福建行洛坑高产热花岗岩U、Th来源与富集成因
U and Th Sources and Enrichment Mechanisms of High Heat Producing Granites in Xingluokeng, Fujian Province
,
钨矿与高分异花岗岩有密切的成因联系.全球大型/超大型钨锡矿床相关花岗岩的放射性产热率大多为5~10 μW•m-3,属于高产热花岗岩;其放射性产热率主要来源于U,一般达到70%,其次是Th(20%)与K(<10%),然而目前并不清楚含钨花岗岩放射性产热元素分布规律及其富集原因.选择福建行洛坑超大型钨矿床开展典型实例研究,通过对行洛坑花岗岩单矿物(黑云母、斜长石、锆石、独居石、磷灰石等)的成分分析,结合已发表的全岩主、微量数据,利用质量守恒原理分别约束U、Th、K的主要赋存矿物.行洛坑两期花岗岩(G1与G2)的锆石U-Pb年龄分别为:151.5±0.6 Ma和150.0±0.6 Ma,根据单矿物计算的G1与G2总产热率分别为1.78 μW•m-3、2.28 μW•m-3.其中,K主要赋存于钾长石和黑云母等矿物,这两种矿物的K对全岩的热贡献率不到10%;Th主要来自于独居石,独居石中Th热贡献率最高达到了46%;U主要来自锆石和独居石,热贡献率均低于15%.G1与G2单矿物计算的产热率只达到全岩平均产热率(分别为3.74 μW•m-3和6.10 μW•m-3)的48%和37%,这种显著差异可能是由于行洛坑花岗岩中大量U存在于少量高U锆石,这种高U锆石统计样本较少,从而导致单矿物求得的产热率偏低.行洛坑花岗岩中U、Th的富集可能由源区和结晶分异作用共同控制的;行洛坑花岗岩放射性元素的衰变热(尤其是晚期岩体)可能延长了行洛坑热液对流时限并促进白钨矿的形成.
Tungsten deposit is genetically related to highly differentiated granites. The radioactive heat production of those tungsten-associated granites is mostly 5-10 μW•m-3 and can be classified into high heat-producing granites. The radioactive heat mainly comes from U (70%), followed by Th (20%) and K (<10%). The distribution pattern and genesis of heat-producing elements in tungsten granites are still unclear. The Xingluokeng large-scale tungsten deposit in Fujian Province was chosen as a typical case study. The main occurrence minerals of U, Th, and K were constrained using the principle of mass conservation, the compositional analysis of single minerals (biotite, plagioclase, zircon, monazite, and apatite), and published major and trace element data of the whole rock in the Xingluokeng granites. The zircon U-Pb ages of G1 and G2 are 151.5±0.6 Ma and 150.0±0.6 Ma, respectively. The total heat production rates of G1 and G2 calculated from single minerals are 1.78 μW•m-3 and 2.28 μW•m-3, respectively. Among them, K mainly occurs in K-feldspar and biotite, and the heat contribution rate of K of these two minerals to the whole rock is less than 10%. Th mainly comes from monazite, and the Th heat contribution rate in monazite is 46% at the highest. U mainly comes from zircon and monazite, and the heat contribution rate is less than 15%. The heat production rates of G1 and G2 minerals are 48% and 37% of the whole rock average heat production rates (3.74 μW•m-3 and 6.10 μW•m-3, respectively). This significant difference may be due to a large amount of U existing in a small amount of high-U zircon. Due to the limited statistical sampling of these high-U zircons, the calculated heat production rate from single minerals tends to be underestimated. The enrichment of U and Th in the Xingluokeng granites may be controlled by the protoliths and later crystallization differentiation.The decay heat from radioactive elements in the Xingluokeng granite (especially the late granite) may prolong the time limit of hydrothermal convection and promote the formation of scheelite.
产热元素 / 锆石 / 独居石 / 钨矿床 / 行洛坑 / 矿床学.
heat-producing elements / zircon / monazite / tungsten deposit / Xingluokeng / mineral deposits
| [1] |
Alessio, K. L., Hand, M., Kelsey, D. E., et al., 2018. Conservation of Deep Crustal Heat Production. Geology, 46(4): 335-338. https://doi.org/10.1130/g39970.1 |
| [2] |
Artemieva, I. M., Thybo, H., Jakobsen, K., et al., 2017. Heat Production in Granitic Rocks: Global Analysis Based on a New Data Compilation GRANITE2017. Earth-Science Reviews, 172: 1-26. https://doi.org/10.1016/j.earscirev.2017.07.003 |
| [3] |
Bachmann, O., Miller, C. F., de Silva, S. L., 2007. The Volcanic-Plutonic Connection as a Stage for Understanding Crustal Magmatism. Journal of Volcanology and Geothermal Research, 167(1-4): 1-23. https://doi.org/10.1016/j.jvolgeores.2007.08.002 |
| [4] |
Bea, F., 1996. Residence of REE, Y, Th and U in Granites and Crustal Protoliths; Implications for the Chemistry of Crustal Melts. Journal of Petrology, 37(3): 521-552. https://doi.org/10.1093/petrology/37.3.521 |
| [5] |
Bea, F., 2012. The Sources of Energy for Crustal Melting and the Geochemistry of Heat-Producing Elements. Lithos, 153: 278-291. https://doi.org/10.1016/j.lithos.2012.01.017 |
| [6] |
Bea, F., Montero, P., Molina, J. F., 1999. Mafic Precursors, Peraluminous Granitoids, and Late Lamprophyres in the Avila Batholith: A Model for the Generation of Variscan Batholiths in Iberia.The Journal of Geology, 107(4): 399-419. https://doi.org/10.1086/314356 |
| [7] |
Breiter, K., 2016. Monazite and Zircon as Major Carriers of Th, U, and Y in Peraluminous Granites: Examples from the Bohemian Massif. Mineralogy and Petrology, 110(6): 767-785. https://doi.org/10.1007/s00710-016-0448-0 |
| [8] |
Cai, Y.L., 1984. A Study of the Genetic Type of Xingluokeng Tungsten (Molybdenum) Deposit, Fujian Province. Mineral Deposits, 3(1): 27-36 (in Chinese with English abstract). |
| [9] |
Chappell, B. W., 1999. Aluminium Saturation in I- and S-Type Granites and the Characterization of Fractionated Haplogranites. Lithos, 46(3): 535-551. https://doi.org/10.1016/S0024-4937(98)00086-3 |
| [10] |
Chappell, B. W., Hine, R., 2006. The Cornubian Batholith: An Example of Magmatic Fractionation on a Crustal Scale. Resource Geology, 56(3): 203-244. https://doi.org/10.1111/j.1751-3928.2006.tb00281.x |
| [11] |
Charoy, B., 1986. The Genesis of the Cornubian Batholith (South-West England): The Example of the Carnmenellis Pluton. Journal of Petrology, 27(3): 571-604. https://doi.org/10.1093/petrology/27.3.571 |
| [12] |
Chen, B., Ma, X. H., Wang, Z. Q., 2014. Origin of the Fluorine-Rich Highly Differentiated Granites from the Qianlishan Composite Plutons (South China) and Implications for Polymetallic Mineralization. Journal of Asian Earth Sciences, 93: 301-314. https://doi.org/10.1016/j.jseaes.2014.07.022 |
| [13] |
Chen, B.L., Shen, J.H., Gao, Y., et al., 2024. Sm-Nd Isochronal Age and Trace Element Geochemistry Characteristics of Scheelite in Xingluokeng Tungsten Deposit, Fujian Province. Mineral Deposits, 43(3): 463-477 (in Chinese with English abstract). |
| [14] |
Chen, R.S., Li, J.W., Cao, K., et al., 2013. Zircon U-Pb and Molybdenite Re-Os Dating of the Shangfang Tungsten Deposit in Northern Fujian Province: Implications for Regional Mineralization. Earth Science, 38(2): 289-304 (in Chinese with English abstract). |
| [15] |
Cuney, M., 2014. Felsic Magmatism and Uranium Deposits. Bulletin de La Société Géologiquede France, 185(2): 75-92. https://doi.org/10.2113/gssgfbull.185.2.75 |
| [16] |
Cuney, M., Friedrich, M., 1987. Physicochemical and Crystal-Chemical Controls on Accessory Mineral Paragenesis in Granitoids: Implications for Uranium Metallogenesis. Bulletinde Minéralogie, 110(2): 235-247. https://doi.org/10.3406/bulmi.1987.7983 |
| [17] |
Förster, H. J., Tischendorf, G., Trumbull, R. B., et al., 1999. Late-Collisional Granites in the Variscan Erzgebirge, Germany. Journal of Petrology, 40(11): 1613-1645. https://doi.org/10.1093/petroj/40.11.1613 |
| [18] |
Friedrich, M.H., Cuney, M., Poty, B., 1987. Uranium Geochemistry in Peraluminous Leucogranites. Eureka Mag., 3: 353-385. https://eurekamag.com/research/020/558/020558969.php |
| [19] |
Gao, Y., 2022. Study on Tectonic Control and Metallogenic Mechanism of the Super Large Tungsten Deposit in Xingluokeng, West Fujian Province (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract). |
| [20] |
Huang, L.C., Jiang, S.Y., 2012. Zircon U-Pb Geochronology, Geochemistry and Petrogenesis of the Porphyric-Like Muscovite Granite in the Dahutang Tungsten Deposit, Jiangxi Province. Acta Petrologica Sinica, 28(12): 3887-3900 (in Chinese with English abstract). |
| [21] |
Huang, L. C., Jiang, S. Y., 2014. Highly Fractionated S-Type Granites from the Giant Dahutang Tungsten Deposit in Jiangnan Orogen, Southeast China: Geochronology, Petrogenesis and Their Relationship with W-Mineralization. Lithos, 202: 207-226. https://doi.org/10.1016/j.lithos.2014.05.030 |
| [22] |
Huang, W.R., 1983. Rock Mass Petrological Characteristics of Rock-Controlled Tungsten Ore:Taking Xingluokeng Tungsten Ore as an Example. Geology and Prospecting, 19(12): 2-5 (in Chinese with English abstract). |
| [23] |
Jiang, S.Y., Zhao, K.D., Jiang, H., et al., 2020. Spatiotemporal Distribution, Geological Characteristics and Metallogenic Mechanism of Tungsten and Tin Deposits in China: An Overview. Chinese Science Bulletin, 65(33): 3730-3745 (in Chinese). |
| [24] |
Kromkhun, K., Foden, J., Hore, S., et al., 2013. Geochronology and Hf Isotopes of the Bimodal Mafic-Felsic High Heat Producing Igneous Suite from Mt Painter Province, South Australia. Gondwana Research, 24(3-4): 1067-1079. https://doi.org/10.1016/j.gr.2013.01.011 |
| [25] |
Lehmann, B., 2021. Formation of Tin Ore Deposits: A Reassessment. Lithos, 402: 105756. https://doi.org/10.1016/j.lithos.2020.105756 |
| [26] |
Li, N., 2017. Research on Mesozoic Granite and Mineralization in Zhuxi Tungsten-Copper Mining Area, Northeast Jiangxi (Dissertation). China University of Geosciences,Beijing (in Chinese with English abstract). |
| [27] |
Li, Q.L., 2016. “High-U Effect” during SIMS Zircon U-Pb Dating. Bulletin of Mineralogy, Petrology and Geochemistry, 35(3): 405-412, 401(in Chinese with English abstract). |
| [28] |
Li, X.H., Li, W.X., Li, Z.X., 2007. A Re-Discussion on the Genetic Types and Tectonic Significance of Early Yanshan Granites in Nanling. Chinese Science Bulletin, 52(9): 981-991 (in Chinese). |
| [29] |
Liao, Y. Z., Zhang, D. H., Danyushevsky, L. V., et al., 2021a. Protracted Lifespan of the Late Mesozoic Multistage Qianlishan Granite Complex, Nanling Range, SE China: Implications for Its Genetic Relationship with Mineralization in the Dongpo Ore Field. Ore Geology Reviews, 139: 104445. https://doi.org/10.1016/j.oregeorev.2021.104445 |
| [30] |
Liao, Y. Z., Zhao, B., Zhang, D. H., et al., 2021b. Evidence for Temporal Relationship between the Late Mesozoic Multistage Qianlishan Granite Complex and the Shizhuyuan W-Sn-Mo-Bi Deposit, SE China. Scientific Reports, 11(1): 5828. https://doi.org/10.1038/s41598-021-84902-6 |
| [31] |
Liu, J.W., Chen, B., Chen, J.S., et al., 2017. Highly Differentiated Granite from the Zhuxi Tungsten(Copper) Deposit in Northeastern Jiangxi Province: Petrogenesis and Their Relationship with W-Mineralization. Acta Petrologica Sinica, 33(10): 3161-3182 (in Chinese with English abstract). |
| [32] |
Liu, X.C., Xiao. C.H., Zhang, S.H., et al., 2020. Does the Sanlu Rock Mass in Eastern Liaoning Provide the Necessary Energy for the Mineralization of Wulong Gold Deposit? Earth Science, 45(11): 3998-4013 (in Chinese with English abstract). |
| [33] |
Liu, X. C., Zhang, D. H., Yang, J. W., et al., 2023. High Heat Producing Granites and Prolonged Extraction of Tungsten and Tin from Melts. Geochimica et Cosmochimica Acta, 348: 340-354. https://doi.org/10.1016/j.gca.2023.03.012 |
| [34] |
Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1/2): 537-571. https://doi.org/10.1093/petrology/egp082 |
| [35] |
Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5): 635-643. https://doi.org/10.1130/0016-7606(1989)1010635: tdog>2.3.co;2 |
| [36] |
Mao, J. W., Li, H. Y., 1995. Evolution of the Qianlishan Granite Stock and Its Relation to the Shizhuyuan Polymetallic Tungsten Deposit. International Geology Review, 37(1): 63-80. https://doi.org/10.1080/00206819509465393 |
| [37] |
Mao, J. W., Ouyang, H.G., Song, S. W., et al., 2019. Chapter 10 Geology and Metallogeny of Tungsten and Tin Deposits in China. Mineral Deposits of China, 411-482. https://doi.org/10.5382/sp.22.10 |
| [38] |
Mao, J. W., Wu, S. H., Song, S. W., et al., 2020. The World-Class Jiangnan Tungsten Belt: Geological Characteristics, Metallogeny, and Ore Deposit Model. Chinese Science Bulletin, 65(33): 3746-3762. https://doi.org/10.1360/tb-2020-0370 |
| [39] |
Mao, J.W., Yuan, S.D., Xie, G.Q., et al., 2019. New Advances on Metallogenic Studies and Exploration on Critical Minerals of China in 21st Century. Mineral Deposits, 38(5): 935-969 (in Chinese with English abstract). |
| [40] |
Mao, Z. H., Liu, J. J., Mao, J. W., et al., 2015. Geochronology and Geochemistry of Granitoids Related to the Giant Dahutang Tungsten Deposit, Middle Yangtze River Region, China: Implications for Petrogenesis, Geodynamic Setting, and Mineralization. Gondwana Research, 28(2): 816-836. https://doi.org/10.1016/j.gr.2014.07.005 |
| [41] |
Mao, Z.H., 2016. Metallogenic Dynamic Background and Mineralization of Dahutang Super-Large Porphyry Tungsten Deposit, Jiangxi Province (Dissertation). China University of Geosciences,Beijing (in Chinese with English abstract). |
| [42] |
Masuda, A., Nakamura, N., Tanaka, T., 1973. Fine Structures of Mutually Normalized Rare-Earth Patterns of Chondrites. Geochimica et Cosmochimica Acta, 37(2): 239-248. https://doi.org/10.1016/0016-7037(73)90131-2 |
| [43] |
Naitza, S., Conte, A. M., Cuccuru, S., et al., 2017. A Late Variscan Tin Province Associated to the Ilmenite-Series Granites of the Sardinian Batholith (Italy): The Sn and Mo Mineralisation around the Monte Linas Ferroan Granite. Ore Geology Reviews, 80: 1259-1278. https://doi.org/10.1016/j.oregeorev.2016.09.013 |
| [44] |
Ni, P., Wang, G. G., Li, W. S., et al., 2021. A Review of the Yanshanian Ore-Related Felsic Magmatism and Tectonic Settings in the Nanling W-Sn and Wuyi Au-Cu Metallogenic Belts, Cathaysia Block, South China. Ore Geology Reviews, 133: 104088. https://doi.org/10.1016/j.oregeorev.2021.104088 |
| [45] |
Peng, H.M., Yuan, Q., Li, Q.Y., et al., 2016. Ore-Controlling Role of Porphyraceous Biotite Granite in Shimensi Tungsten Deposit and Its Prospecting Significance. Science Technology and Engineering, 16(3): 135-142 (in Chinese with English abstract). |
| [46] |
Perkins, C., Wyborn, L. A. I., 1998. Age of Cu-Au Mineralisation, Cloncurry District, Eastern Mt Isa Inlier, Queensland, as Determined by 40Ar/39Ar Dating. Australian Journal of Earth Sciences, 45(2): 233-246. https://doi.org/10.1080/08120099808728384 |
| [47] |
Qu, C.Y., 2016. Geological Characteristics and Prospecting Marks of Guomuyang Wolframite Deposit in Qingliu County, Fujian Province. Geology of Fujian, 35(2): 149-155 (in Chinese with English abstract). |
| [48] |
Rickwood, P. C., 1989. Boundary Lines within Petrologic Diagrams Which Use Oxides of Major and Minor Elements. Lithos, 22(4): 247-263. https://doi.org/10.1016/0024-4937(89)90028-5 |
| [49] |
Romer, R. L., Kroner, U., 2015. Sediment and Weathering Control on the Distribution of Paleozoic Magmatic Tin-Tungsten Mineralization. Mineralium Deposita, 50(3): 327-338. https://doi.org/10.1007/s00126-014-0540-5 |
| [50] |
Rudnick, R. L., Gao, S., 2014. Composition of the Continental Crust. In: Holland, H.D., Turekian, K.K., eds., Treatise on Geochemistry. Elsevier, Amsterdam. https://doi.org/10.1016/b978-0-08-095975-7.00301-6 |
| [51] |
Rybach, L., Cermak, V., 1982. Radioactive Heat Generation in Rocks. In: Angenheister, G., ed., Landolt-Bornstein Numerical Data and Functional Relationships in Science and Technology, Group V. Springer-Verlang,Berlin, 353-371. |
| [52] |
Su, X.Y., 2014. Study on Geological Characteristics and Geochemistry of Zhuxi Tungsten-Copper Deposit in Jiangxi Province (Dissertation). China University of Geosciences,Beijing(in Chinese with English abstract). |
| [53] |
Tichomirowa, M., Gerdes, A., Lapp, M., et al., 2019. The Chemical Evolution from Older (323-318 Ma) towards Younger Highly Evolved Tin Granites (315-314 Ma)—Sources and Metal Enrichment in Variscan Granites of the Western Erzgebirge (Central European Variscides, Germany). Minerals, 9(12): 769. https://doi.org/10.3390/min9120769 |
| [54] |
Van Schmus, W.R., 2017, Radioactivity Properties of Minerals and Rocks.In:Van Schmus, W. R., ed., Handbook of Physical Properties of Rocks (1984). CRC Press,Flarida, 281-293. https://doi.org/10.1201/9780203712030 |
| [55] |
Vermeesch, P., 2018. IsoplotR: A Free and Open Toolbox for Geochronology. Geoscience Frontiers, 9(5): 1479-1493. https://doi.org/10.1016/j.gsf.2018.04.001 |
| [56] |
Villaros, A., Stevens, G., Moyen, J.F., et al., 2009. The Trace Element Compositions of S-Type Granites: Evidence for Disequilibrium Melting and Accessory Phase Entrainment in the Source. Contributions to Mineralogy and Petrology, 158(4): 543-561. https://doi.org10.1007/s00410-009-0396-3 |
| [57] |
Wang, H., Feng, C. Y., Li, R. X., et al., 2021. Petrogenesis of the Xingluokeng W-Bearing Granitic Stock, Western Fujian Province, SE China and Its Genetic Link to W Mineralization. Ore Geology Reviews, 132: 103987. https://doi.org/10.1016/j.oregeorev.2021.103987 |
| [58] |
Wang, H., Feng, C.Y., Li, R.X., et al., 2021. Ore-Forming Mechanism and Fluid Evolution Processes of the Xingluokeng Tungsten Deposit, Western Fujian Province: Constraints Form In-Situ Trace Elemental and Sr Isotopic Analyses of Scheelite. Acta Petrologica Sinica, 37(3): 698-716 (in Chinese with English abstract). |
| [59] |
Wang, H., Feng, C. Y., Zhao, Y. M., et al., 2016. Ore Genesis of the Lunwei Granite-Related Scheelite Deposit in the Wuyi Metallogenic Belt, Southeast China: Constraints from Geochronology, Fluid Inclusions, and H-O-S Isotopes. Resource Geology, 66(3): 240-258. https://doi.org/10.1111/rge.12100 |
| [60] |
Wang, S., Zhang, S.H., Zhang, Q.Q., et al., 2022. In-Situ Zircon U-Pb Dating Method by LA-ICP-MS and Discussions on the Effect of Different Beam Spot Diameters on the Dating Results. Journal of Geomechanics, 28(4): 642-652 (in Chinese with English abstract). |
| [61] |
Wang, X.G., Liu, Z.Q., Liu, S.B., et al., 2015. LA-ICP-MS Zircon U-Pb Dating and Petrologic Geochemistry of Finegrained Granite from Zhuxi Cu-W Deposit, Jiangxi Province and Its Geological Significance. Rock and Mineral Analysis, 34(5): 592-599 (in Chinese with English abstract). |
| [62] |
Watson, E. B., 1985. Henry’s Law Behavior in Simple Systems and in Magmas: Criteria for Discerning Concentration-Dependent Partition Coefficients in Nature. Geochimica et Cosmochimica Acta, 49(4): 917-923. https://doi.org/10.1016/0016-7037(85)90307-2 |
| [63] |
The Western Geological Party of Fujian, 1985. Geological Characteristics of the Qingpop Luokeng Tungsten (Mo) Deposit in Fujian Province. Fujian Science and Technology Press, Fuzhou(in Chinese). |
| [64] |
Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419. https://doi.org/10.1007/BF00402202 |
| [65] |
Willis-Richards, J., Jackson, N. J., 1989. Evolution of the Cornubian Ore Field, Southwest England; Part I, Batholith Modeling and Ore Distribution. Economic Geology, 84(5): 1078-1100. https://doi.org/10.2113/gsecongeo.84.5.1078 |
| [66] |
Wu, F.Y., Guo, C.L., Hu, F.Y., et al., 2023. Petrogenesis of the Highly Fractionated Granites and Their Mineralizations in Nanling Range, South China. Acta Petrologica Sinica, 39(1): 1-36 (in Chinese with English abstract). |
| [67] |
Wu, F.Y., Liu, X. C., Ji, W. Q., et al., 2017. Highly Fractionated Granites: Recognition and Research. Scientia Sinica (Terrae), 47(7): 745-765 (in Chinese). |
| [68] |
Wu, Q., Williams-Jones, A. E., Zhao, P. L., et al., 2023. The Nature and Origin of Granitic Magmas and Their Control on the Formation of Giant Tungsten Deposits. Earth-Science Reviews, 245: 104554. https://doi.org/10.1016/j.earscirev.2023.104554 |
| [69] |
Wu, X.Y., 2019. Magmatism and Genesis of Multi-Stage Porphyritic Granite in Dahutang Superlarge Tungsten Mine, Jiangxi Province (Dissertation).China University of Geosciences,Beijing(in Chinese with English abstract). |
| [70] |
Xiang, X.K., Chen, M.S., Zhan, G.N., et al., 2012. Metallogenic Geological Conditions of Shimensi Tungsten-Polymetallic Deposit in North Jiangxi Province. Contributions to Geology and Mineral Resources Research, 27(2): 143-155 (in Chinese with English abstract). |
| [71] |
Yakymchuk, C., Brown, M., 2019. Divergent Behaviour of Th and U during Anatexis: Implications for the Thermal Evolution of Orogenic Crust. Journal of Metamorphic Geology, 37(7): 899-916. https://doi.org/10.1111/jmg.12469 |
| [72] |
Yu, P.P., Ding, W., Zeng, Ch.Y., et al., 2023. Episodic Magmatism and Continental Reworking in the Yunkai Domain, South China. Earth Science, 48(9): 3205-3220. https://doi.org/10.3799/dqkx.2023.078 |
| [73] |
Yu, Q., 2017. Metallogenic Chronology and Mineralogy of the Super Large Tungsten Deposit in Zhuxi, Jiangxi Province (Dissertation). Nanjing University,Nanjing(in Chinese with English abstract). |
| [74] |
Zhang, D.H., 2020. Geochemistry of Hydrothermal Ore-Forming Processes.Geological Publishing House,Beijing(in Chinese). |
| [75] |
Zhang, J.J., Chen, Z.H., Wang, D.H., et al., 2008. Geological Characteristics and Metallogenic Epoch of the Xingluokeng Tungsten Deposit, Fujian Province. Geotectonica et Metallogenia, 32(1): 92-97 (in Chinese with English abstract). |
| [76] |
Zhang, P.P., Zhang, L., Wang, Z.P., et al.,2018. Diffusion of Molybdenum and Tungsten in Anhydrous and Hydrous Granitic Melts. American Mineralogist, 103(12): 1966-1974. https://doi.org/10.2138/am-2018-6569 |
| [77] |
Zhang, Q.Q., Gao, J.F., Tang, Y.W., et al., 2020. In-Situ LA-ICP-MS U-Pb Dating and Trace Element Analyses of Wolframites from the Xingluokeng Tungsten Deposit in Fujian Province, China. Bulletin of Mineralogy, Petrology and Geochemistry, 39(6): 1278-1291, 1311(in Chinese with English abstract). |
| [78] |
Zhang, T., Zhang, D. H., Liu, X. C., et al., 2023. Petrogenesis of High Heat Production Granite in Eastern Hebei Province, China: Constraints from Geochronology, Geochemistry and Sr-Nd-Hf-O Isotopes. Lithos, 436-437: 106974. https://doi.org/10.1016/j.lithos.2022.106974 |
| [79] |
Zhang, Y.X., Liu, Y.M., 1993. Geological-Geochemical Characteristics and Origin of the Xingluokeng W Deposit. Geochimica, 22(2): 187-196 (in Chinese with English abstract). |
| [80] |
Zhao, Y.D., Zhang, W.G., Liu, H., et al., 2024. The Spatial and Temporal Evolution of Thermal Stress after Granite Emplacement and Its Influencing Factors. Journal of Geomechanics, 30(1): 38-56 (in Chinese with English abstract). |
| [81] |
Zong, K. Q., Klemd, R., Yuan, Y., et al., 2017. The Assembly of Rodinia: The Correlation of Early Neoproterozoic (ca. 900 Ma) High-Grade Metamorphism and Continental Arc Formation in the Southern Beishan Orogen, Southern Central Asian Orogenic Belt (CAOB). Precambrian Research, 290: 32-48. https://doi.org/10.1016/j.precamres.2016.12.010 |
中国地质科学院基本科研业务费专项经费(JKYQN202339)
所科研98
国家自然科学基金项目(42473079)
中国地质调查项目(DD20240127)
中国地质调查项目(DD20242867)
中国地质调查项目(DD20242868)
/
| 〈 |
|
〉 |