
| [40] |
Rabassa, J., Clapperton, C. M., 1990. Quaternary Glaciations of the Southern Andes. Quaternary Science Reviews, 9(2-3): 153-174. https://doi.org/10.1016/0277-3791(90)90016-4 |
| [41] |
Ramirez, S. G., Hayman, N. W., Gulick, S. P. S., et al., 2021. Sediment Provenance, Routing and Tectonic Linkages in the Nankai Forearc Region, Japan. Basin Research, 33(6): 3231-3255. https://doi.org/10.1111/bre.12601 |
| [42] |
Reagan, M. K., Heaton, D. E., Schmitz, M. D., et al., 2019. Forearc Ages Reveal Extensive Short-Lived and Rapid Seafloor Spreading Following Subduction Initiation. Earth and Planetary Science Letters, 506: 520-529. https://doi.org/10.1016/j.epsl.2018.11.020 |
| [43] |
Reagan, M. K., Ishizuka, O., Stern, R. J., et al., 2010. Fore-Arc Basalts and Subduction Initiation in the Izu-Bonin-Mariana System. Geochemistry, Geophysics, Geosystems, 11(3): Q03X12. https://doi.org/10.1029/2009GC002871 |
| [44] |
Reagan, M. K., Pearce, J. A., Petronotis, K., et al., 2017. Subduction Initiation and Ophiolite Crust: New Insights from IODP Drilling. International Geology Review, 59(11): 1439-1450. https://doi.org/10.1080/00206814.2016.1276482 |
| [45] |
Reginato, G., Vera, E., Contreras-Reyes, E., et al., 2020. Seismic Structure and Tectonics of the Continental Wedge Overlying the Source Region of the Iquique Mw8.1 2014 Earthquake. Tectonophysics, 796: 228629. https://doi.org/10.1016/j.tecto.2020.228629 |
| [46] |
Ridgway, K. D., Trop, J. M., Finzel, E. S., 2011. Modification of Continental Forearc Basins by Flat-Slab Subduction Processes: A Case Study from Southern Alaska. In: Busby, C. J., Azor, A., eds., Tectonics of Sedimentary Basins. Wiley-Blackwell, Cambridge, 327-346. https://doi.org/10.1002/9781444347166.ch16 |
| [47] |
Robertson, A. H. F., Kutterolf, S., Avery, A., et al., 2018. Depositional Setting, Provenance, and Tectonic-Volcanic Setting of Eocene-Recent Deep-Sea Sediments of the Oceanic Izu-Bonin Forearc, Northwest Pacific (IODP Expedition 352). International Geology Review, 60(15): 1816-1854. https://doi.org/10.1080/00206814.2017.1393634 |
| [48] |
Ryan, H. F., Draut, A. E., Keranen, K., et al., 2012. Influence of the Amlia Fracture Zone on the Evolution of the Aleutian Terrace Forearc Basin, Central Aleutian Subduction Zone. Geosphere, 8(6): 1254-1273. https://doi.org/10.1130/GES00815.1 |
| [49] |
Ryan, H. F., Scholl, D. W., 1993. Geologic Implications of Great Interplate Earthquakes along the Aleutian Arc. Journal of Geophysical Research: Solid Earth, 98(B12): 22135-22146. https://doi.org/10.1029/93JB02451 |
| [50] |
Sak, P. B., Fisher, D. M., Gardner, T. W., et al., 2009. Rough Crust Subduction, Forearc Kinematics, and Quaternary Uplift Rates, Costa Rican Segment of the Middle American Trench. GSA Bulletin, 121(7-8): 992-1012. https://doi.org/10.1130/B26237.1 |
| [51] |
Scholl, D. W., Von Huene, R., Vallier, T. L., et al., 1980. Sedimentary Masses and Concepts about Tectonic Processes at Underthrust Ocean Margins. Geology, 8(12): 564-568. https://doi.org/10.1130/0091-7613(1980)8<564:SMACAT>2.0.CO;2 |
| [52] |
Scholz, C. H., Small, C., 1997. The Effect of Seamount Subduction on Seismic Coupling. Geology, 25(6): 487-490. https://doi.org/10.1130/0091-7613(1997)025<0487:TEOSSO>2.3.CO;2 |
| [53] |
Stern, C. R., 2011. Subduction Erosion: Rates, Mechanisms, and Its Role in Arc Magmatism and the Evolution of the Continental Crust and Mantle. Gondwana Research, 20(2-3): 284-308. https://doi.org/10.1016/j.gr.2011.03.006 |
| [54] |
Stern, C. R., 2020. The Role of Subduction Erosion in the Generation of Andean and Other Convergent Plate Boundary Arc Magmas, the Continental Crust and Mantle. Gondwana Research, 88: 220-249. https://doi.org/10.1016/j.gr.2020.08.006 |
| [55] |
Stern, R. J., 2010. The Anatomy and Ontogeny of Modern Intra-Oceanic Arc Systems. In: Kusky, T. M., Zhai, M. G., Xiao, W.J., eds., The Evolving Continents: Understanding Processes of Continental Growth. Geological Society of London, 7-34. https://doi.org/10.1144/SP338.2 |
| [56] |
Stewart, R. J., 1978. Neogene Volcaniclastic Sediments from Atka Basin, Aleutian Ridge. AAPG Bulletin, 62(1): 87-97. https://doi.org/10.1306/C1EA47FC-16C9-11D7-8645000102C1865D |
| [57] |
Strasser, M., Moore, G. F., Kimura, G., et al., 2011. Slumping and Mass Transport Deposition in the Nankai Fore Arc: Evidence from IODP Drilling and 3-D Reflection Seismic Data. Geochemistry, Geophysics, Geosystems, 12(5): Q0AD13. https://doi.org/10.1029/2010GC003431 |
| [58] |
Sun, W. D., Ling, M. X., Yang, X. Y., et al., 2010. Ridge Subduction and Porphyry Copper-Gold Mineralization: An Overview. Science China Earth Sciences, 53(4): 475-484. https://doi.org/10.1007/s11430-010-0024-0 |
| [59] |
Surpless, K. D., 2015. Geochemistry of the Great Valley Group: An Integrated Provenance Record. International Geology Review, 57(5-8): 747-766. https://doi.org/10.1080/00206814.2014.923347 |
| [60] |
Syracuse, E. M., Abers, G. A., 2006. Global Compilation of Variations in Slab Depth beneath Arc Volcanoes and Implications. Geochemistry, Geophysics, Geosystems, 7(5): Q05017. https://doi.org/10.1029/2005GC001045 |
| [61] |
Underwood, M.B., Moore, G.F., 1995. Trenches and Trench-Slope Basins. In: Busby, C. J., Ingersoll, R.V., eds., Tectonics of Sedimentary Basins. Blackwell Science, Cambridge, 179-219. |
| [62] |
Underwood, M. B., Moore, G. F., 2011. Evolution of Sedimentary Environments in the Subduction Zone of Southwest Japan: Recent Results from the Nantroseize Kumano Transect. In: Busby, C. J., Azor, A., eds., Tectonics of Sedimentary Basins. Blackwell Science, Cambridge, 310-328. https://doi.org/10.1002/9781444347166.ch15 |
| [63] |
Usman, M. O., Masago, H., Winkler, W., et al., 2014. Mid-Quaternary Decoupling of Sediment Routing in the Nankai Forearc Revealed by Provenance Analysis of Turbiditic Sands. International Journal of Earth Sciences, 103(4): 1141-1161. https://doi.org/10.1007/s00531-014-1011-z |
| [64] |
Von Huene, R., Scholl, D. W., 1991. Observations at Convergent Margins Concerning Sediment Subduction, Subduction Erosion, and the Growth of Continental Crust. Reviews of Geophysics, 29(3): 279-316. https://doi.org/10.1029/91RG00969 |
| [65] |
Wakabayashi, J., 2017. Sedimentary Serpentinite and Chaotic Units of the Lower Great Valley Group Forearc Basin Deposits, California: Updates on Distribution and Characteristics. International Geology Review, 59(5-6): 599-620. https://doi.org/10.1080/00206814.2016.1219679 |
| [66] |
Wakabayashi, J., Tian, Z.H., Zhang, J.E., et al., 2021. Architecture of an Exhumed Forearc Region: Franciscan Complex, Coast Range Ophiolite, and Great Valley Group of California. Chinese Journal of Geology, 56(2): 357-394 (in Chinese with English abstract). |
| [67] |
Wakita, K., 2015. OPS Mélange: A New Term for Mélanges of Convergent Margins of the World. International Geology Review, 57(5-8): 529-539. https://doi.org/10.1080/00206814.2014.949312 |
| [68] |
Wang, Q., Tang, G. J., Hao, L. L., et al., 2020. Ridge Subduction, Magmatism, and Metallogenesis. Science China Earth Sciences, 63(10): 1499-1518. https://doi.org/10.1007/s11430-019-9619-9 |
| [69] |
Xiao, W. J., Ao, S. J., Yang, L., et al., 2017. Anatomy of Composition and Nature of Plate Convergence: Insights for Alternative Thoughts for Terminal India-Eurasia Collision. Science China Earth Sciences, 60(6): 1015-1039. https://doi.org/10.1007/s11430-016-9043-3 |
| [70] |
Xiao, W.J., Song, D.F., Zhang, J.E., et al., 2022. Anatomy of the Structure and Evolution of Subduction Zones and Research Prospects. Earth Science, 47(9): 3073-3106 (in Chinese with English abstract). |
| [71] |
Xie, X.Y., Heller, P. L., 2009. Plate Tectonics and Basin Subsidence History. GSA Bulletin, 121(1-2): 55-64. https://doi.org/10.1130/B26398.1 |
| [72] |
Yan, Z., Wang, Z.Q., Li, J.L., et al., 2008. Restoring the Original Tectonic Types of Sedimentary Basins in the Orogenic Belts. Geological Bulletin of China, 27(12): 2001-2013 (in Chinese with English abstract). |
| [73] |
Yan, Z., Wang, Z.Q., Yan, Q.R., et al., 2018. Identification and Reconstruction of Tectonic Archetype of the Sedimentary Basin within the Orogenic Belt Developed along Convergent Margin. Acta Petrologica Sinica, 34(7): 1943-1958 (in Chinese with English abstract). |
国家自然科学基金项目(42488201)
/
| 〈 |
|
〉 |