海洋地震勘探技术发展方向

谢玉洪 ,  叶云飞 ,  黄小刚 ,  孙文博 ,  魏衍雯

地球科学 ›› 2024, Vol. 49 ›› Issue (07) : 2301 -2314.

PDF (12771KB)
地球科学 ›› 2024, Vol. 49 ›› Issue (07) : 2301 -2314. DOI: 10.3799/dqkx.2024.070

海洋地震勘探技术发展方向

作者信息 +

Development Direction of Offshore Seismic Exploration Technology

Author information +
文章历史 +
PDF (13077K)

摘要

随着近海油气勘探程度的不断深入,中浅层构造型油气藏占比大幅减少,深水、中深层、超浅层、潜山、岩性和复杂构造领域已成为油气增储上产新的增长极,对地震勘探技术提出新的挑战.为破解这些复杂领域的地质难题,基于变观测系统的小面元、高覆盖、超长偏移距、宽/多方位节点等地震采集方式不断涌现,作业方式变得越发复杂,在提升复杂地质条件下地震资料品质的同时,也带来了采集成本的大幅攀升.践行价值勘探开发理念,通过海洋地震勘探技术创新降低采集成本,引领油气高质量发展迫在眉睫.介绍了主要几种国内外海洋经济高效地震采集技术,重点分析了海洋地震勘探技术发展现状、应用成效及前景.在改善海洋地震资料品质、提高采集作业效率的同时,降低采集成本,发展经济技术一体化海洋地震勘探技术,推动产业高质量发展,实现价值勘探开发.

关键词

价值勘探开发 / 混叠源 / 单船多源 / 压缩感知 / 高效勘探 / 地震勘探.

Key words

value-driven exploration / blended sources / single vessel with multiple sources / compressive sensing / exploration with high efficiency / seismic exploration

引用本文

引用格式 ▾
谢玉洪,叶云飞,黄小刚,孙文博,魏衍雯. 海洋地震勘探技术发展方向[J]. 地球科学, 2024, 49(07): 2301-2314 DOI:10.3799/dqkx.2024.070

登录浏览全文

4963

注册一个新账户 忘记密码

0 引言

我国油气对外依存度居高不下,油气资源的高效勘探开发对保障国家能源安全和经济社会可持续发展意义重大.2023年,我国海洋油气勘探开发持续发力,原油产量突破6 200×104 t,其增量占全国原油增量约70%,经济高效的海洋油气勘探开发对保障国家能源安全具有重要意义.纵观全球,海洋油气依然是未来世界勘探开发的重要领域,其中新盆地群的发现突破和在生产油气盆地群的新发现是两大重要方向(张功成等,2007;张功成和屈红军,2019).我国近海油气勘探已经全面进入二次三维高精度地震勘探阶段,中浅层规模构造油气藏的发现越来越少,研究对象日趋复杂,深海、深层、潜山、超浅层、岩性等勘探领域占比越来越高,储层类型普遍呈现低孔、低渗特征(杜向东,2018;谢玉洪,2018,2020;李阳和薛兆杰,2020;李慧勇等,2023;吴克强等,2023;赵贤正等,2023),特别是边缘海油气勘探,在解决深大凹陷、生物礁、潜山内幕等特殊构造成像、地质体刻画、储层预测、含油气性等方面的问题时对地震信息提出更高的要求(张功成等,2015).常规拖缆地震资料采集技术已越来越难以满足对日益复杂化、精细化勘探目标的需求.为了克服传统拖缆地震采集的方位角不足、覆盖次数较低、鬼波陷频严重、偏移距受限等造成的资料信噪比低、频带窄、信息不全甚至失真等一系列问题,基于计算机运算能力的提高,研发了变观测地震采集系统,实现了多/宽方位拖缆、海底电缆(OBC)、海底节点(OBN)或彼此联合,进行“两宽一高(宽频、宽方位、高密度)”或“两宽两高(宽频、宽方位、高密度、高覆盖)”等高规格地震采集作业(黄小刚,2020),虽然大幅提升了资料的品质,也带来了作业成本的急剧攀升.相较于传统拖缆采集,新观测系统的采集作业成本翻倍甚至数十倍(图1),高昂的采集成本成为制约海洋高质量地震勘探技术大规模推广应用的重要因素之一.

海洋地震勘探成本的70%以上集中在采集作业环节,需要通过技术创新在提升地震资料品质的同时,降低地震采集作业成本(Huang et al.,2022),才能践行价值勘探开发理念.为此,多种高效地震采集及配套处理技术相继发展.提高地震作业效率、提升资料品质的思路主要包括两个方面:在获取同等地震资料品质、采集面积情况下,提高作业效率,缩短工期、降低成本;在相同采集作业成本、资料品质情况下,获取更大资料规模,从而降低单位面积资料获取成本.

本文重点介绍了海洋地震采集变观测系统、混叠源、单船多源拖缆、海上压缩感知等几种不同海洋高效勘探的技术原理、发展现状、应用成效和未来前景.高效勘探开发能够降本增效,助力实现油气价值勘探开发,引领海洋油气勘探开发的高质量发展.

1 海洋地震采集变观测系统

针对海上日益复杂的勘探开发目标,需要对常规的地震采集观测方式进行改良,形成针对性的采集观测系统.例如,自“十三五”起,针对海上潜山目标,为了改善潜山照明,并对潜山裂缝性储层进行研究,发展出了海上多/宽方位采集技术,主要通过增加OBC/OBN的接收缆数以及增加拖缆的采集方位或在拖缆船的一侧增加副船来实现.海上多/宽方位地震采集获得了良好效果,助推了近海海域多个重大目标的油气勘探与开发.针对海上岩性目标,发展出了海上小面元、高密度地震采集技术,主要通过缩小道距、缆距、炮距、炮线距来实现,也可以与老资料形成插线采集来实现.除了上述多/宽方位、高密度采集外,近年针对海上勘探开发特定需求,还发展出了一些新型的地震采集方式,取得了突出的勘探开发效果.

1.1 拖缆双船连续记录地震勘探

长偏移距数据对于基于回转波的全波形反演(FWI)高精度速度建模尤为重要,而通常拖缆采集的最大偏移距也仅仅在8 km左右.为了克服这一限制,发展出了海上拖缆双船连续记录采集技术(图2).它通过在拖缆正后方增加一条震源船,大大拓展了拖缆采集的偏移距,从而能够改善FWI的速度建模效果.2023年,该技术在南海某三维靶区获得成功应用,偏移距可达到 11 km(图3),增加了回转波穿透深度,为发挥FWI高精度速度建模技术的优势奠定了数据基础.

1.2 拖缆与稀疏海底节点联合地震勘探

拖缆勘探和OBN勘探各有优劣.拖缆勘探成本较低,高频端信号占优,但是拖缆偏移距受限,检波器对低频信号的接收不足.相比之下,OBN的布设灵活,能够实现长偏移距采集,能够接收更多低频信号,有助于提高中深层和复杂地质体的照明度,但OBN的成本较高,通常采用稀疏OBN接收,从而带来了采集脚印等问题(杨华臣和张建中,2022;Vigh et al.,2023Yu et al.,2023).拖缆与稀疏海底节点的联合采集(图4)将两种方法的优势互补,通过稀疏海底节点补充更长偏移距和更低频的信息,使得全波形反演速度建模能够取得更好效果,并且克服了单独使用拖缆时的覆盖不足,信噪比低的问题,以及单独使用稀疏海底节点导致的空间采样严重不足的问题.2023年,在南海某区块进行了高密拖缆与稀疏OBN联合采集试验,取得了较好的试验效果.

1.3 拖缆TopSeis地震勘探

近偏移距数据对于多次波压制和中浅层地震成像尤为关键,而拖缆采集200 m偏移距范围内数据往往缺失.为了兼顾近中远偏移距的数据分布,发展出了TopSeis拖缆地震采集技术(Vinje et al., 2017Vinje and Elboth,2019Dhelie et al.,2018, 2021)(图5).它通过在拖缆正上方增加一条震源船,大大增加拖缆近中偏移距的数据量,从而改善多次波压制效果并提高中浅层地层成像的分辨能力(图6).

2 海洋高效地震采集技术

2.1 单船多源拖缆地震采集技术

单船多源拖缆高效地震采集是一种拖缆地震采集降本增效的有效手段,它出现在21世纪初期,目的是增加拖缆采集的Crossline方向的空间采样,从而改善Crossline方向的成像质量(Long,2017).单船多源拖缆地震采集主要包括单船多源宽拖及单船多源高密度及衍生的其他组合方式(Widmaier and O’Dowd,2017Widmaier et al.,2019, 2020).单船多源宽拖采集主要是在增加震源数(3~6个)的同时,保持震源间距不变,增大拖缆间距,并在保持面元及覆盖次数不变的情况下,增大单次航行采集面积,达到提高采集效率的目的(图7).单船多源高密度则是增加震源数(3~6个)的同时,保持拖缆间距不变,减小震源间距,在保持采集效率、覆盖次数不变的情况下,实现横向小面元、高密度采集(图8).

2019-2020年,PGS公司在澳大利亚、挪威、英国北海等海域进行了6次拖缆单船多源地震采集(表1),做了较多探索,创造了多项纪录(Widmaier et al.,2020).

相较常规单船拖缆采集,多源采集主要表现出如下优势:良好的近偏覆盖、更宽的地下照明、较高的采集效率、更高的横向采样密度、更好的浅部成像和更高的成像分辨率.图9是在Viking Graben工区进行的三源高密度拖缆采集与双源采集效果对比.资料表明,三源采集获取的地震数据品质有了较大幅度的提升,平面上采集脚印得到了明显的压制,改善了横向采样质量(Widmaier et al., 2020),地震剖面和切片信噪比得到了增强、视分辨率得到提升.

单船多源拖缆地震勘探技术发展已经较为成熟,2023年中国海油在南海进行了单船三源拖缆高密度试验,以取得更优的采集效果.单船多源拖缆地震勘探技术是未来地震采集降本增效的重要发展方向.

2.2 多船混叠源地震采集技术

混叠源地震采集技术是通过多个互不相干的震源进行激发,在相同时间内采集更多的炮数,从而提高采集效率.混叠源地震采集技术思想最早出现在20世纪70年代,Silverman(1980)提出以震源编码的形式来实现震源的同时激发.早期的混叠源采集主要应用在陆上可控震源设备,可压制可控震源产生的谐波,多震源连续扫描技术广泛应用于可控震源的高效采集领域(Silverman,1980Rietsch,1981).2000年前后,混叠源高效采集技术得到了学术界和工业界的广泛关注并付诸实践(Berkhout,2008).在可控震源领域,Krohn and Johnson(2003)从提高采集质量出发,研究了高保真可控震源采集方法;Thomas et al.(2010)通过优化震源编码方式实现可控源高精度的多源分离.在脉冲震源领域, Beasley(2008)将脉冲型震源的同时激发采集技术引入到地震勘探.Berkhout(2012)发展出不同频率震源的非均匀混合激发采集技术以提高地震数据的频带宽度.Baardman and van Borselen(2013)提出了随机或者伪随机延迟激发的高效采集方法,在提高采集效率的同时提高地震数据的品质.海洋的混叠源采集试验早于陆上,但商业化应用却晚于陆上.Western Geophysical公司在1997年通过拖缆采集实现了海洋混叠源采集(Beasley et al.,1998);2009年,BP公司在墨西哥湾进行了第一次海底电缆混叠源采集试验(Zhang et al.,2013);2011年至2013年期间,BP公司分别在北海和中美洲海域做了混叠源采集试验,均取得了良好的效果.2012年,WesternGeoco在海洋进行了多源环形混叠源采集试验,同样取得了良好效果(Moldoveanu et al.,2012).中石油东方地球物理公司已经将混叠采集应用于陆上和海上生产(宋家文等,2019;李培明等,2020).中海油进行了基于拖缆、OBC和OBN等不同接收方式的混叠源地震采集试验,取得了良好的地质应用效果,展示了很好的应用前景.

2018年,中石油集团东方地球物理公司实施的ADNOC海洋地震采集项目是迄今全球最大的三维地震采集项目,作业区域面积大于30 000 km2.采用双边平行混叠激发观测系统,采集密度3×107炮道/km2.如果采用传统的单船单源/双源激发无混叠采集方式,一般日效为8 000炮,需要3个地震队十几年才能完成.基于四船六源、最小同步激发船间距6 km、0.3s的混叠源激发高效采集方案,提升了作业效率,平均日效超过22 000炮,效率提高175%.最高日效近40 000炮,大幅度缩短采集作业时间的同时,获得了高质量的地震采集数据与混叠数据分离结果(图10).通过分离,叠加剖面上已经几乎看不到混叠噪声(图11)(李培明等,2020),为后续精细处理奠定了良好基础.

2019年,BP、Shell在北大西洋进行了双船六源随机激发的拖缆富方位地震采集(Poole et al.,2019),CGG公司负责实施,主要目的是改善Crossline方向的采样和成像质量.图12是双船六源采集系统.两船作业,每条船配备3个震源.主船拖缆12条并带有3个震源,另一震源船在接收系统侧面平行激发.相较于传统单船采集,覆盖方位更宽.图13为双船六源采集的混叠数据通过分离处理后的效果与常规采集资料效果的对比图,表明Crossline方向成像质量得到了明显提升.拖缆混叠源采集技术应用,提高了采集效率,实现横向高密度采集,减小横向面元,改善Crossline方向的成像.既取得多船宽方位拖缆采集的作业时效,也获得了多船宽方位高密度拖缆采集的地质效果.

2019年,中海油在南海进行了三船六源“犁式”缆宽频宽方位随机源地震采集.图14为三船六源采集系统示意图,主船拖缆12条,2个震源,另两条震源船各配置2个震源,位于接收系统的同侧,一前一后与主船协同作业.施工中采用了混叠源激发、连续记录的作业方式,日采集达到37.5 km2/d.采集过程中采用“犁式”缆进行信号接收,有效压制了地震鬼波的陷频作用,地震资料频宽达到5个倍频程,成像质量得以显著提升(图15).

2023年,中海油在渤海进行了超低频全方位双船四源混叠源OBN地震采集,成像剖面表明潜山顶面及火山机构形态更加清晰,能够精细刻画火成岩潜山内幕火山机构.相较常规非混叠地震采集,采集作业效率有了显著提升.

混叠源地震勘探已经得到生产实际应用,取得了显著的降本增效效果.随着海洋混叠源采集设计和地震数据分离技术的日益成熟,结合海洋拖缆、OBC、OBN联合勘探,将在生产中发挥重要作用,采集效率可望提升20%以上.

2.3 压缩感知高效地震采集技术

压缩感知完备理论由Candès et al.(2006)Donoho(2006)于2006年提出.理论提出后,迅速在信号采集处理、图形成像等学科得以广泛应用,被美国《科技评论》评为“2007年十大科技进展”之一.压缩感知理论突破了经典奈奎斯特采样定律的限制,只要信号可以稀疏表示,即可对信号进行随机、稀疏采样并重构,从而提高信号采集的效率,降低信号采集成本(黄小刚,2019,2020;Huang et al.,2022).地震勘探的本质就是信号的采集与处理,因此应用压缩感知技术在获取同样的采集面积和采集质量前提下,可以大幅降低采集工作量,从而降低采集成本.

2008年,压缩感知首次被引入到地震勘探(Hennenfent and Herrmann2008Herrmann and Hennenfent, 2008).Herrmann从理论上阐明了压缩感知能够应用于地震采集,并展示了压缩感知采集数据的重构效果(Herrmann,2009, 2010).2010年,Moldoveanu(2010)对海上压缩感知地震采集进行了积极探索.2011年,马坚伟、陈生昌提出了利用压缩感知技术降低现场采集数据量的思想(马坚伟,2011;陈生昌等,2015;王汉闯等, 2016;Ma and Yu,2017).针对压缩感知采集数据的规则化重构问题,学者们进行了基于稀疏反演相关的研究,获得了良好的压缩感知数据规则化重构效果(Abmaand Kabir,2006Herrmann and Hennenfent, 2008;刘国昌等,2011;Wang et al.,2011;黄小刚等,2014;王本锋等,2018).近年有学者使用人工智能进行压缩感知地震数据规则化重构,资料得到了一定的改善(王本锋等,2022).

在地震资料采集实践方面,国内外石油公司相继开展了压缩感知采集试验.康菲石油公司的Mosher和李成博等将压缩感知应用于多个陆地和海洋地震采集工作,证明了方法的有效性和经济性(Mosher et al.,2014, 2017;李成博和张宇,2018).图16是康菲公司进行的一个采集试验(Mosher et al.,2014).图16a是常规地震采集成像剖面,图16b是使用压缩感知采集的成像剖面(炮数与常规采集相当),图16c是压缩感知数据经过重构后所得的成像效果.可见,重构后压缩感知数据的成像品质较常规采集有了明显的提升.

2017年,中石化周松等(2017)进行了压缩感知采集观测系统设计与数据重构方面的研究,吕公河等(2018)将压缩感知采集方法应用于我国西部沙漠的地震勘探.自2017年起,中海油开始探索海上压缩感知地震采集,在渤海某气云区进行了压缩感知采集试验,取得了一定效果.

经过数年的技术攻关,中海油在压缩感知地震采集观测系统设计及压缩感知数据重构技术上取得进展.2022年,获得了我国海洋首块自主设计、实施的压缩感知实际地震数据.观测系统设计采集方案主要对炮间距和炮船航线距进行了随机优化设计,前者主要用于提高观测系统的随机性,后者主要用于提高采集地震作业效率,降低采集成本.相较于规则地震采集,应用压缩感技术节约了25%的炮船航线,作业效率提升20%以上.对采集的压缩感知数据进行重构处理后,获得了良好的成像效果(图17).采集起到了地震资料品质提升,成本降低的良好效果,显示了方案的有效性.

相较于其他高效采集技术,它采用了全新的信号采样原理进行地震采集.如果将压缩感知地震勘探与OBC或OBN结合,可提高效率或降低成本25%以上.压缩感知采集在二次三维地震勘探中具有广阔前景,是未来10年很具有发展潜力的油气勘探开发新技术之一.

3 结束语

创新海洋油气勘探开发技术对保障国家能源安全具有重要意义,价值勘探开发必将是未来海洋油气增储上产的主要趋势和必由之路.随着海洋勘探开发程度的不断加深,对地震勘探技术的要求越来越高.本文介绍的几种高效地震采集技术已展现了良好的地质效果和经济成效,以及广阔的应用前景,并逐步成为海洋油气增储上产的新引擎.与此同时,海洋拖缆多船多源连续记录、常规拖缆与稀疏海底节点、重磁电震协同勘察、TopSeis与混叠源等联合高效采集技术在国内外发展十分迅猛,逐步从工业试验走向成熟,展现出了良好的发展前景.发展经济技术一体化海洋地震勘探技术,践行价值勘探开发理念,推动海洋油气勘探开发高质量发展具有重要意义.

参考文献

[1]

Abma, R., Kabir, N., 2006.3D Interpolation of Irregular Data with a POCS Algorithm. Geophysics, 71(6): E91-E97. https://doi.org/10.1190/1.2356088

[2]

Baardman, R., van Borselen, R., 2013. A Simulated Simultaneous Source Experiment in Shallow Waters and the Impact of Randomization Schemes. SEG Technical Program Expanded Abstracts 2013. Society of Exploration Geophysicists, 4382-4386. https://doi.org/10.1190/segam2013-1199.1

[3]

Beasley, C. J., 2008. A New Look at Marine Simultaneous Sources. The Leading Edge, 27(7): 914-917. https://doi.org/10.1190/1.2954033

[4]

Beasley, C. J., Chambers, R. E., Jiang, Z. R., 1998. A New Look at Simultaneous Sources.SEG Technical Program Expanded Abstracts 1998. Society of Exploration Geophysicists, 133-135. https://doi.org/10.1190/1.1820149

[5]

Berkhout, A. J., 2008. Changing the Mindset in Seismic Data Acquisition. The Leading Edge, 27(7): 924-938. https://doi.org/10.1190/1.2954035

[6]

Berkhout, A. J., 2012. Blended Acquisition with Dispersed Source Arrays. Geophysics, 77(4): A19-A23. https://doi.org/10.1190/geo2011-0480.1

[7]

Candès, E. J., Romberg, J. K., Tao, T., 2006. Stable Signal Recovery from Incomplete and Inaccurate Measurements. Communications on Pure and Applied Mathematics, 59(8): 1207-1223. https://doi.org/10.1002/cpa.20124

[8]

Chen, S.C., Chen, G.X., Wang, H.C., 2015.The Preliminary Study on High Efficient Acquisition of Geophysical Data with Sparsity Constraints. Geophysical Prospecting for Petroleum, 54(1): 24-35 (in Chinese with English abstract).

[9]

Dhelie, P. E., Danielsen, V., Lie, J. E., et al., 2018. Improving Seismic Imaging in the Barents Sea by Source-over-Cable Acquisition. SEG Technical Program Expanded Abstracts 2018. Society of Exploration Geophysicists, 71-75. https://doi.org/10.1190/segam2018-2998198.1

[10]

Dhelie, P. E., Danielsen, V., Lie, J. E., 2021. Combining Nodes and Streamers to Tackle the Imaging Challenges of Salt Basins in the Barents Sea. First International Meeting for Applied Geoscience & Energy Expanded Abstracts. Society of Exploration Geophysicists, 41-45. https://doi.org/10.1190/segam2021-3594693.1

[11]

Donoho, D. L., 2006. Compressed Sensing. IEEE Transactions on Information Theory, 52(4): 1289-1306. https://doi.org/10.1109/tit.2006.871582

[12]

Du, X.D., 2018.Progress of Seismic Exploration Technology in Offshore China. Geophysical Prospecting for Petroleum, 57(3): 321-331 (in Chinese with English abstract).

[13]

Hennenfent, G., Herrmann, F. J., 2008. Simply Denoise: Wavefield Reconstruction via Jittered Undersampling. Geophysics, 73(3): V19-V28. https://doi.org/10.1190/1.2841038

[14]

Herrmann, F. J., 2009. Sub-Nyquist Sampling and Sparsity: How to Get More Information from Fewer Samples. SEG Technical Program Expanded Abstracts 2009. Society of Exploration Geophysicists, 3410-3415. https://doi.org/10.1190/1.3255570

[15]

Herrmann, F. J., 2010. Randomized Sampling and Sparsity: Getting More Information from Fewer Samples. Geophysics, 75(6): WB173-WB187. https://doi.org/10.1190/1.3506147

[16]

Herrmann, F. J., Hennenfent, G., 2008. Non-Parametric Seismic Data Recovery with Curvelet Frames. Geophysical Journal International, 173(1): 233-248. https://doi.org/10.1111/j.1365-246X.2007.03698.x

[17]

Huang, X.G., 2019.Offshore Seismic Exploration Based on Compressive Sensing. Geophysical Prospecting for Petroleum, 58(2): 162-175 (in Chinese with English abstract).

[18]

Huang, X.G., 2020.A Simulation of Acquisition Design and Data Processing for Offshore Compressive Sensing Seismic. Oil Geophysical Prospecting, 55(2): 248-256 (in Chinese with English abstract).

[19]

Huang, X. G., Wang, Y. B., Liu, Y. K., et al., 2014. Weighted Anti-Alias Seismic Data Reconstruction in R-P Domain. Chinese Journal of Geophysics, 57(7): 2278-2290 (in Chinese with English abstract).

[20]

Huang, X. G., Zhang, J. M., Du, X. D., et al., 2022. Compressive Sensing Aided Seismic Geometry Design for Offshore Acquisition. Acta Geophysica, 70(2): 547-562. https://doi.org/10.1007/s11600-022-00748-0

[21]

Krohn, C. E., Johnson, M. L., 2003. High Fidelity Vibratory Seismic (HFVS) II-Superior Source Separation. SEG Technical Program Expanded Abstracts 2003. Society of Exploration Geophysicists, 2452. https://doi.org/10.1190/1.1817957

[22]

Li, C.B., Zhang, Y., 2018.CSI: An Efficient High- Resolution Seismic Acquisition Technology Based on Compressive Sensing. Geophysical Prospecting for Petroleum, 57(4): 537-542 (in Chinese with English abstract).

[23]

Li, H. Y., Xiao, S. G., Li, F., et al., 2023. Reservoir Characteristics and Main Controlling Factors of Hydrocarbon Accumulation of Lower Paleozoic Buried-Hill in Northwestern Shaleitian Slope of Western Bohai Sea. Earth Science, 48(1): 329-341 (in Chinese with English abstract).

[24]

Li, P.M., Song, J.W., Liu, X.G., et al., 2020.Optimal Design of Parameters for Efficient Offshore Aliasing Acquisition. Oil Geophysical Prospecting, 55(4): 707-715 (in Chinese with English abstract).

[25]

Li, Y., Xue, Z. J., 2020. Progress and Development Directions of Reservoir Geophysics at SINOPEC. Geophysical Prospecting for Petroleum, 59(2): 159-168 (in Chinese with English abstract).

[26]

Liu, G.C., Chen, X.H., Guo, Z.F., et al., 2011.Missing Seismic Data Rebuilding by Interpolation Based on Curvelet Transform. Oil Geophysical Prospecting, 46(2): 237-246 (in Chinese with English abstract).

[27]

Long, A., 2017. Source and Streamer Towing Strategies for Improved Efficiency, Spatial Sampling and near Offset Coverage. First Break, 35(11): 71-74.

[28]

Lü, G.H., Di, Z.X., Huo, S.D., et al., 2018.Seismic Data Acquisition Based on Compressive Sensing. Geophysical Prospecting for Petroleum, 57(6): 831-841 (in Chinese with English abstract).

[29]

Ma, J. W., 2011. Sparse Promotion Seismic Exploration. The 27th Annual Meeting of the Chinese Geophysical Society, Changsha, 101-102 (in Chinese).

[30]

Ma, J. W., Yu, S. W., 2017. Sparsity in Compressive Sensing. The Leading Edge, 36(8): 646-652. https://doi.org/10.1190/tle36080646.1

[31]

Moldoveanu, N., 2010. Random Sampling: A New Strategy for Marine Acquisition. SEG Technical Program Expanded Abstracts 2010. Society of Exploration Geophysicists, 51-55. https://doi.org/10.1190/1.3513834

[32]

Moldoveanu, N., Ji, Y., Beasley, C., 2012. Multivessel Coil Shooting Acquisition with Simultaneous Sources. SEG Technical Program Expanded Abstracts 2012. Society of Exploration Geophysicists, 1-6. https://doi.org/10.1190/segam2012-1526.1

[33]

Mosher, C., Li, C. B., Ji, Y. C., et al., 2017. Compressive Seismic Imaging: Moving from Research to Production. SEG Technical Program Expanded Abstracts 2017. Society of Exploration Geophysicists, 74-78. https://doi.org/10.1190/segam2017-17679803.1

[34]

Mosher, C., Li, C. B., Morley, L., et al., 2014. Increasing the Efficiency of Seismic Data Acquisition via Compressive Sensing. The Leading Edge, 33(4): 386-391. https://doi.org/10.1190/tle33040386.1

[35]

Poole, G., Page, C., James, G., et al., 2019. Rich Azimuth Dual Triple-Source Simultaneous Shooting West of Shetland. 81st EAGE Conference and Exhibition 2019. European Association of Geoscientists & Engineers, 1-5. https://doi.org/10.3997/2214-4609.201900896

[36]

Rietsch, E., 1981. Reduction of Harmonic Distortion in Vibratory Source Records. Geophysical Prospecting, 29(2): 178-188. https://doi.org/10.1111/j.1365-2478.1981.tb00400.x

[37]

Silverman, D., 1980. Method of Three Dimensional Seismic Prospecting. The Journal of the Acoustical Society of America, 67(1): 365. https://doi.org/10.1121/1.383740

[38]

Song, J. W., Li, P. M., Wang, W. C., et al., 2019. High-Productivity Blended Acquired Data Separation by Sparse Inversion. Oil Geophysical Prospecting, 54(2): 268-273 (in Chinese with English abstract).

[39]

Thomas, J. W. T., Chandler, B., Osten, D., 2010. Galcode: Simultaneous Seismic Sourcing. SEG Technical Program Expanded Abstracts 2010. Society of Exploration Geophysicists, 86-90. https://doi.org/10.1190/1.3513917

[40]

Vigh, D., Glaccum, K., Cheng, X., et al., 2023. Delve Deep: Seismic Revolution in Acquisition and Model Building for Exploration. The Leading Edge, 42(10): 663-669. https://doi.org/10.1190/tle42100663.1

[41]

Vinje, V., Elboth, T., 2019. Hunting High and Low in Marine Seismic Acquisition; Combining Wide-Tow Top Sources with Front Sources. 81st EAGE Conference and Exhibition 2019. European Association of Geoscientists & Engineers, 1-5. https://doi.org/10.3997/2214-4609.201900899

[42]

Vinje, V., Lie, J. E., Danielsen, V., et al., 2017. Shooting over the Seismic Spread. First Break, 35(6). https://doi.org/10.3997/1365-2397.35.6.89461

[43]

Wang, B. F., Han, D., Li, J. K., 2022. Intelligent Regularly Missing Shots Reconstruction Based on Dilated Convolution. Chinese Journal of Geophysics, 65(6): 2226-2243 (in Chinese with English abstract).

[44]

Wang, B.F., Lu, W.K., Chen, X.H., et al., 2018.Efficient Seismic Data Interpolation Using Three-Dimensional Curvelet Transform in the Frequency Domain. Geophysical Prospecting for Petroleum, 57(1): 65-71 (in Chinese with English abstract).

[45]

Wang, H.C., Tao, C.H., Chen, S.C., et al., 2016.Study on Highly Efficient Seismic Data Acquisition Method and Theory Based on Sparsity Constraint. Chinese Journal of Geophysics, 59(11): 4246-4265 (in Chinese with English abstract).

[46]

Wang, Y. F., Cao, J. J., Yang, C. C., 2011. Recovery of Seismic Wavefields Based on Compressive Sensing by an L1-Norm Constrained Trust Region Method and the Piecewise Random Subsampling. Geophysical Journal International, 187(1): 199-213. https://doi.org/10.1111/j.1365-246X.2011.05130.x

[47]

Widmaier, M., O’Dowd, D., 2017. Strategies for High- Resolution Towed-Streamer Acquisition and Imaging of Shallow Targets. SEG Technical Program Expanded Abstracts 2017. Society of Exploration Geophysicists, 186-190. https://doi.org/10.1190/segam2017-17783497.1

[48]

Widmaier, M., O’Dowd, D., Roalkvam, C., 2019. Redefining Marine Towed-Streamer Acquisition. First Break, 37(11): 57-62. https://doi.org/10.3997/1365-2397.2019035

[49]

Widmaier, M., Tønnessen, R., Oukili, J., et al., 2020. Recent Advances with Wide-Tow Multi-Sources in Marine Seismic Streamer Acquisition and Imaging. First Break, 38(12): 75-79. https://doi.org/10.3997/1365-2397.fb2020093

[50]

Wu, K. Q., Xie, X. J., Liao, J. H., et al., 2023. The Rules of Reservoir Characteristics and Dissolution of Paleogene Clastic Rocks in Offshore China. Earth Science, 48(2): 385-397 (in Chinese with English abstract).

[51]

Xie, Y.H., 2018.New Progress and Prospect of Oil and Gas Exploration of China National Offshore Oil Corporation. China Petroleum Exploration, 23(1): 26-35 (in Chinese with English abstract).

[52]

Xie, Y.H., 2020.Practices and Thoughts of CNOOC Offshore Oil and Gas Exploration. China Offshore Oil and Gas, 32(2): 1-13 (in Chinese with English abstract).

[53]

Yang, H.C., Zhang, J.Z., 2022. Image-Domain Least-Squares Reverse-Time Migration of Combined Towed-Streamer and OBN Data. Chinese Journal of Geophysics, 65(10): 4099-4110 (in Chinese with English abstract).

[54]

Yu, P. F., Chu, M. Z., Xu, Y. X., et al., 2023. Joint Elastic Reverse Time Migration of Towed Streamer and Sparse Ocean-Bottom Seismic Node Hybrid Data. Geophysics, 88(1): S47-S57. https://doi.org/10.1190/geo2021-0333.1

[55]

Zhang, G.C., Mi, L.J., Wu, S.G., et al., 2007. Deepwater Area—The New Prospecting Targets of Northern Continental Margin of South China Sea. Acta Petrolei Sinica, 2(28): 15-21 (in Chinese with English abstract).

[56]

Zhang, G. C., Qu, H.J., 2019. Major New Discoveries of Oil and Gas in Global Deepwaters and Enlightenment. Acta Petrolei Sinica, 40(1): 34-55 (in Chinese with English abstract).

[57]

Zhang, G. C., Qu, H.J., Liu, S.X., et al., 2015. Tectonic Cycle of Marginal Sea Controlled the Hydrocarbon Accumulation in Deepwater Areas of South China Sea. Acta Petrolei Sinica, 36(5): 533-545 (in Chinese with English abstract).

[58]

Zhang, Q.C., Abma, R., Ahmed, I., 2013. A Marine Node Simultaneous Source Acquisition Trial at Atlantis, Gulf of Mexico. SEG Technical Program Expanded Abstracts 2013. Society of Exploration Geophysicists, 99-103. https://doi.org/10.1190/segam2013-0699.1

[59]

Zhao, X. Z., Chen, C. W., Song, S. Y., et al., 2023. Shale Oil Reservoir Structure Characteristics of the Second Member of Kongdian Formation in Cangdong Sag, Bohai Bay Basin. Earth Science, 48(1): 63-76 (in Chinese with English abstract).

[60]

Zhou, S., Lü, Y., Lü, G.H., et al., 2017.Irregular Seismic Geometry Design and Data Reconstruction Based on Compressive Sensing. Geophysical Prospecting for Petroleum, 56(5): 617-625 (in Chinese with English abstract).

基金资助

国家科技重大专项(2016ZX05024)

中国工程院战略研究与咨询项目(2022-XBZD-08-01)

AI Summary AI Mindmap
PDF (12771KB)

444

访问

0

被引

详细

导航
相关文章

AI思维导图

/