库车坳陷克拉苏构造带盐下深层多滑脱构造模式及油气地质意义

王清华 ,  程晓敢 ,  谢会文 ,  陈汉林 ,  吴超 ,  莫涛

地球科学 ›› 2025, Vol. 50 ›› Issue (01) : 97 -109.

PDF (16987KB)
地球科学 ›› 2025, Vol. 50 ›› Issue (01) : 97 -109. DOI: 10.3799/dqkx.2024.060

库车坳陷克拉苏构造带盐下深层多滑脱构造模式及油气地质意义

作者信息 +

Multiple Décollement Model and Its Petroleum Geological Significance in Kelasu Subsalt Structural Belt, Kuqa Depression

Author information +
文章历史 +
PDF (17394K)

摘要

为了精细刻画库车坳陷克拉苏构造盐下深层构造模型和空间变化规律,通过对高质量连片三维地震资料的精细解释,发现克拉苏构造带盐下深层存在多滑脱层变形,侏罗系煤系地层是盐下的主要滑脱层,克拉苏构造带东部发育三叠系下滑脱层,而西部不发育.下滑脱层是否发育与基底形态控制的三叠系厚度和岩性有关.侏罗系煤系作为滑脱层,三叠系、侏罗系烃源岩分层运聚成藏,从而使克拉苏盐下深层形成中组合和下组合两套成藏体系,其中三叠系‒侏罗系阳霞组构成的下组合构造相对稳定,深大断裂未向上沟通,深层油气有效保存,可能发育聚集了三叠系近源油气的大型油气藏,是将来克拉苏深层勘探重点领域.

Abstract

To further investigate the subsalt structure and its spatial variations within the Kelasu structural belt of the Kuqa Depression, we conducted a detailed structural interpretation of the latest high-quality 3D seismic data in this study. The findings reveal the presence of multiple subsalt décollements that significantly control the subsalt structures in the deep areas of the Kelasu structural belt. Specifically, the Jurassic coal-bearing strata emerge as the primary décollement layer beneath the salt layer. Additionally, lower décollement layer within the Triassic strata were observed in the eastern Kelasu structural belt, while they were absent in the western part. The formation of the lower décollement layer is predominantly influenced by the thickness and lithological composition of the Triassic strata, which are in turn controlled by the shape of the basement. Serving as décollement layer, the Jurassic coal-bearing strata facilitate the stratified migration and accumulation of hydrocarbons sourced from the Triassic and Jurassic formations. Consequently, this process has resulted in the development of two distinct hydrocarbon reservoir systems within the deep subsalt layers of the Kuqa Depression: the mid-combination and lower-combination reservoir systems. Notably, the lower-combination reservoir system, primarily composed of the Triassic-Jurassic Yangxia Formation, is structurally stable and is unruptured by deeply situated large-scale faults. This stability may make it conducive to reservoir development that accumulates the Triassic near-source oil and gas, which is the key target for future deep exploration in the Kelasu structural belt.

Graphical abstract

关键词

克拉苏构造 / 盐下深层 / 煤系滑脱层 / 多滑脱构造模型 / 分层运聚成藏 / 近源油气藏 / 石油地质学.

Key words

Kelasu structural belt / subsalt deep formation / coal⁃bearing décollement layer / multiple⁃décollement structural model / stratified transport and hydrocarbon accumulation / near⁃source oil and gas reservoir / petroleum geology

引用本文

引用格式 ▾
王清华,程晓敢,谢会文,陈汉林,吴超,莫涛. 库车坳陷克拉苏构造带盐下深层多滑脱构造模式及油气地质意义[J]. 地球科学, 2025, 50(01): 97-109 DOI:10.3799/dqkx.2024.060

登录浏览全文

4963

注册一个新账户 忘记密码

库车坳陷位于塔里木盆地北缘的南天山山前,是一个新生代再生前陆盆地(Lu et al.,1994; 刘志宏等, 2000; Li et al., 2004).由于印亚碰撞远程效应的影响,新生代坳陷内发育有多排构造带,自北向南分别为北部构造带、克拉苏构造带、拜城凹陷、秋里塔格构造带、阳霞凹陷和前缘隆起带(谢会文等,2020;王清华等,2023)(图1a).
克拉苏构造带自1998年发现克拉2气田以来,已在古近纪库姆格列木群盐岩之下发现数十个气藏,其原先的主力勘探层系为下白垩统顶部的巴什基奇克组(王招明,2014;杨海军等,2019;田军等,2020),而近年在下白垩统底部的亚格列木组这一新层系获得了克探1井的重大突破(王清华等,2023).勘探实践表明,准确的构造模型是油气发现的重要基础.由于库姆格列木群盐岩的屏蔽效应,原先的地震反射剖面对克拉苏盐下构造的刻画质量不佳,且该带的变形十分复杂,因此对盐下构造的认识一直存在着争议.已建立的盐下构造模型主要有薄皮滑脱、基底卷入、薄皮滑脱‒基底卷入混合模型等,整体上都认为山前发育基底卷入的高角度逆冲构造,向盆地方向发育滑脱构造,并向下聚敛于深部下滑脱层(汪新等,2002;漆家福等,2009;Wang et al., 2017;杨克基等,2018).但由于库车坳陷深部存在煤层和泥岩、不整合面等多套软弱界面,因此对下滑脱层的认识存在较大差异.前人通过面积深度法,推测该滑脱层为三叠系与下伏基底之间不整合面(谢会文等,2015),这和多数学者的地震剖面解释结果相一致;也有部分学者认为侏罗系中、下统及上三叠统的煤系地层构成了下滑脱层(杨茂智等,2015;Pla et al., 2019).虽然对下滑脱层位置存在不同认识,但这些模型大都认为上滑脱层库姆格列木群盐岩和下滑脱层之间的层系是整体变形;仅少部分研究者认识到盐下深层存在沿着三叠系、侏罗系煤层,乃至下白垩统舒善河组泥岩的多层系滑脱变形(管树巍等,2010;漆家福等,2013;王清华等,2023),但都未进行系统研究.亚平宁、阿巴拉契亚、比利牛斯、扎格罗斯等世界上著名的褶皱冲断带都发育有多滑脱层变形(Labaume and Moretti, 2001Sherkati et al., 2006Mount, 2014).多滑脱层的存在对冲断带内部的变形样式、断裂组合、变形传播以及圈闭发现具有重大的影响.
近年来,随着地震反射数据质量的提高,为精细刻画克拉苏盐下深层构造提供了可能.本文通过对克拉苏高品质三维连片叠前深度偏移地震资料的精细解释,建立了盐下深层多滑脱构造模型及空间变化规律,剖析了其对油气成藏的影响.

1 地质概况

克拉苏构造带变形具有“东西分段、南北分带”的特征:自北向南,被克北断裂(FIKB)、博孜‒克拉断裂(FIBK)、克拉苏断裂(FIKLS)、克深断裂(FIKS)和拜城断裂(FIBC)等5条一级断裂分成4个断裂构造带;自西向东,被划分为阿瓦特段、博孜段、大北段、克深段和克拉段(雷刚林等,2007;能源等,2012;田军等,2020;王清华等,2023)(图1b).

构造带内发育巨厚的中生代和新生代沉积地层,中生代地层以角度不整合覆盖于古生界基底之上.构造带发育多套软弱层,分别为古近系库姆格列木群盐层、下白垩统舒善河组大套泥岩、中下侏罗统煤系地层和三叠系泥岩(图1c).库姆格列木群盐层上、下层系的变形存在解耦,因此通常自上而下称为盐上构造层、盐构造层和盐下构造层(汤良杰等,2003;尹宏伟等,2011).盐上构造层主要由古近系‒第四系组成,为一套陆相红色碎屑岩沉积,最厚处超过6 000 m;变形表现为一系列受逆冲断层控制的线性背斜,断层向下消失于盐层;盐构造层主要发育一系列盐相关构造,如盐丘、盐枕、盐焊接等;盐下构造层主要为中生界组成的复杂冲断体系.

2 盐下深层分层滑脱变形的确定

高质量的三维叠前深度偏移数据清晰地显示出克拉苏构造带盐下存在显著的大规模分层滑脱变形,盐下除了发育三叠系滑脱层之外,还沿着侏罗系煤系地层发生了滑脱,表现为煤系上下地层不协调变形(图2).

从克深段的地震剖面上,盐下可清楚识别出三套地震强反射(图2a),上为库姆格列木群盐底(白垩系顶),下为三叠系底不整合面,中为侏罗系煤系地层.三叠系底不整合面反射清晰、连续,没有明显错断,其上地层发生变形,由此推测沿着三叠系内部大套泥岩发育下滑脱层.下滑脱层和上滑脱层库姆格列木盐层之间的中生界虽然都发生了强烈变形,但以侏罗系煤系地层为界(强反射标定为中侏罗统克孜勒努尔组底),其上下层系变形规模和幅度表现出明显差异:(1)煤层及其下的泥岩地层作为非能干层,褶皱波长相对较小,形成相对紧闭褶皱;而白垩系巴什基奇克组厚层砂岩作为能干层,褶皱波长相对较大,形成相对宽缓褶皱.(2)错断侏罗系煤系地层的断距远小于错断库姆格列木群盐底的断距,表现为断距下小上大的现象,这显然不可能像前人解释的由自上滑脱层贯通到下滑脱层的同一条断层造成的.(3)以侏罗系煤系地层为界,其下的下侏罗统‒三叠系地层厚度变化相对较小,表现为向北逐渐加厚,表明其受冲断影响较小,其加厚主要是由于向南超覆沉积造成的;而其上的中侏罗统‒下白垩统地层厚度变化十分显著,明显受到强烈的冲断发生叠置.

从上述分析可以推断,侏罗系煤系地层为一个大规模的滑脱层,与三叠系组成了盐下的多层滑脱,控制了盐下中生界的分层变形.

3 盐下深层分段变形特征及空间变化规律

克拉苏构造带盐下深层虽然都存在分层变形,但各段表现出不同变形特征.

3.1 克深构造段

该段地表发育吐孜玛扎背斜、库姆格列木背斜和巴什基奇克背斜等,盐上层反射清晰,变形相对简单.盐下以克拉苏断裂(FIKLS)为界,其北发育基底卷入构造,高角度基底断裂博孜‒克拉断裂(FIBK)和克北断裂(FIKB)等将中生界逐步抬升直至出露地表;克拉苏断裂以南发育双滑脱构造(图2b).下部沿着三叠系底部泥岩滑脱,其下三叠系底部不整合面表现为地震连续强反射,未发生变形,向北逐步下切三叠系底进入基底;其上发育的大部分断层只切穿了侏罗系煤系及以下地层,仅在前缘有部分断层切穿了盐底.中部沿着侏罗系煤层滑脱,分隔了上下两套变形.因此,克深段除构造带前缘可能表现为受下滑脱层控制的整体变形外,其余部分盐下以中滑脱层为界表现出两种类型的变形,其下的下侏罗统‒三叠系表现为双重构造,断层断距较小,地层叠置不明显;其上的白垩系‒中侏罗统表现为楔形叠瓦构造,断层断距较大,地层发生明显叠置,楔体向北显著增厚,从而造成盐层流动和盐上层的被动向北抬升.

3.2 大北构造段

大北构造段北侧为由吐孜玛扎盐底辟形成的喀桑托开背斜,南侧为盐枕控制的大宛齐背斜,盐上构造层变形相对简单;而大宛齐盐枕内由于盐岩的大规模流动聚集,造成库姆格列木群盐内夹层(灰岩、白云岩、砂泥岩和石膏)形成的地震强反射表现为强烈的不规则揉皱(图3).该段受大宛齐盐枕背斜和吐孜玛扎盐底辟的影响,盐下构造变形强烈,但同样表现出分层变形的特征(图3).其中拜城断裂(FIBC)自南向北分别沿着侏罗系煤系、侏罗系下部和三叠系底滑脱后进入基底;克深断裂(FIKS)沿着白垩系舒善河组泥岩和侏罗系煤系滑脱,向南以较大规模低角度逆掩到大宛齐盐枕内部,但同时受盐枕巨厚膏盐层的阻挡,其向南滑脱的距离明显小于下滑脱层.北部的博孜‒克拉断裂(FIBK)和克北断裂(FIKB)同样为高角度基底断裂.剖面北端出现的康村组底界(?)和吉迪克组的不整合,代表了其下的克北断裂在吉迪克组末期已经开始活动,造成其上覆地层的抬升剥蚀(图3).

3.3 博孜构造段

该构造段在靠近山前的区域,出现大规模的盐出露,即博孜敦盐底辟构造,盐上构造简单,为局部发育盐底辟的单斜.盐下北侧的博孜‒克拉断裂(FIBK)和克北断裂(FIKB)为高角度基底断裂,博孜‒克拉断裂以南为克深断裂(FIKS)和拜城断裂(FIBC)控制的楔形叠瓦构造(图4).拜城断裂沿着侏罗系煤系滑脱,直至山前向下切过下侏罗统和三叠系进入基底,其下的侏罗系克孜勒努尔组底、阿合组底和三叠系底地震反射界面平直连续,下侏罗统和三叠系未变形,因此博孜段下滑脱层不发育.克深断裂则沿着白垩系舒善河组泥岩和侏罗系煤层滑脱.

3.4 盐下分层变形变化规律及机制

克拉苏构造带在侏罗系煤系地层作为主要滑脱层为整体特征基础上,自东向西明显表现出不同的分层变形特征:从克拉段、克深段(图2)发育沿三叠系的下滑脱层和大北段(图3)发育沿三叠系、侏罗系煤层复式递进的下滑脱层,到博孜段(图4)、阿瓦特段不发育三叠系下滑层.此外,在局部地区白垩系舒善河泥岩也能发生滑脱变形(图3图4),可能与其上覆盐层较薄或缺失有关(王清华等,2023).

图5为横跨拜城断裂构造带的东西向联络线,大宛齐盐枕及其以西的博孜段‒大北段沿着侏罗系煤层滑脱,而盐枕以东的大北段西‒克深段沿着三叠系和侏罗系煤层多层滑脱.拜城断裂在大宛齐盐枕以东由三叠系滑脱层向西以台阶状向上滑脱到侏罗系煤层,在该处克孜勒努尔组强反射界面(TJ2kz )明显被错断(图5).

克拉苏构造带盐下中生代地层向南部古隆起超覆,表现为南薄北厚(图2~图4),但在横向上,尤其是三叠系‒下侏罗统还存在西薄东厚的特点(图5).中生代地层厚度的横向差异明显受控于基底斜坡形态,西部阿瓦特段‒博孜段靠近晚古生代的温宿、西秋等古隆起(李勇,2018),因此基底埋深相对较浅、基底斜坡较陡,超覆其上的中生界相对较薄(图4图5);而东部克深段基底埋深较深、基底斜坡较缓,超覆其上的中生界相对较厚(图2图5).库车坳陷三叠系厚度图也表明克拉苏构造带自西向东三叠系厚度加大(纪云龙等,2003;王清华等,2023).而且克拉苏构造带西部三叠纪时期靠近原型盆地边缘,主要发育扇三角洲和辫状河三角洲沉积;而东部位于原型盆地中央,以湖相沉积为主(刘亚雷等,2012).因此,三叠系的厚度和岩性差异是决定克拉苏构造带下滑脱层发育与否的关键因素.

4 克拉苏构造带构造演化过程

为了反映克拉苏构造带形成演化过程,本文利用平衡剖面恢复技术制作了克拉苏构造演化剖面,剖面选择了克深段过克深5井的三维地震数据解释成果(图6).为了详细刻画演化期次和过程,根据地震反射界面将新生代地层细化成数十个小层(图6图7f).

晚古生代,随着塔里木板块向中天山的持续俯冲,南天山洋关闭,在库车坳陷南缘形成温宿、西秋、新和等古隆起(李勇,2018).中生代库车坳陷沉降,三叠系、侏罗系和下白垩统总体表现为向南超覆沉积,期间经历了多次水进水退,中生界各层系岩性和沉积范围有所变化.晚白垩世,库车坳陷整体遭受挤压抬升,发育多个古隆起(宋叙,2018;王珂等,2020),克拉苏构造带北部的克北断裂等和其南侧秋里塔格地区的先存基底断裂再次活动(杨克基等,2022).古近纪库姆格列木群沉积期,库车坳陷沉积了大套盐岩层,盐岩层向凹陷两侧逐渐减薄且成分由纯盐岩为主转换为以膏泥岩为主(能源等,2013);苏维依组沉积期(古近纪末期),南天山开始复活隆升(Chen et al., 2022; 郭超等,2022),南天山山前向盆地方向发生加积,其形成的差异沉积负载是诱发盐底辟的一个重要机制(李世琴,2009;王凡等,2022)(图7a).

由于差异沉积负载作用导致了山前盐岩向盆地方向的流动,并促使吐孜玛扎盐底辟开始发育(李世琴,2009),从而表现为其上覆地层的旋转和吉迪克组向盐底辟超覆,并在山前发育盐撤凹陷,吉迪克组向山前加厚(图7b).

康村组沉积早期,克北断裂等山前先存基底断裂继承性活动,造成盐岩在其下盘聚集,吐孜玛扎盐底辟继续发育的同时库姆格列木背斜开始发育,康村组地层向背斜核部超覆(图7c).

康村组沉积末期,随着挤压作用的继续,变形向南传递,博孜‒克拉断裂也开始活动,盐岩进一步向吐孜玛扎盐底辟和库姆格列木盐背斜流动,造成其上覆地层的进一步旋转和超覆(图7d).

库车组沉积期,挤压构造变形继续向前传递,克深断裂和拜城断裂呈断阶状分别沿着侏罗系煤层和三叠系泥岩滑脱变形,盐岩向盆地方向流动,形成早期的拜城盐枕,盐枕北翼下伏的盐岩发生撤离,从而导致其上覆地层强烈沉降形成盐撤凹陷,吐孜玛扎盐底辟演化为逆冲断层(图7e).

更新世以来,发生了强烈的挤压变形,克深断裂沿着侏罗系煤系向南继续滑脱变形,形成楔形叠瓦构造;拜城断裂发育次级断裂形成双重构造,将三叠系‒下侏罗统及其上覆的克深断裂等一起褶皱变形,它们共同导致山前强烈抬升,地层被向南掀斜,更新统表现为向南倾斜的生长地层;从而造成拜城盐枕的盐岩发生撤离,向其南侧的秋里塔格背斜带聚集(图7f).

5 油气地质意义

库车坳陷具有烃源岩大面积生排烃、晚期大量生气,油气运移以近距离垂向运移为主,晚期天然气充注强度大,大面积持续充注等特点(王招明,2014).

库车坳陷烃源岩厚度大、分布面积广,发育三叠系、侏罗系沼泽相和湖相2类烃源岩,包括上三叠统塔里奇克组、下侏罗统克孜勒努尔组和阳霞组煤系烃源岩,中上三叠统克拉玛依组、黄山街组和中侏罗统恰克马克组湖相烃源岩.烃源岩有机质丰度很高,暗色泥岩TOC含量为1.2%~4%,炭质泥岩达15%~25%,局部大于25%;有机质类型大部分为Ⅲ型,以生气为主;镜质体反射率(Ro)为0.56%~2.3%(王招明,2014).克拉苏构造带位于烃源岩沉积厚度中心区,三叠系烃源岩厚达500~600 m,侏罗系烃源岩厚达600~800 m(杨海军等,2021;王清华等,2023).

克拉苏构造带总体上具有“下生上储、垂向输导”的多层系立体成藏特点(王清华等,2023).除盐上的古近系‒新近系组成的上组合外,根据盐下多滑脱变形特征,可将盐下目的层划分为中组合和下组合,其中中组合目的层包括白垩系巴什基奇克组、巴西改组、亚格列木组和侏罗系克孜勒努尔组,库姆格列木群盐岩、舒善河组泥岩和克孜勒努尔组内部泥岩分别作为盖层(王清华等,2023);下组合包括侏罗系阳霞组、阿合组、三叠系,阳霞组和三叠系大套泥岩、煤系地层既是烃源岩又是区域盖层.其中中组合的白垩系巴什基奇克组、巴西改组、亚格列木组已有规模发现或有重大突破;下组合则在库车坳陷东部发现了依矿、迪北、吐孜4、吐东2等多个油气藏,说明该套层系同样具备形成大型气田的成藏基础.

克拉苏构造带西部博孜‒大北区块天然气主要来自侏罗系煤系烃源岩(杨学文等,2022),东部克深‒克拉区块主要来源于侏罗系煤系烃源岩,少量来自三叠系烃源岩(魏强等,2019).说明位于三叠系烃源岩厚值区的克拉苏构造带未见三叠系烃源岩规模油气,而且克拉苏构造带东西部气源的差异应该和滑脱层差异发育有关(图5).

从烃源岩及成藏条件分析,越靠近烃源岩的储盖组合越有利,因此中组合下部的侏罗系克孜勒努尔组和下组合的侏罗系阳霞组‒三叠系成藏条件优越.而且,下组合构造相对中组合更为简单,其中克深段下组合发育3~4排冲断构造,相对中组合白垩系构造更为平缓、形态更为完整(图2图5图6f).

因此,以侏罗系煤系滑脱层为界,三叠系、侏罗系烃源岩分层运聚成藏,从而使克拉苏深层形成中组合和下组合两套成藏体系,分别为侏罗系克孜勒努尔组‒古近系盐下成藏体系、三叠系‒侏罗系阳霞组成藏体系.其中克孜勒努尔组‒古近系盐下成藏体系断裂主要沿煤系地层滑脱,局部沿白垩系舒善河组泥岩滑脱;演化过程表明三叠系‒阳霞组成藏体系构造相对稳定(图6),大部分地区的深大断裂未向上沟通,深层油气有效保存.因此下组合可能发育聚集了三叠系近源油气的大型油气藏,是将来克拉苏深层勘探重点领域.

6 结论

(1)在精细地震解释基础上,提出了克拉苏构造带盐下深层存在多滑脱层变形,三叠系、侏罗系煤系地层和白垩系舒善河组泥岩都可以作为滑脱层,其中侏罗系煤系地层是盐下最主要的滑脱层.

(2)克拉苏构造带盐下分层变形表现出明显的东西差异:从东部的克拉段、克深段发育沿三叠系的下滑脱层和中部大北段发育沿三叠系、侏罗系煤层复式递进的下滑脱层,到西部博孜段、阿瓦特段不发育三叠系下滑层;三叠系的厚度和岩性差异是决定克拉苏构造带下滑脱层发育与否的关键因素.而南北向上,克拉苏构造带北部表现为高角度的基底卷入构造,其形成时间相对较早,中部和南部表现为沿多个滑脱层发育的滑脱构造,整体表现为前展式变形.

(3)侏罗系煤系作为主要滑脱层,三叠系、侏罗系烃源岩分层运聚成藏,从而使克拉苏盐下深层形成中组合和下组合两套成藏体系,其中三叠系‒侏罗系阳霞组构成的下组合构造相对稳定,深大断裂未向上沟通,深层油气有效保存,可能发育聚集了三叠系近源油气的大型油气藏,是将来克拉苏深层勘探重点领域.

参考文献

[1]

Chen, H. L., Lin, X. B., Cheng, X. G., et al., 2022. Two⁃Phase Intracontinental Deformation Mode in the Context of India⁃Eurasia Collision: Insights from a Structural Analysis of the West Kunlun⁃Southern Junggar Transect along the NW Margin of the Tibetan Plateau. Journal of the Geological Society, 179(2): 1-14. https://doi.org/10.1144/jgs2021⁃029

[2]

Guan, S.W., Chen, Z.X., Li, B.L., et al., 2010. Discussions on the Character and Interpretation Model of Kelasu Deep Structures in the Kuqa Area. Petroleum Exploration and Development, 37(5): 531-536, 551 (in Chinese with English abstract).

[3]

Guo, C., Zhang, Z.Y., Wu, L., et al., 2022. Mesozoic⁃ Cenozoic Coupling Process of Tianshan Denudation and Sedimentation in the Northern Margin of the Tarim Basin: Evidence from Low⁃Temperature Thermochronology (Kuqa River Section, Xinjiang). Earth Science, 47(9): 3417-3430 (in Chinese with English abstract).

[4]

Ji, Y.L., Ding, X.Z., Li, X.C., et al., 2003. Triassic Paleogeography and Sedimentary Facies of the Kuqa Depression, Tarim Basin. Journal of Geomechanics, 9(3): 268-274 (in Chinese with English abstract).

[5]

Labaume, P., Moretti, I., 2001. Diagenesis⁃Dependence of Cataclastic Thrust Fault Zone Sealing in Sandstones. Example from the Bolivian Sub⁃Andean Zone. Journal of Structural Geology, 23(11): 1659-1675. https://doi.org/10.1016/S0191⁃8141(01)00024⁃4

[6]

Lei, G.L., Xie, H.W., Zhang, J.Z., et al., 2007. Structural Features and Natural Gas Exploration in the Kelasu Structural Belt, Kuqa Depression. Oil & Gas Geology, 28(6): 816-820, 835 (in Chinese with English abstract).

[7]

Li, S.Q., 2009. Study on Squeezed Salt Structure and Syntectonic Sedimentary Strata in the Middle⁃West Section of Kuqa Foreland Basin in Southern Tianshan Mountains (Dissertation). Zhejiang University, Hangzhou (in Chinese with English abstract).

[8]

Li, Y., 2018. Structural Features of Late Paleozoic Paleo⁃ Uplift and Its Control on Large⁃Scale Natural Gas Accumulation in Wensu⁃Luntai Area,Tarim Basin (Dissertation). Zhejiang University, Hangzhou (in Chinese with English abstract).

[9]

Li, Z., Song, W. J., Peng, S. T., et al., 2004. Mesozoic⁃Cenozoic Tectonic Relationships between the Kuqa Subbasin and Tian Shan, Northwest China: Constraints from Depositional Records. Sedimentary Geology, 172(3-4): 223-249. https://doi.org/10.1016/j.sedgeo.2004.09.002

[10]

Liu, Y.L., Hu, X.F., Wang, D.X., et al., 2012. Characteristics of Triassic Lithofacies Palaeogeography in Tarim Basin. Fault⁃Block Oil & Gas Field, 19(6): 696-700 (in Chinese with English abstract).

[11]

Liu, Z.H., Lu, H.F., Li, X.J., et al., 2000. Tectonic Evolution of Kuqa Rejuvenated Foreland Basin. Chinese Journal of Geology (Scientia Geologica Sinica), 35(4): 482-492 (in Chinese with English abstract).

[12]

Lu, H. F., Howell, D. G., Jia, D., et al., 1994. Rejuvenation of the Kuqa Foreland Basin, Northern Flank of the Tarim Basin, Northwest China. International Geology Review, 36(12): 1151-1158. https://doi.org/10.1080/00206819409465509

[13]

Mount, V. S., 2014. Structural Style of the Appalachian Plateau Fold Belt, North⁃Central Pennsylvania. Journal of Structural Geology, 69: 284-303. https://doi.org/10.1016/j.jsg.2014.04.005

[14]

Neng, Y., Qi, J.F., Xie, H.W., et al., 2012. Structural Characteristics of Northern Margin of Kuqa Depression, Tarim Basin. Geological Bulletin of China, 31(9): 1510-1519 (in Chinese with English abstract).

[15]

Neng, Y., Xie, H.W., Sun, T.R., et al., 2013. Structural Characteristics of Keshen Segmentation in Kelasu Structural Belt and Its Petroleum Geological Significance. China Petroleum Exploration, 18(2): 1-6 (in Chinese with English abstract).

[16]

Pla, O., Roca, E., Xie, H. W., et al., 2019. Influence of Syntectonic Sedimentation and Décollement Rheology on the Geometry and Evolution of Orogenic Wedges: Analog Modeling of the Kuqa Fold⁃and⁃Thrust Belt (NW China). Tectonics, 38(8): 2727-2755. https://doi.org/10.1029/2018tc005386

[17]

Qi, J.F., Lei, G.L., Li, M.G., et al., 2009. Analysis of Structure Model and Formation Mechanism of Kelasu Structure Zone, Kuqa Depression. Geotectonica et Metallogenia, 33(1): 49-56 (in Chinese with English abstract).

[18]

Qi, J.F., Li, Y., Wu, C., et al., 2013. The Interpretation Models and Discussion on the Contractive Structure Deformation of Kuqa Depression, Tarim Basin. Geology in China, 40(1): 106-120 (in Chinese with English abstract).

[19]

Sherkati, S., Letouzey, J., Frizon de Lamotte, D., 2006. Central Zagros Fold⁃Thrust Belt (Iran): New Insights from Seismic Data, Field Observation, and Sandbox Modeling. Tectonics, 25(4): TC4007. https://doi.org/10.1029/2004tc001766

[20]

Song, X., 2018. Cretaceous Paleo⁃Uplift Restoration and Its Implications on Hydrocarbon Accumulation in the Kuqa Depression (Dissertation). China University of Petroleum, Beijing (in Chinese with English abstract).

[21]

Tang, L.J., Jia, C.Z., Pi, X.J., et al., 2003. Salt⁃Related Structural Styles in Kuqa Foreland Fold Belt. Scientia Sinica Terrae, 33(1): 38-46 (in Chinese).

[22]

Tian, J., Yang, H.J., Wu, C., et al., 2020. Discovery of Well Bozi 9 and Ultra⁃Deep Natural Gas Exploration Potential in the Kelasu Tectonic Zone of the Tarim Basin. Natural Gas Industry, 40(1): 11-19 (in Chinese with English abstract).

[23]

Wang, F., Deng, X.L., Zheng, M.P., et al., 2022. Sedimentary⁃Geochemical Characteristics and Potash⁃ Prospecting Potential of Gypsum⁃Salt Layer in Western Kuqa Depression. Earth Science, 47(1): 56-71 (in Chinese with English abstract).

[24]

Wang, K., Cao, T., Wei, H.X., et al., 2020. The Palaeo Uplift of Late Cretaceous and Tectonic Stress Fieldreconstruction of the Eastern Kuqa Depression. Acta Geologica Sinica, 94(6): 1716-1726 (in Chinese with English abstract).

[25]

Wang, Q.H., Yang, H.J., Xu, Z.P., et al., 2023. Major Breakthrough and Exploration Significance of Well Ketan 1 in Kuqa Depression, Tarim Basin. China Petroleum Exploration, 28(2): 1-10 (in Chinese with English abstract).

[26]

Wang, W., Yin, H. W., Jia, D., et al., 2017. A Sub⁃Salt Structural Model of the Kelasu Structure in the Kuqa Foreland Basin, Northwest China. Marine and Petroleum Geology, 88: 115-126. https://doi.org/10.1016/j.marpetgeo.2017.08.008

[27]

Wang, X., Jia, C.Z., Yang, S.F., 2002. Geometry and Kinematics of the Kuqa Fold⁃and⁃Thrust Belt in the Southern Tianshan. Scientia Geologica Sinica, 37(3): 372-384 (in Chinese with English abstract).

[28]

Wang, Z.M., 2014. Formation Mechanism and Enrichment Regularities of Kelasu Subsalt Deep Large Gas Field in Kuqa Depression, Tarim Basin. Natural Gas Geoscience, 25(2): 153-166 (in Chinese with English abstract).

[29]

Wei, Q., Li, X.Q., Sun, K.X., et al., 2019. Geochemical Characteristics of Deep⁃Seated Natural Gas Accumulation of the Keshen Large Gas Field in the Kuqa Depression, Tarim Basin. Natural Gas Geoscience, 30(6): 897-907 (in Chinese with English abstract).

[30]

Xie, H.W., Luo, H.Y., Zhang, X.Q., et al., 2020. Structural Deformation and Petroleum Exploration Potential of Subsalt Layer in Qiulitage Structural Belt, Kuqa Depression. Xinjiang Petroleum Geology, 41(4): 388-393 (in Chinese with English abstract).

[31]

Xie, H.W., Yin, H.W., Tang, Y.G., et al., 2015. Research on Subsalt Structure in the Central Kelasu Structure Belt Based on the Area⁃Depth Technique. Geotectonica et Metallogenia, 39(6): 1033-1040 (in Chinese with English abstract).

[32]

Yang, H.J., Li, Y., Tang, Y.G., et al., 2019. Discovery of Kelasu Subsalt Deep Large Gas Field, Tarim Basin. Xinjiang Petroleum Geology, 40(1): 12-20 (in Chinese with English abstract).

[33]

Yang, H.J., Li, Y., Tang, Y.G., et al., 2021. Accumulation Conditions, Key Exploration and Development Technologies for Keshen Gas Field in Tarim Basin. Acta Petrolei Sinica, 42(3): 399-414 (in Chinese with English abstract).

[34]

Yang, K.J., Qi, J.F., Liu, A.R., et al., 2022. Characteristics of Basement Faults in the Middle Section of Kuqa Depression and Their Influence on Salt Tectonic Deformation. Chinese Journal of Geology, 57(4): 991-1008 (in Chinese with English abstract).

[35]

Yang, K.J., Qi, J.F., Ma, B.J., et al., 2018. Differential Tectonic Deformation of Subsalt and Suprasalt Strata in Kuqa Depression and Their Controlling Factors. Geotectonica et Metallogenia, 42(2): 211-224 (in Chinese with English abstract).

[36]

Yang, M.Z., Liu, J., Liu, Y.L., et al., 2015. Analysis on the Development Characteristics of Double Detachment Structure in Kuqa Foreland Thrust Belt. Petroleum Geology and Engineering, 29(2): 15-18 (in Chinese with English abstract).

[37]

Yang, X.W., Wang, Q.H., Li, Y., et al., 2022. Formation Mechanism of the Bozi⁃Dabei Trillion Cubic Natural Gas Field, Kuqa Foreland Thrust Belt. Earth Science Frontiers, 29(6): 175-187 (in Chinese with English abstract).

[38]

Yin, H.W., Wang, Z., Wang, X., et al., 2011. Characteristics and Mechanics of Cenozoic Salt⁃Related Structures in Kuqa Foreland Basins: Insights from Physical Modeling and Discussion. Geological Journal of China Universities, 17(2): 308-317 (in Chinese with English abstract).

基金资助

国家自然科学基金联合基金项目(U22B6002)

中国石油天然气集团有限公司科技项目(2023ZZ14YJ02)

AI Summary AI Mindmap
PDF (16987KB)

128

访问

0

被引

详细

导航
相关文章

AI思维导图

/