玄武岩二氧化碳矿化封存(II):广东省雷州半岛的封存条件、选址和挑战
周蒂 , 夏菖佑 , 李鹏春 , 梁希
地球科学 ›› 2025, Vol. 50 ›› Issue (02) : 569 -584.
玄武岩二氧化碳矿化封存(II):广东省雷州半岛的封存条件、选址和挑战
CO2 Mineralization Storage in Basalt (II): Storage Conditions, Site Selections and Challenges on Leizhou Peninsula, Guangdong Province, South China
,
玄武岩CO2矿化封存技术是在玄武岩区实现碳封存的新兴CCUS技术. 广东省西南部雷州半岛的玄武岩以拉斑玄武岩和碱性橄榄玄武岩为主,分布面积超过3 000 km2,其矿化封存潜力已引起重视. 根据雷州半岛地质条件和水文地质条件,在该区宜选用勿需盖层便可实现玄武岩中CO2安全封存的Carbfix技术. 而且由于雷州半岛的玄武岩大多埋藏较浅,需选择第四纪火山口玄武岩或深部第三纪玄武岩夹层方可满足Carbfix技术对储层深度的要求.以徐闻县田洋破火山口玄武岩和勇士农场第三纪玄武岩这两个先导项目候选场址为例,分析了在这两类玄武岩中进行矿化封存的可行性、潜力及存在问题,指出对火山口玄武岩注水后的效应研究、玄武岩的深部和横向延伸的探测等是目前遇到的主要挑战,也需要对是否存在影响地下水资源的风险进行监测和研究.提出在雷州半岛有必要开发在中浅(如150 m以下)第四纪玄武岩中进行矿化封存的工艺,并提议在海边选址开展利用海水进行玄武岩CO2封存的探索和试验,希望为扩大雷州半岛玄武岩矿化封存潜力服务,并为开发全球海底玄武岩碳封存资源的利用技术做出贡献.
CO2 mineralization storage in basaltis a new CCUS technique that enables the sequestration of CO2 in basaltic areas for carbon reduction. The Leizhou Peninsula in the Guangdong Province of South China boasts a vast area covered by basalt, exceeding 3 000 km2.The basaltic formations on the Leizhou Peninsula consist primarily of tholeiite and alkali olivine basalts, making it a promising candidate for CO2 mineralization storage. This paper analyzed the geological and hydrological conditions of the Leizhou Peninsular and pointed out that the Carbfix technology, which allows safe storage of CO2 without caprocks, is applicable to the area, However, the basalts in the peninsular are mostly shallowly buried, and only volcanic crater basalts and deeply buried Tertiary basalts might meet the minimum depth requirements of the Carbfix technology. Currently, Xuwun County's Tianyang Quaternary caldera basalts and the Yongshi Farmland's Tertiary basalts have been identified as potential pilot project sites. The geological and hydrological conditions at these two sites are reviewed, and favorable and unfavorable factors and potential for CO2 storage are analyzed. The primary challenges currently faced are to investigate the safety issues of large⁃quantity water injection into the caldera basalts, and to detect the deep basal interface and lateral extension of the basalts. Additionally, the potential impacts of injected CO2⁃changed water on underground water resources need to be monitored and investigated. The article proposes to develop techniques of storing CO2 in shallower (e.g. <150 m) basalts, and suggests to conduct necessary experiments at a shore site to explore the feasibility and techniques of using seawater for basalt CO2 storage. These actions will benefit not only expanding the potential of basalt mineralization storage on the Leizhou Peninsula, but also contributing to the study of utilizing global submarine basaltic carbon storage resources.
玄武岩CO2矿化封存 / 碳捕集利用与封存(CCUS) / 封存选址 / Carbfix技术 / 雷琼火山岩 / 雷州半岛.
CO2 mineralization storage in basalt / carbon capture, use, and storage (CCUS) / storage site selection / Carbfix technique / volcanics in Lei⁃Qiong areas / Leizhou Peninsular.
| [1] |
Aradóttir, E., Sonnenthal, E., Björnsson, G., et al., 2012. Multidimensional Reactive Transport Modeling of CO2 Mineral Sequestration in Basalts at the Hellisheidi Geothermal Field, Iceland. International Journal of Greenhouse Gas Control, 9: 24-40. |
| [2] |
Cao, X., Li, Q., Xu, L.,Tan, Y., 2024a. Experiments of CO2⁃Basalt⁃Fluid Interactions and Micromechanical Alterations: Implications for Carbon Mineralization. Energy & Fuels, 38(7): 6205-6214. |
| [3] |
Cao, X., Li, Q., Xu, L. and Tan, Y., 2024b. A Review of in situ Carbon Mineralization in Basalt. Journal of Rock Mechanics and Geotechnical Engineering, 16(4): 1467-1485. https://doi.org/10.1016/j.jrmge.2023.11.010 |
| [4] |
Chen, J.R., 1990. Quaternary Geology of Tianyang Volcanic Lake in Guangdong Province. Geological Publishing House, Beijing(in Chinese) |
| [5] |
Chen, M.X., Xia, S.G., Yang, S.Z., 1991. Local Geothermal Anomalies and Their Formation Mechanisms on Leizhou Peninsula, South China. Chinese Journal of Geology, 26(4): 369-383 (in Chinese with English abstract). |
| [6] |
Flaathen,T.K., Gislason,S.R., Oelkers,E.H. et al., 2009. Chemical Evolution of the Mt. Hekla, Iceland, Groundwaters: A Natural Analogue for CO2 Sequestration in Basaltic Rocks. App. Geochem, 24: 463-474. |
| [7] |
Gao, Z.H., Xia, C.Y., Liao, S.L., et al., 2023. Progress of Methods for Assessing CO2 Mineralization Storage Potential in Basalt. Geological Journal of China Universities, 29(1): 66-75 (in Chinese with English abstract). |
| [8] |
Gislason,S.R., Oelkers,E.H., 2014. Carbon Storage in Basalt. Science, 344(6182): 373-374. https://doi.org/10.1126/science.1250828 |
| [9] |
Goldberg, D. S., Takahashi, T., Slagle, A. L., 2008. Carbon Dioxide Sequestration in Deep⁃Sea Basalt. Proceedings of the National Academy of Sciences of the United States of America, 105(29): 9920-9925. https://doi.org/10.1073/pnas.0804397105 |
| [10] |
Guangdong Geological Bureau, 1996. Stratigraphy(lithostratic) of Guangdong Province. China University of Geosciences Press,Wuhan(in Chinese). |
| [11] |
Han, J.W., Xiong, X.L., Zhu, Z.Y., 2009. Geochemistry of Late⁃Cenozoic Basalts from Leiqiong area;The Origin of EM2 and the Contribution from Sub⁃Continental Lithosphere Mantle. Acta Petrologica Sinica, 25(12): 3208-3220 (in Chinese with English abstract). |
| [12] |
Ho, H.J., Iizuka, A., 2023. Mineral Carbonation Using Seawater for CO2 Sequestration and Utilization: A Review. Separation and Purification Technology, 307: 122855. |
| [13] |
Huang, Z.G., Cai, F.X., Han, Z.Y., 1993. Quaternary Volcano in Lei Qiong. Science Press, Beijing(in Chinese). |
| [14] |
IEAGHG, 2011. Geological Storage of CO2 in Basalts. 2011/TR2. IEA Greenhouse Gas R&D Programme, 18. |
| [15] |
IEAGHG, 2017. Review of CO2 Storage in Basalts. 2017-TR2. IEA Greenhouse Gas R&D Programme, 27. |
| [16] |
Kong, Z.H., 2004. Hydrogeological Property and Laws of Water Abundance of the Volcanic Rocks in Leizhou Peninsula. Tropical Geography, 24(2): 136-139 (in Chinese with English abstract). |
| [17] |
Li, C., Li, Y., Zhu, W. H., et al., 2023. Carbon Dioxide Cured Building Materials as an Approach to Decarbonizing the Calcium Carbide Related Industry. Renewable and Sustainable Energy Reviews, 186: 113688. https://doi.org/10.1016/j.rser.2023.113688 |
| [18] |
Li, P.C., Jiang, J.L., Cheng, J.H., et al., 2023. Assessment of Carbon Dioxide Mineralization Sequestration Potential of Volcanic Rocks in Leizhou Peninsula, Guangdong Province, China. Geological Journal of China Universities, 29(1): 76-84 (in Chinese with English abstract). |
| [19] |
Li, W.L., Chen, J., Jia, L.X., et al., 2022a. Research Progress of CO2 Geological Sequestration in Basalts. Geological Review, 68(2): 648-657(in Chinese with English abstract). |
| [20] |
Li, W.L., Xu, J.J., Jia, L.X., et al., 2022b. Research Progress on Key Technologies of CO2 Storage in Basalts. Hydrogeology & Engineering Geology, 49(3): 164-173(in Chinese with English abstract). |
| [21] |
Li, X.Y., Chang, C., Yu, Q.C., 2013. Model of Basalt Dissolution Rate under CO2 Mineral Sequestration Conditions. Geoscience, 27(6): 1477-1483 (in Chinese with English abstract). |
| [22] |
Luo, S.W., 1998. Volcanic Activity in Southern Leizhou Peninsula and Its Tectonic Setting. Guangdong Geology, (3): 20-24(in Chinese). |
| [23] |
Marieni, C., Voigt, M., Clark, D. E., et al., 2021. Mineralization Potential of Water⁃Dissolved CO2 and H2S Injected into Basalts as Function of Temperature: Freshwater Versus Seawater. International Journal of Greenhouse Gas Control, 109: 103357. https://doi.org/10.1016/j.ijggc.2021.103357 |
| [24] |
Matter, J. M., Kelemen, P. B., 2009. Permanent Storage of Carbon Dioxide in Geological Reservoirs by Mineral Carbonation. Nature Geoscience, 2: 837-841. https://doi.org/10.1038/ngeo683 |
| [25] |
Matter, J. M., Stute, M., Snæbjörnsdottir, S. Ó., et al., 2016. Rapid Carbon Mineralization for Permanent Disposal of Anthropogenic Carbon Dioxide Emissions. Science, 352(6291): 1312-1314. https://doi.org/10.1126/science.aad8132 |
| [26] |
McGrail, B. P., Schaef, H. T., Ho, A. M., et al., 2006. Potential for Carbon Dioxide Sequestration in Flood Basalts. Journal of Geophysical Research: Solid Earth, 111(B12): 1-15. |
| [27] |
McGrail, B. P., Spane, F. A., Amonette, J. E., et al., 2014. Injection and Monitoring at the Wallula Basalt Pilot Project. Energy Procedia, 63: 2939-2948. https://doi.org/10.1016/j.egypro.2014.11.316 |
| [28] |
Oelkers, E.H., Gislason, S.R., Matter, J., 2008. Mineral Carbonation of CO2. Elements, 4(5): 333-337. |
| [29] |
Olsson, J., Stipp, S. L. S., Makovicky, E., et al., 2014. Metal Scavenging by Calcium Carbonate at the Eyjafjallajökull Volcano: a Carbon Capture and Storage Analogue. Chemical Geology, 384: 135-148. https://doi.org/10.1016/j.chemgeo.2014.06.025 |
| [30] |
Pan, S. Y., Chung, T. C., Ho, C. C., et al., 2017. CO2 Mineralization and Utilization Using Steel Slag for Establishing a Waste⁃to⁃Resource Supply Chain. Scientific Reports, 7(1): 17227. https://doi.org/10.1038/s41598⁃017⁃17648⁃9 |
| [31] |
Power, I. M., Dipple, G. M., Bradshaw, P. M. D., et al., 2020. Prospects for CO2 Mineralization and Enhanced Weathering of Ultramafic Mine Tailings from the Baptiste Nickel Deposit in British Columbia, Canada. International Journal of Greenhouse Gas Control, 94: 102895. https://doi.org/10.1016/j.ijggc.2019.102895 |
| [32] |
Snæbjörnsdóttir, S. Ó., Sigfússon, B., Marieni, C., et al., 2020. Carbon Dioxide Storage through Mineral Carbonation. Nature Reviews Earth & Environment, 1: 90-102. https://doi.org/10.1038/s43017⁃019⁃0011⁃8 |
| [33] |
Snæbjörnsdóttir, S. Ó., Wiese, F., Fridriksson, T., et al., 2014. CO2 Storage Potential of Basaltic Rocks in Iceland and the Oceanic Ridges. Energy Procedia, 63: 4585-4600. https://doi.org/10.1016/j.egypro.2014.11.491 |
| [34] |
Sui, S.Z., Wang, W.Y., 2003. The Discussion of the Bottom Age of TY2 Core from Paleo⁃Maar⁃Lake Tianyang, Guangdong Province. Quaternary Sciences, 23(2): 232(in Chinese with English abstract). |
| [35] |
Sun, J.S., 1991. Cenozoic Volcanic Activity in the Northern South China Sea and Guangdong Coastal Area. Marine Geology & Quaternary Geology, 11(3): 45-67, 125-130(in Chinese with English abstract). |
| [36] |
Wang, M., Lu, H.Y., 2019. Age, Geochemical Composition and Their Paleoclimatic Implications of the Basalt in Leizhou Peninsula, Southern China. Quaternary Sciences, 39(5): 1071-1082 (in Chinese with English abstract). |
| [37] |
Wen, H.H., 2013. Study on groundwater circulation law and rational development and utilization in Leizhou Peninsula(Dissertation). China University of Geosciences, Wuhan, 167(in Chinese with English abstract). |
| [38] |
White, S. K., Spane, F. A., Todd Schaef, H., et al., 2020. Quantification of CO2 Mineralization at the Wallula Basalt Pilot Project. Environmental Science & Technology, 54(22): 14609-14616. https://doi.org/10.1021/acs.est. 0c05142 |
| [39] |
Wiese, F., Fridriksson, T., Ármannsson, H., 2008. CO2 Fixation by Calcite in High⁃Temperature Geothermal Systems in Iceland, Iceland Geosurvey. |
| [40] |
Wolff⁃Boenisch, D., 2011. On the Buffer Capacity of CO2 ⁃Charged Seawater Used for Carbonation and Subsequent Mineral Sequestration. Energy Procedia, 4(C): 3738-3745 |
| [41] |
Wu, E.N., Chen, Q., Wang, S.W., et al., 2017. Study on CO2 Storage Potential of Basalt Reservoir in Jiyang Depression. West⁃China Exploration Engineering, 29(12): 98-100 (in Chinese with English abstract). |
| [42] |
Wu, E.N., Wu, C.Z., Ji, J.F., et al., 2012. Potential Capacity and Feasibility of CO2 Sequestration in Petroleum Reservoirs of Basaltic Rocks: Example from Basaltic Hydrocarbon Reservoir in the Xujiaweizi Fault Depression the Songliao Basin, East China. Geological Journal of China Universities, 18(2): 239-247 (in Chinese with English abstract). |
| [43] |
Yao, J.M., Zhou, X., Li, J., et al., 2007. Hydrogeochemical Characteristics and Evolution Simulation of Groundwater in Basalts on the Leizhou Peninsula, Guangdong, China. Geological Bulletin of China, 26(3): 327-334 (in Chinese with English abstract). |
| [44] |
Zhang, G.M., 1993. Characteristics and Enrichment Law of Volcanic Groundwater in Leizhou Peninsula. Guangdong Geology, (2): 1-13(in Chinese). |
| [45] |
Zhang, L., Wen, R., Li, F., et al., 2023. Assessment of CO2 Mineral Storage Potential in the Terrestrial Basalts of China. Fuel, 348: 128602. |
| [46] |
Zhang, L., Wen, R.H., Geng, S.H., et al., 2022. Mineral Trapping of CO2 in Basalt Rock: Progress and Key Issues. Journal of Chemical Engineering of Chinese Universities, 36(4): 473-480 (in Chinese with English abstract). |
| [47] |
Zhang, S.H., 2016. Conjunctive Use of Surface Water and Groundwater on Leizhou Peninsula. Guangxi Water Resources & Hydropower Engineering, (1): 1-5(in Chinese with English abstract). |
| [48] |
Zhang, Z., Zhang, H.F., 2012. Carbonation of Mafic⁃Ultramafic Rocks: a New Approach to Carbon Dioxide Geological Sequestration. Earth Science, 37(1): 156-162 (in Chinese with English abstract). |
| [49] |
Zhou, D., Xia, C.Y., Li, PC., et al., 2024. CO2 Mineral Storage in Basalt (I): Technology and Application Conditions. Chinese Journal of Environmental Engineering, 18(10): 2708-2718 (in Chinese with English abstract). |
| [50] |
Zhou, Y.Q., 1990. Geological Characteristics and Development Prospect of Diatomite Deposit in Leizhou Peninsula. Guangdong Geology, (2): 22-27(in Chinese). |
国家重点研发计划(2021YFF0501202)
广东省基础与应用基础研究基金(2021A1515011298)
/
| 〈 |
|
〉 |